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A METHOD OF CONSTRUCTING
QUASIGROUP-BASED STREAM-CIPHERS

Czestaw KOSCIELNY*

A method for constructing endomorphic stream-ciphers over the alphabet of
an arbitrary finite order g, based on quasigroups, is described. The presented
ciphers, due to their simplicity, can be easily implemented, giving in consequence
a very fast speed of enciphering and deciphering. The ciphers are also much more
secure than the stream-cipher over GF(2), because, if ¢ > 2, the method allows
one to form many invertible transformations which may be used to encipher
and decipher; the number of these transformations increases very rapidly with
respect to q.

1. Introduction

The aim of this paper is to focus the reader’s attention on the existence of alge-
braic systems called quasigroups and to show that they can be beneficially applied
in cryptography for constructing stream-ciphers. In the work it is demonstrated that
it is possible to form quite easily a huge number of quasigroups using the concept of
isotopy. An enormous number of quasigroups having more than a hundred elements
would then allow us to construct more secure, much more easily implemented, and
much faster cryptosystems than those involving huge integers or based on comput-
ing in finite fields of order of about 10'%, for which the enciphering and decipher-
ing procedures are too slow and inefficient. Thus, the quasigroups are an advanta-
geous alternative to the cryptographic tools exploited up to now (Beth et al., 1992;
Brassard, 1988), all the more so as these algebraic systems would probably be also use-
ful in other cryptographic applications, e.g. block-ciphers, digital signatures, etc. It is
also important for cryptology that some types of quasigroups can be easily generated.

2. Quasigroups and Isotopy

The concept of isotopy (Dénes and Keedwell, 1974) as well as the properties of quasi-
groups are not commonly known, therefore the most essential questions concerning
these problems will be discussed in this section.
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An algebraic system @ consisting of a finite set of elements A in which a binary
operation (o) is defined

Q=(4, o) (1)

is called a quasigroup if, when any two elements a, b € A are given, each of the
equations

aox="b, yoa=1b (2)

has exactly one solution. Thus, a quasigroup is a rather simple algebraic system with
one operation which need neither be commutative nor associative, but, according
to (2), the operation table in a quasigroup must be a latin square. A quasigroup

L= (4, o) 3)
in which there exists an identity element e € A with the property that

Vz €A, zoe=eozx ==z (4)
is called a loop. Let

Qp = (G, o) (5)
and

Qi =(H, %) (6)
be two quasigroups. An ordered triple

(T2, Ty, ) (7)

of one-to-one mappings ., my, m; of theset G onto theset H iscalled an isotopism
of Qp upon Q; if

Tz (z) * my(y) = (T 0 ) (8)

for all z, y € G. It should be observed that the mapping 7; permutes the elements
in the table of operations in a quasigroup @p, while 7, and m, operate on the
elements of the row and column border of this table, respectively. The quasigroups
Qp, and Q; are then said to be isotopic. It is also said that Q; is an isotope of a
primary quasigroup Qp.

It follows from (8) that

XY =m (wgl(X) 0 7r;1(Y)) (9)
for all X, Y € H. Equation (9) allows one to operate on elements of @; if the table

of operation in @, is known. It is evident that if 7, = m, = m;, then the algebraic
systems (5) and (6) are isomorphic.
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Tab. 1. The values of (2™!)% versus m.
(2mn?
13,824

6.55483 x 10*2

9.15923 x 103°

1.82186 x 1016

2.04292 x 10%67

5.73430 x 10948

6.31226 x 101520

4.20458 x 1034%°
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One can prove that the set of all isotopisms of a quasigroup of order ¢ forms a
group of order (g!)3. However, the problem of classification and exact enumeration of
quasigroups of order greater than 10 probably still remains unsolved. It is mentioned
in (Dénes and Keedwell, 1974) that all reduced n x n latin squares (the ones which
have their first row and column in natural order), are enumerated for n < 9. Since,
in practice, the alphabets of order 2™ are used, the values of (2™!)3 are given in
Tab. 1 to make the reader realize how many isotopes of one quasigroup of order 2™
can be formed.

3. Constructing a Quasigroup-Based Stream-Ciphers

The stream-ciphers discussed in this section are generalized in the sense that they can
be constructed over any alphabet of ¢ symbols, g denoting an arbitrary integer. Let

Q=(4, +) (10)

be an isotope of the primary algebraic system and let

M=m mg -+ M; - (11)
K=k ky -+ ki - (12)
C=c1 Cy *+* C; - (13)

denote the stream of characters of the plain-text, the stream of characters of the secret
key and the stream of characters of the cryptogram, respectively. The characters of
these three streams belong, of course, to the set A. The stream of characters of the

cryptogram is generated by a generalized stream-cipher by means of an enciphering
function f,

C; = fe(mi,ki) (14)

which, for each character of the plain-text and for the character of the key associated
with it, determines a character of the cryptogram. During deciphering a function f;
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is used which reconstructs the character of the message, taking into account the
character of the cryptogram and the corresponding character of the key

m; = fa(ci, ki) (15)
It is obvious that
fd(fe(mi;ki);ki) =mi (16)

must be satisfied for all z =1, 2, ..., n, where n denotes the number of characters
in the plain-text. Now it will be shown how the operations in a quasigroup can be
applied as invertible transformations to form the stream-ciphers.

A table of addition in a quasigroup @ can be treated as the table of values of
discrete two-variable function &, for which

S(z,y) =z+y, S(y,z)=ytz (17)

where + denotes the operation in the quasigroup . Taking into account (17) one
can define two operators (& and =) for performing “subtraction” in Q

S(z,y)6y =z, Syz)-y==2 (18)
Further let us introduce two more functions

D(z,y) = 20y (19)

D(z,y) =2y (20)
It follows immediately from (18)—(20) that

D(S(z,9),9) == (21)

D(s(,2),y) == (22)

This means that (21) and (22) permit the determination of two other functions,
which, together with the function S(z,y), are useful for constructing quasigroup-
based stream-ciphers. One can prove, by applying similar reasoning, that

S(’D(a:,y),y) =z (23)
ﬁ( ,’D(y,m)) =z (24)
D(y, D) == (25)

S(yﬁ(x,y)) s (26)
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Taking into consideration (18)—(26) and the property (16), one can observe that six
pairs of functions

S, D), (S, D), (D, D), (D, ), (B, S), (D, D) (27)

can be used, each being a pair of invertible transformations (fe, fs). Therefore,
if a quasigroup @ is not abelian, then for one pair of characters (m;,k;) there
may exist up to six distinct characters ¢; of the cryptogram. This is a substantial
progress in comparison with the stream-ciphers built over GF(2), where the unique
operation XOR can only be applied.

4. Methods of Forming Primary Algebraic Systems

In order to construct quasigroups using the concept of isotopy, one ought to know how
to form a primary algebraic system @, which will be transformed onto an isotope.
In this section, three ways of constructing such initial systems are considered.

4.1. A Method of Constructing a Group, Isomorphic to the Additive
Group of GF(q)

Let ¢ = p™, p—prime, m—an arbitrary integer > 1, and let
G=(F, +) (28)
be a group of order ¢. To simplify the notation it is assumed for convenience that
F={0,1,...,¢g-1} | (29)

Let z, y € F. Since ¢ =p™, z and y can be represented in the base p by
means of m p—ary digits

m
T =0z m-10Qzm-2 """ Qg0 = Z Oz m—i* Pm_l (30)
i=1 .
m
Y= 0ym-10ym-2 " Qyo = Z Qym—i P " (31)
=1
where
0 S Qg m—iy, Qy,m—i S p— 1 (32)
for ¢ =1, 2, ..., m. Assuming that the element 0 denotes an identity element under

addition, the additive operations involving this element have the following properties:
VzeF, z4+0=04z=2x (33)

Vz€PF, t+(-z)=(-2)+z=0 (34)
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where

Vz € F 3 ;tlIEF(;:II:Z((p_l)@ax,m—i)'pm_i) (35)

=1

If addition in F' is defined according to

m

Vo,yeF 3(z+y)€F ((z +9) = (Gem—i ® aym—s) ‘pm”i) (36)
i=1

then one can easily prove that the system (F, +) is isomorphic to the additive group
of GF(q). If a scalar multiplication of (30) by an element of GF(p) is defined in F
as

VzekF, VOS_cSp—lﬂcoxEF(cox=Z(c®az,m_i)-pm_i) (37)

i=1

then system (28) will have the properties of a vector space of dimension m over
GF(p). It should be remarked that in the formulae written above the symbols
®, ©, -, — denote addition and multiplication modulo p and usual multiplica-

ton and subtraction, respectively, while + and = denote the operations in the group
G. This convention will also be used in the next subsections.

4.2. A Method of Constructing a Group Isomorphic to the Cyclic Group
of Order ¢q

Let g be equal to an arbitrary integer > 1 and let
C=(F 4) (38)

be a group isomorphic to a cyclic group of order ¢, where F' is as in (29). Then the
operation + in F may be defined according to

Vr,yeF E(z-i-y)EF(aH'—yEaH-y (modq)) (39)

In this case it is easy to note that O is also an identity element under the opera-
tion + and that

g—z ifz#0

40
z ifz=0 (40)

VzeF 3 LzeF,;z-_-{
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4.3. Method of Constructing an Abelian Loop of Even Order g

It was observed by the author (Koscielny, 1995) that for every even integer ¢ there
exists an abelian loop of this order

L={(F, +) (41)

where F, as usual, denotes the set (29), with the following rule of operation +:

0 ifz=y
riy={ z+y ifz=0Vy=0(42)
1+ [min{a:, y}—1+Z(|z—y|) (modgq-— 1)] otherwise
where

Z@2k-1)=gq/2+k-1, Z2k)=k, k=1,2,...,(¢—2)/2 (43)

An identity element of this loop is also denoted by 0.

5. Example

As an example, a cipher over an alphabet of 16 symbols will be presented. It is
assumed that a primary system which will be transformed onto a quasigroup is the
group, isomorphic to the additive group of GF(16), the elements of which are repre-
sented as hexadecimal numbers

Qr=1{{0,1,...,9, A B ..., F},+) (44)

with the operation of addition defined as

Vz,y €0, 1,...,9,A,B...,F}(:c-;—y=zXORy) (45)

The addition table in system (44) is given in Tab. 2.
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Tab. 2. Addition table of the group isomorphic to the additive group of GF'(16).

== Q OU|"

N o o hs w o "M OQWE P © oo
o N R N w e = EHR QU > T x oo
R N o R 0w T E © e W
ot o N o R 0w QO E T oo > O
W R, o o oos WP oo E 00
— O w o 9 o oo WU QR EE
O = v Wk o o >WOUE A

M E O QmE > © o a0 otk w o= ot
HEH O QWP o oo ooth W - oo
H = QU P Wowowo 9 & o wo —|kR
D Q" E o ool P> oawe o = o w o
QO EH MY owew > We oo 90— o wjw
W 0o HMEHUQwWNDMROO o o ke
> 0o o EdH QU v w o~ o N ke oo
0w oo WO QHMOdmLm o wwo s~ 9 oloe
oo P> T QUOUEHMTo R~ v wA~A oo
LR I S - SN BTSN R oo B« S

To construct an isotope @; of (44) the following three permutations are chosen

0123456789ABCDEF
. =
‘ OE4AF1B5C2863D79

0123456789ABCDEF
Ty = (46)

0BA1D67C4AFES9238

0123456789ABCDEF
0437BF8C5162EAD9

After permuting the row and column borders in Tab. 2 by means of 7, and =,
respectively, and after using m; for permuting the body of this Table, the table of
operation in the isotope @; of (44),

Qi=({0,1,...,9, A B ..., F},+) (47)

presented in Tab. 3, is obtained.
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Tab. 3. Addition table of the quasigroup formed by means of mappings (46)
from the group defined by Tab. 2.

o

5 o+

© 9T w oo Qo W~ 1o

o U P Hwor~r o QowHWmEgaows ol
O oHd»owowmmemowQHdwao |
> H o Uk oaovwo WO o s o9 wl|>
H > U o o= o vt HoewQowe walek
W oo JPEH g we 0o QoW
o ot =T o P w g0 e 0o QW o
— oo o P> oo T e oNww WO o
o= o EH P O o o w w-aWH o QQ
Qoo "W a9 wwsooTeEEHvwo e~ ale
o QW H w-wo s~ T o> oo o =|Hd
WO ose 0w w e TR oo oA
W oo Qo w wabP Yoo~ o v|la
N w s o Qo HW oo~ a o O Hdle
w 9 o w00 QT H oo =T o P|v
o 9w HME Qoo+~ oo P EH o Ow
o W w W HHoowQownerkowwdP»Oo|le

An ordered form of Tab. 3 is given in Tab. 4 which was calculated using the inverse
permutations

-1 _ 0123456789ABCDEF
059C27BEAF368D14

3
|

1 0123456789ABCDEF
03DE8B56FC2174A9

and formula (9). Table 4 contains the values of a discrete function of two variables
S(z,y). Knowing this function, the two other functions D(z,y) and D(z,y) can be

determined by means of (21) and (22); the former two functions in Tab. 5 and Tab. 6,
respectively, are presented.

Now one can easily use a quasigroup (47) for constructing a stream-cipher as-
suming that the following encrypting formulae are used

ci = S(mi, ki), e = S(ki,mi), c3; = D(mi,k;)
cai =D(ki,m;), c¢s5:="D(msk;), co:= ﬁ(khmi)
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Tab. 4. Table of values of function S(z,y) (z-row, y-column) (An ordered Tab. 3).

A B C D E F

9

A D 5

7

A D 0

2

5 D A 7
D A

0

2

0

C B A D

6

C B

7

0

5 2 A D
A D

8

9 E F

6
8

5

7
9
6

A D C B

0
F E

C B
2

4

0 D A

B C 4

6

D A 7

5

0

B ¢ D A 7

6

1

A B C D E F

9

7

0 A D

D A 0

7

7

F D

0

D A

7

7

A D

0

6

B C

0

D A

7

A D 71

0

7

A D

0

E C 6

4

0

7 D A

5

7{D A

D|A D

F|B C

Tab. 5. Table of values of function D(z,y) (z-row, y-column), formed by means of (21).

0

D
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Tab. 6. Table of values of function ﬁ(m,y) (z-row, y-column), formed by means of (22).

-]10 1 2 3 4 5 6 7 8 9 A B C D E F
06y0 6 F 9 A C 5 3 E 8 1 7 4 2 B D
1fF 9 0 6 5 3 A C 1 7 E 8 B D 4 2
25 3 AC F 9 0 6 B D 4 2 1 7T E 8
3(A C 5 3 0 6 F 9 4 2 B D E 8 1 7
4/ B D 4 2 1 7 E 8 5 3 A C F 9 0 6
514 2 B D E 8 1 7T A C 5 3 0 6 F 9
6/E 8 1 7 4 2 B D 0 6 F 9 A C 5 3
W1 7 E 8 B D 4 2 F 9 0 6 5 3 A C
87 1 8 E D B 2 4 9 F 6 0 3 5 C A
98 E 7 1 2 4 D B 6 0 9 F C A 3 5
Al2 4 DB 8 E 7 1 C A 3 5 6 0 9 F
Bf(D B 2 4 7 1 8 E 3 5 C A 9 F 6 0
c{C A 3 5 6 0 9 F 2 4 D B 8 E 7 1
D|3 586 C A 9 F 6 0 D B 2 4 7 1 8 E
E|l9 F 6 0 3 5 C A 7 1 8 E D B 2 4
F|6 0 9 F C A 3 5 8 E 7 1 2 4 D B

Tab. 7. Example of cryptograms generated by the stream-cipher based on the
quasigroup defined by Tab. 4.

ilm;

ks | C1,i | C2,i

€3,i | C4yi | €54 | Coyi
1 3 7 6 0 F D 9 8
2 C 8 C A C E 2 3
3 5| F D 9 E 7 9 A

In Tab. 7 six cryptograms for a message containing three characters were calculated.
The reader can verify, using Tabs. 4, 5 and 6, that by means of the formulae

m; = D(cr i, ki) = D(ca, ki) = S(cs,ik:)

(50)

= ﬁ(ki, C4’,') = S(k,', 65’,‘) = D(k,',Cﬁ’i)

all the six cryptograms can be correctly decrypted. It should be observed that the per-
mutations (46) are chosen such that they can be generated by means of the following

matrices over GF(2):

0010
1010
1111
1011

M,

Ed

1010 0111
1100 0110
, My, = (51)
0011 1001
1110 0010
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After computing the inverses

1100 1101
1001

M= ool , =M;'= (52)
1000 v 0101
0101 0111

one can express the funtion S as follows:

S(z,y) = aty = Mo (M7 -z ® M -y) (53)

£ Y

where

T =020 Go1 Gop Go3]T, Y =[ayo ay1 ay2 ays]” (54)

and matrix multiplications and additions are performed over GF(2). After completing
the operations on the right-hand side of (53) one has

Qz,0 D 0z,1 Daz2 Dy Days ®ay3

Qz,0 © Qg2 @ Qz,3 S2] Qy,0 ® Qy,1

S(z,y) = (55)

Gz,0 D az,3 D ay,0 D ay2

az,0 © ay,1 D ay3

where, evidently, @ symbolizes the XOR operation. It is amazing that such simple
equations give so messy table of values of the function S. It follows from (55) that
the cryptograms of quasigroup-based stream-ciphers can be generated and decrypted
with a very high speed. Then, it may be hoped that the implementation of the
ciphers considered here by means of microprogrammed devices, or using appropriate
hardware, could satisfy the requirements of any application from the point of view of
the encryption/decryption speed.

6. Conclusions

A new method of constructing generalized stream-ciphers based on the application of
quasigroups has been given. The ciphers, formed by means of the proposed method
have the following main advantages:

e cryptograms are not redundant and have the same volume as plain-texts;

e the number of errors, appearing in the deciphered plain-text is the same as in the
corresponding cryptogram, i.e. the phenomenon of propagation of errors does not
occur;

¢ the secret key may have five components: the sequence of characters interacting
with the stream of characters of a plain-text, the primary algebraic system @Qp,
and three permutations, needed to form a quasigroup @Q; by means of Q; this
may be useful for some applications;
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e the ciphers can be very secure, because there exists no better algorithm of crypt-
analysis than the exhaustive search of all (q!)® quasigroups which can be formed
by means of this primary system and verification of all possible streams of char-
acters which are “added” to the stream of characters of the plain-text for any
quasigroup;

o the proposed method, being extremly simple, offers very fast implementations of
encrypting and decrypting procedures.

It is evident that many other encrypting algorithms can be formed on the basis of
quasigroups (e.g. the one which changes the quasigroup for each character of the
plain-text), offering new possibilities for cryptography. Therefore, quasigroups could
be applied in such applications as block-ciphers, digital signatures, user identification,
etc.
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