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FILTERING OF THE NOISE GENERATED
BY SHAFT NECK CONTOUR DEFORMATIONS IN
MONITORING SYSTEMS

Woiciece BATKO*, TapEUsz BANEK**

The paper presents an applicable, approximate solution to the filtering-
prediction problem for the diagnostic signals. It takes into consideration the
possibility of compensating the noise generated by the deformations of the sur-
face geometry of a shaft neck. The equations of the Kalman-Bucy model were
the basis for the calculations of the structure of the filter-predictor under inves-
tigation. It was defined by a stochastic equation of the shaft neck movement
around the point of balance which was related to the equation of the monitored
courses. Relations resulting from the two-dimensional isothermal model of a
hydrodynamic bearing were used. They were the basis for the formulation of
equations which define the shape of the signal filtration and prediction module
adequate for the geometry of a machine sensor configuration.

1. Introduction

The vibration monitoring of turbo machines, especially of turbine sets with slide bear-
ings, is determined by the monitoring of the bearing bush shaft neck vibrations which
are then related to the accepted criteria defining the state gradation of a machine.
The analysis of both the vibration changes during the exploitation process and the
changes of the Lissajou curves drawn by the shaft neck axis of the ob ject being mon-
itored are symptoms of failure effects which take place in such nodes. This is because
the durability and reliability of such nodes depend on the vibration phenomena that
accompany the displacements of the centre of the journal around the static balance
points.

The proper operation of such systems is determined by correct estimation of
variables being monitored (which requires the elimination of the noise that disturbs
the measurements) and by evaluation of possible changes in a given time interval.
Filtration (Bendat and Piersol, 1971; Cempel, 1989) and prediction (Batko, 1984;
Batko and Kazmierczak, 1985) solutions based on various methods of signal analysis
are the basis for the process of estimation. The phenomenon called the mechanical
run-out is one of the mechanisms generating the undesired noise, and is related to the
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roughness of the shaft neck surface and to the deformations of the circular contour of
the bearing shaft neck. This sort of noise in the operation of the monitoring system
sensors may be caused by faulty machining of the journal, by deformations resulting
from an improper support of the rotor while storing for a long time, or they may be
a consequence of a non-uniform cooling. The traditional methods of compensating
the noise of the mechanical run-out by vector zeroing (digital vector filter DVF) or
the compensation of run-out (digital compensator of run-out DCR) are not always
successful because one cannot guarantee the identity of the results of subtracting the
shape deviation vector (its amplitude and phase) measured at a slow roll from the
vector measured in working conditions. This is caused by the fact that every change
of the axial position of the shaft in relation to a sensor—resulting from a variable
load of a machine or from thermal phenomena—imposes a new area of cooperation
between the journal and the sensor. Thus, different results are an outcome of such a
procedure.

This method of the noise filtration in monitoring systems, which is a partial
solution and does not consider other mechanisms that generate the noise, does not
guarantee the desired results. The suggestion presented in (Batko and Banek, 1993;
1994) is an optimal solution. It refers to the already existing solutions modelling the
shaft neck dynamic movement in the hydrodynamic bearing bush (Kicinski, 1989;
1993; Kurnik and Starczewski, 1985; Muszyiiska, 1971) and relates its equations to
the observation equation of the courses being monitored. While considering the possi-
ble stochastic noise, the equations define the structure of the Kalman filter-predictor
which ensures optimal filtration and prediction of the monitored signals being de-
scribed by stochastic differential equations (Anderson and Moore, 1979). With refer-
ence to this direction of research (Batko and Banek, 1993; 1994), the paper presents
a solution to an optimum filter problem for a vibration inspection system in slide
bearings. It will also render it possible to eliminate the noise generated by errors and
deformations of the shaft neck surface. Equations defining the shape of the filter will
also be provided.

2. Problem Formulation

The problem of elimination of the noise in vibration monitoring systems of bearings
may be related to the problem of unobservable state variables estimation carried out
in the presence of noise on the basis of diagnostic signals. For such a formulation of the
filtration tasks in the vibration monitoring systems of slide bearings, as suggested in
(Batko and Banek, 1993; 1994), a modification cf the solutions will be presented that
will enable one to eliminate simultaneously the noise generated by the deformations
of the shaft neck being monitored. The formulation refers to the results and solutions
of the Kalman-Bucy theory of optimal filtration (Anderson and Moore, 1979), which
makes the solutions suggested in the paper universal and permits a more penetrating
diagnostic analysis of the phenomena being monitored.

The equations (derived in (Batko and KaZmierczak, 1985; Batko and Banek,
1993)) of the shaft displacement around the point of balance in the shaft neck of
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the slide bearing being monitored were accepted as our starting point. They cor-
respond to the description of the behaviour of the bearing node being monitored,
defined by a simplified, two-dimensional, and isothermal model presented in (Kurnik
and Starczewski, 1985) with its characteristic assumptions, boundary conditions, and
reductions. They refer to the conditions of determining the working area of the oil
film and hydrodynamic forces. ‘

As regards the description of the model bearing node, the displacement vector
changes

X = COI[A], W1 = Al, Az, W2 = AQ]

which describe its state—described by the observation of the changes in the distances
Ajand Ay between the shaft neck surface and bearing bush in measurement sensor
position respectively (Fig. 2)—can be modelled with the accuracy to some Gaussian
processes by eqns. (1) and (2) (Batko and Banek, 1994):

dX; = (A+ AX,)dt + 2 dB; (1)
dY; = HY, + E db, (2)
where B and b are Brownian motions of appropriate dimensions,

0 1 0 0

)511 Qi1 512 G12

A= 3
0 0 0 1 (3)
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H= R , E=| " (4)
0 01 0 0 0 0 e
0 (o)}

The coeflicients f;; and «;; which appear in the matrix A denote the elastic-
ity and damping coefficients of the oil film, respectively. They may be determined
with the use of the perturbation method or its generalised realisation (Kicifiski, 1989;
1993) and then corrected adequately (Batko and Banek, 1993) to the axis config-
uration of sensors in the monitoring system. The matrix H joins the invisible
state vector X with the observation vector ¥ whose components are displacements
A; and Ay (Fig. 2) without the speed measurement. The quantity {B1,B2} is a
two-dimensional Wiener process denoting the noise caused by the model inaccuracies
in the description of the shaft neck movement around the point of balance. The con-
stants (¥, By) may equal zero (for an undisturbed system) or may be positive when
the system is disturbed. Likewise, {b, by} is a Wiener process stochastically inde-
pendent of {B1, By} and denotes random noise in the monitoring set. The constants
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(e1, €2) play the same role as (o1, 02) in eqn. (1) and model the noise measurement
level. The components of vector A are given by

A 0
A A + A
A= 2 | __ P10 B12l20 5)
Az 0
Ay Ba1l10 +  P22lag

with the discussed above oil film elasticity coefficients §;; and the distance of the
centre in the static point of balance recalculated to the distance measured by the
Sensors.

3. State Equations of the Monitored Bearing Node in the Case
of Shaft Neck Deviations

The easiest way to define the deviation from the circularity of the shaft neck is to
give (Fig. 1) functions by which it is characterised.

X4

Fig. 1. The scheme of the measuring disturbances caused by the
shaft neck profile deformations.

Then the true radius of the shaft neck R,, equals
R..(¢) = R— f(v) (6)

The considerations concerning the effect of the non-circularity of the shaft neck upon
the sensor A; and A, indications are clarified by Fig. 2. It is clear from the figure
that
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A

Fig. 2. The characteristics of the shaft neck radius changes in the angular
expansion of its profile.

. X . '

sinyg = 721 ()
and

T

P = Z + ve (8)

Thus
X
P2 = g- + arcsin EI (9)

The analysis of the geometrical dependencies presented in Fig. 2 results in

7 =) + [2Rsin 222’ (10)
We also have

T2 _ER- fla2)
sin(y2 — 2) sin 7,

The comparison of the last two formulae results in

W%W+Pmm%;%r=m“ﬂwmifﬂ%—m) an
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Since, for small angles a, sin a ~ a, formulae (10) and (11) may be respectively rewrit-
ten as

3 = [f(@))* = R* (%2 — ¢2)? (12)
and
R*[R = f(42)]* (92 — 2)°
X} = 13
L= TR — g [FR)P (19
From similar considerations for the first sensor, one obtains
7 = [f(@1))* + R*($ — ¢1)? (14)
and
R’[R — f($1)]* (1 — ¢1)?
X2 = 15
P = TR - )P )P (15)
The geometrical dependencies shown in Figs. 1 and 2 result in
(X1 — Ro+ A1)+ X2 =R? 16)
X12 + (X2 — Ro +A2)2 =R?
After solving the above system one obtains
1 4R? — (Rg — A1)? — (Ro — Ay)?
XF==(Ro— A Ry - A
1 2( 0 1):":( 0 2)\/ (RO—A1)2+(RQ—A2)2
(17)

4R% — (Ry — A1)? — (Ry — Ay)?
(Ro — D)2 + (Ro — Ag)?

X5 = %(Ro - A2) F (R — A1)‘/

Substitution of (9) and (17) into (13) and (15) results in a complex relation
between angles v, ¥ and R, Ry, A;, Az. The relation, although possible to be
defined, results in insignificant deviations due to insignificant differences between
1, Y1, and g, 2. That is why it is assumed that

11 = 1, P2 = @2 (18)

Thus, the first approximation yields

n = f(e1), 2 = f(¢p2) (19)
where
3 . X§ i . XY :
of = yid + arcsin 72, w3 = 1 + arcsin ——Rl— (20)
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Thus, true deviations measured by the sensors equal to A; and A, respectively, where
A1 = Al + T1, A2 = AQ + T2 (21)

and 71, 7o are given by (19).
Further approximations in (17) result in

1 _
X{F = §(R0 - Al) F (RO - A2)R

X (22)
XS: = -2~(R0 - Ag) F (RO el Al)R

where R = 1/2(R/Ry)? — 1.

As it may happen that X;, X2 > 0 or X, X, <0, it can be assumed that

1 _
X] = E(RO - Al) - (RU - AQ)R

; (23)
X2 = §(R0 - Az) - (RD - Al)R
Thus the approximate form of (21) is given by
X
A=A+ f (%ﬂ' + arcsin fz)
(24)
X
Ay = Ay + f( + arcsin ——1—)
R
Considering the assumed reduction
& —& ~0 arcsinél— =21 a,rcsin—)Eg = &
R R 7 R R R R
one obtains
3 X2\ 1
A=A+ f (Zﬂ’ + arcsin f) EXZ
3 1 1. _
= f’ (zi -+ arcsin ———) E - 5&2 + RAl (25)
1 Xi\1
=A "= — | =
2+ f (47r+arc51 R)RX
1 1. _ .
= (Z + arcsin -——) - §A1 + RA, (26)
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which, after some arrangements, can be rewritten as

L R,(3 X 1 (3, X\,
Al—Al 1+Ef(z’n’+R) 2Rf(4+R Ag
(27)
. 1 , 1 X1 . R ' 1 Xl A
=——f'l>74+ = |A 1+=f'l=r+—=]|A
4a 2Rf(4"+ R) 1R R |2
4. Optimal Filtration and Prediction of Monitored Signals
The state vector will be defined as
X
AI Al f(%’fl’ + 731)
A Ay %Xﬂ”(%ﬁ + %)
Z:= = + i (28)
A As 1(z+%)
A) N\ (%)
which, having applied (24) and (25), can be rewritten as
Ay 1 0 0 0 A
. A | _| 0 1+§f’(%w+%) 0 —ﬁf’(%wﬁ-%) A,
Ay 0 1 0 JAV
Ay 0 -&f(5+%) o 1+8r(3+%) A,
f(ir+ %)
0
+ =CX+F (29)
$(E+ %)
0

In order to obtain a filter and evolution equation for the vector Z, transforma-
tion (29) and state equation (1) will be given a vector-matrix form

Z=CX+F

30
dX, = (A + AX;) dt + £dB, (30)

where Fand A are heterogeneities.
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By Ito’s differential rule we obtain

dZ, = F(t)dt + CdX, = (F(t) + CA+ CAX,)dt + CZdB, (31)
and
dz, = [F(t) +CA+CAC™12Z, - CAC‘lF} dt + CTdB; (32)
where
o 3 Xy w Xy
F—col[f(zw+3),0,f(z+ R>’O] (33)
1 0 0 0
oo | ORIt R) 0 (i %) -
’ 0 0 1 0
0 —hf(5+E) 0 1+Er(5+ %)

Equation (32) describes evolution of the state vector Z that defines the shaft
neck location and speed related to both sensors, in view of shaft neck contour errors.
The ovalization of the shaft neck is given by the function f(¢) and is effective in
eqn. (32). If f(-) =0, then B=1T and F =0, thus Z = X. As a result, eqn. (32)
is reduced to the basic equation (1).

By the non-linear function f, transformation (30) is also nonlinear, since all
the terms in the matrix B and the vector F depend on the function f whose
arguments are variables (X, X;) which depend on the coordinates of the vector
X = col(A1, Ay, Ag, Ay) through relations (23).

Unfortunatelly, all known monitoring systems can only measure displacements

Ay and A> without speed measurement, so we must assume the following observation
model:

Ay
/ 100 0 A 0 b
af "= Yolae+ [ o al ' @3s)
Yo 0010 A, 0 e b
A,
where {b1, b2} is a Wiener process stochastically independent of {B;, Bs}.
Let the matrices H, X, E be as in (1) and the matrix R(t) be the solution of

the Riccati differential equation

—1
%R =237 + CACT'R+ R(C™)TATCT - RHT(E ET) HR (36)
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with boundary condition Ry(0) = Ry = E[Zo — EZo)|Zo — EZ,)T, where Z, =
CXy + Fy. Then the Kalman-Bucy optimum filter equation for the state estimator of
monitored variables Z; = E(Z;|Y;) is given by

az, = (F +CA—CAC™'F +[CAC™! — RHT(EET),“lH]Zt) de
+RHT(EET)™1dY; (37)

The above structure of the Kalman-Bucy filter, adequate for the technical problem
under investigation, generates the optimal mean-squared state estimator if three fun-
damental conditions are met:

e linear state equation,
¢ linear observation equation,

e Gaussian boundary conditions.

If any of these requirements is not fulfilled, the suggested Kalman-Bucy filter is no
longer optimal. The first condition is not met because of the shape errors given by the
function f(y). However, if the components in the matrix B and the vectors F and F
change insignificantly, then the existing nonlinearities produce minor effects, and the
properties of the filter differ insignificantly from the optimum. A similar situation
occurs in the case of the second condition. It is due to the variable properties of
the oil film, characterised by four damping and rigidity coefficients. However, if their
values that appear in the matrix A and the vector F' change insignificantly, which
may happen in the case of insignificant vibrations of the shaft neck in relation to the
bearing bush, the existing nonlinearities will produce minor effects and the properties
of the suggested filter will be insignificantly different from the ones of an optimal
filter.

It should be stressed that the optimum filter in the general non-linear case cannot
be given by a finite system of equations. Very few cases of filtration for non-linear
systems which have been investigated, e.g. the Benes filter and its generalisations
provided in (Zeitouni, 1984), do not conform to the case under investigation.

When errors of the shaft neck contour appear, optimal prediction Z(r,t) with
fixed ¢t and changing ™ > 0 for 7 > 0, ¢ > 0, (defined with mean-squared error on
the assumptions that have been discussed above in detail) is given by the formula

0Z(r,t)
or

=F+CA—-CAC™'F+CAC'Z(r,t) (38)

The initial value Z(0,t) = Z; at the moment ¢ is given from the Kalman-Bucy filter
defined by eqn. (37). All variables of (38) are measured at moment 7. Thus the
estimation of predictable changes of the monitored courses is given by the Cauchy
formula, with application of the fundamental matrix, or by the solution of recurrent
eqn. (38) coming from the initial condition obtained from the Kalman-Bucy filter
given by formula (37).



Filtering of the noise generated by shaft ... 107

5. Concluding Remarks

The basic result of the present paper is the elaboration of an alternative method of
disturbance filtration and prediction of changes of symptoms being monitored for a
vibration monitoring system of slide bearings. It permits simultaneous compensation
of noise generated by the deformations of the shaft neck contour.

The method differs from the existing solutions to the problem of elimination of
mechanical run-out noise, which are applied when testing machines. Having analysed
the generation of changes in the courses, an adaptation filter-predictor for diagnostic
signals was constructed. It is related to the known mathematical solutions that define
the dynamics of slide journal bearings and to mathematical solutions in the field of the
theory of optimal filtration and prediction of signals defined by stochastic differential
equations. In a coherent way—with application of one model—it makes the tasks
of filtration, prediction, and diagnosis possible. The solution presented in the paper
constitutes a base for constructing programs for diagnostic system monitoring sets.
Contrary to previous solutions, the algorithmic solution presented in the paper is
characterised by a high degree of unification and modest computing requirements. As
a result, it may be applied when designing sets to monitor any bearing nodes and
their proper dynamic operation.

The solution of filtration presented here may constitute a factor leading to an
increase in the reliability of monitoring systems under as well as reliability of the set
that measures the stochastic noise generated by the deformations of the contour of
the shaft surface included.
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