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THICKNESS OPTIMIZATION OF A GEOMETRICALLY
NON-LINEAR ARCH AT A LIMIT POINT

PIERRE AUBERT*

An optimization method for geometrically non-linear mechanical structures
based on a sensitivity gradient is proposed. This gradient is computed by using
an adjoint state equation and the structure is analysed by means of a total
Lagrangian formulation. This classical method is well-understood for regular
cases, but standard equations (see e.g. Rousselet et al., 1995) have to be modi-
fied for the limit-point case. The case of sensitivity of a bifurcation point is under
development (see (Mréz and Haftka, 1994) for more details). An arc-length al-
gorithm embedded in the optimization algorithm is built. These modifications
introduce numerical problems which occur at limit points (Doedel et al., 1991).
All systems are very stiff and the quadratic convergence of the Newton-Raphson
algorithm is lost, so higher-order derivatives with respect to state variables have
to be computed (Wriggers and Simo, 1990). The thickness distribution of the
arch is optimized for differentiable costs under linear and non-linear constraints.
Numerical results of optimal design of arches undergoing small and large dis-
placements are given and compared with analytic solutions. Related topics of
shape optimization can be found in (Aubert and Rousselet, 1996), and theo-
retical results with details in (Aubert, 1996).

1. Sensitivity Analysis

Optimal design of beams and arches with respect to the thickness distribution, cross-
section area or shape is a wide domain in structural mechanics and applied mathe-
matics. This paper deals with the case where beams and arches are analysed with
geometric non-linearities. The optimization process at regular states is first recalled:
in order to compute the sensitivity gradient of the cost functional with respect to the
design, one adjoint state equation is solved. This equation is modified to compute
the sensitivity gradient at a critical (turning-point) state. A differentiable cost at the
post-buckling state or the critical load are optimized. The second derivatives of the
critical load with respect to the state variables and design variables are computed.
With these two Hessians, the convergence in both the direct non-linear analysis and
the optimization process is accelerated.
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1.1. Standard Equations

Our shape optimization method for structural mechanics is based on a shape gradi-
ent computed through an adjoint state equation. This construction is motivated by
(Bernadou et al., 1991; Habbal, 1992; Phelan et al., 1991). Let V denote a functional
space for the state variable and X denote another functional space for the design
variables. In the arch problem where both ends are clamped, V is the Sobolev space
HZ(0,L) and X is L*®(0,L). The state equation will be written in the form:

find ¢ € V such that
Yv eV, G(h;¢,\)v=0 (1)

and the cost functional is defined by

l
i) = J(h; ) = /O J(hi, @', 6", X) dso )

where h € X stands for the design variable, ¢ € V denotes the state of the structure
and A is a scalar variable, e.g. a loading parameter. The quantity h may be the
thickness or a parametrization of the geometry. The primes denote derivatives with
respect to so which is the curvilinear abscissa of the middle line (of the unloaded
beam). The subset of admissible thickness distributions is denoted by X,4. Typically
the constraints may be imposed that the total volume equals a constant with bounds
on the thickness (see Subsection 3.1). We want to solve the following minimization
problem:

Rmin 5 (h) (3)
Assuming that the following derivatives are meaningful, we can define the design
sensitivity of the state equation (1) as follows:

find 8¢ € V, 8¢ = 8, ¢6h, such that

VoeV,  8;G(h;d,A)[v,6¢] = —0nG(h; ¢, N)[v, 6h] (4)
and the design sensitivity of the cost functional (2) by

Véh e X, S—ZEh = 0 J (¢, h)6h + 85 J (¢, h)6¢ (5)

The first term of the former equation is explicit in 6§k but the second term depends
implicitly on 6k through &¢. To make it dependent explicitly on 6h, one can in-
vert (4) at the finite-element level (this is the so-called direct approach) or use the
following adjoint state equation:

find p € V such that
Yv e, 85G(h; 6, \)'[v,p] = —84J[v] (6)

where the adjoint state p is the solution of this linear system. Then the design
sensitivity of the cost functional becomes explicit:

39 5h = 0176, kY6h + 04G (1 6, Nlp, 1) ™
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Definition 1. A solution of (1) is regular if 854G is invertible, see (Mréz, 1993).

Theorem 1. At regular states the solution of (4) is unique and depends smoothly
on h. .

The proof is based on the implicit-function theorem (see e.g. Rousselet et al.,
1995). In this case, (7) can be evaluated as soon as the state ¢ and the adjoint
state p are computed.

1.2. Sensitivity Analysis at Limit Points

Let us consider the case where the cost functional is smooth but the linear mapping
G4 may not be invertible. For numerical analysis of the approximation of some bifur-
cation problems in partial differential equations, the reader is referred to (Crouzeix

and Rappaz, 1989) and the references given there. The notion of the limit point is
recalled following (Doedel et al., 1991).

Definition 2. A solution to (4) is a limit or turning point at (¢,)) if and only if
dim (Kex(0,6)) =1 and )G ¢ Im(8,G) | ®)

Let us consider a curve 5 — (h(n),#(n),A(n)), 7 € R and let h,5¢,6\ denote
the differentials with respect to 7. We differentiate (1) with respect to h, ¢ and A:

OG6h + 0,G6¢ + OrGOX = 0 (9)

By Definition 2, 8,G in (4) and (6) is not invertible.

Proposition 1. The differential 6¢ is proportional to the right eigenvector.

The proof of this classical result may be found e.g. in (Doedel et al., 1991). If
G4 has zero as a simple eigenvalue, we denote by ¢ (resp. p) the left (resp. right)
associated eigenvector:
q'8,G = 0, 93Gp=0 (10)
At a fixed h, (9) is multiplied by ¢*:
¢'9\G 6A =0 (11)

So either éA =0 and ¢'9\G # 0, and we deal with a limit point, or ¢*95G = 0, and
we deal with bifurcation. In what follows, we consider the first case of a limit point.
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1.2.1. First-Order Derivative

We assume that ¢ and A are differentiable with respect to h, so we can rewrite (9):
OnG 8h + 05GORPOh + O\GORA6R = 0 (12)

We multiply (12) by ¢* and we call A° the critical load, i.e. the load evaluated at
limit points,
i
q 8hG
OnA® = — 1
h N (13)
the denominator being non-zero by the definition of a turning point. The latter equa-
tion provides the derivative of the critical load with respect to the design variable. We
use the arc-length method at turning points (see Doedel et al., 1991). The incremental
equation takes the form

8¢G6¢+8,\G6/\ =0 (14)

with auxiliary relation

N6, 60y =0 (15)
which can be e.g.
N(8¢,6X) = (§¢)° + (61)? - 1 (16)

To evaluate Op¢, we need to solve (12) with 954G singular at the turning point,
however in view of (13) there is a solution to (9). The uniqueness of this solution is
granted by differentiating the buckling condition (10):

(0nq") 04G + ¢* (85:GOR + 83, GOnA + 83,G) =0 (17)
and multiplying (17) by p:
q" (85: GO + 05,GOWA + 85,G) p=0 (18)

Then the unknown 6g = Ong vanishes and with the use of (12) a solution for 9,¢ is
found. Finally, from ||g||> =1 we obtain an orthogonality condition on ¢: ¢ é¢ = 0,
where the element 8¢ is unique.

1.2.2. Second-Order Derivative

It is well-known that the quadratic convergence of the Newton-Raphson algorithm is
lost at limit points. In order to recover this fast convergence, a second-order predictor
and an arc-length algorithm which remains quadratic at the turning point are used.
In both cases we need the second-order derivative of the critical load.

Second-order derivative of the critical load with respect to the state
variable. In order to compute the second-order derivatives of the critical load with
respect to the state and design variables, we need the second-order derivative of (1).
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The quantities 6§2h,62¢, 62X denote the second-order derivatives with respect to the
parameter 1 of the curve

n— (h(n),fﬁ(n), /\(n))
Thus,

82,G (6h)% + 02,G (6¢)* + 0%, G (60)*
+207 ,G (6h66) + 207, G (6h6)) + 203,G (8461 (19)
+OhG (62h) + 845G (62¢) + G (62X) =0

In the case of a fixed h (i.e. we set §h = 0), eqn. (19) takes the form

02,G (89)° + 0%.G (M)? + 203,G (846))

(20)
+0,G (6%¢) + 0rG (6%)) =0
Then we assume that A is twice differentiable with respect to ¢:
A =0s066,  8°X = 8% A(66)’ (21)
80, in view of (21), (20) becomes
02.G (69)% + 0%, G (0,069)° + 28§AG(8¢A(6¢»)2) o2

+05G8%) + 03GO2 A\ (69)° = 0

Then we multiply the above equation by ¢ and we evaluate it at the turning point,
where A = A%, 04A =0 and é¢ is a multiple of p. We thus obtain the second-order
derivative of the critical load with respect to the state variable:

q'95.Gp?

32 L 2 —
92 A D PENE

(23)
Based on this equation, a second-order algorithm can be constructed to speed up the
convergence at the turning point, see (Aubert, 1996).

Second-order derivative of the critical load with respect to the design
variable. In the remainder of this section, we assume that ¢ and A are twice
differentiable with respect to h which is no longer fixed:

8¢ = Onobh, §2¢ = 82, 6(6h)? + Ond62h -
24
X\ = OpASh, 82\ = B2, A(6h)? + BuA82h
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with
G = az,‘yH(x7 y)[&l?, 63/]
! !
= / EI(k — x0)6k dsg +/ EA(e — €g)be dsg
0 0
! !
o [ p(oy' = 9') dso = [ (78+ g9) dso =0 (31)
0 0
and

Vo = {(@0,30) € (H*(0, L)%, 20(0) = (L) =0, 4(0) = 0,h(L) = 0}
V={(y) € (H0,1))%, 2(0) = a(L) =0, y(0) = y(1) = 0}

X = {h € L°°(0,L)}

Here éx and ée are respectively the derivatives of x and € with respect to the state
variable ¢. We notice that (30) is of the form (1) with h = (z0,%0), ¢ = (z,%)
and 6¢ = (6z,8y). Let us also remark that the boundary conditions included in the
spaces Vo and V are taken just as an example; other types may be considered and
are treated in of Section 3.

3. Numerical Results

In this section, numerical results are presented and compared for the linear case with
well-known solutions, analytic or numerical, that we were able to find in the literature.
For a large load, in some particular cases, it is easy to solve the equilibrium equation,
but optimal shapes do not seem to be known analytically.

The first, very simple example is the cantilever beam subjected to a transversal
load. We optimize the thickness distribution of the beam for various costs and we
show the stability of the algorithm. Then we study a beam which is freely supported
or clamped at both ends and we optimize the thickness distribution under compres-
sive forces to find a minimal displacement. We recall the results from (Banichuk,
1983; 1990; Olhoff, 1986), where the analytical solutions are evaluated for these two
examples, and we compare them with our solutions. The clamped arch under a con-
centrated load is the last and most complicated one. The problems are due to the
fact that the shape of the beam at the buckling point is very far from the initial state
and then the structure is very sensitive with respect to the initial conditions. We
optimize the thickness distribution h.

We.choose a non-differentiable local cost j(sg), but to approach the infimum or
supremum of this functionals, we regularize the cost with LP-norm (see Banichuk,
1981):

! 1/p
Jp(h) = [/ﬂ (5(h, 50)) dsG] (32)
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As p increases, we approach infj by j,. For the case when the cost in not dif-
ferentiable, we refer the reader to (Habbal, 1992). We use a sequential quadratic-
programming method (Laurence et al., 1994) in order to solve the optimization prob-
lem. In all computations, €.y denotes the value used in the stopping criteria for the
optimization process. In practice, €,p¢ is a triplet composed of €opts ef,“;,t, €opt- Lhe
algorithm CFSQP stops if the following conditions are met:

n4l__ gn
u‘“}‘i‘l < eopt cost
V=L < 6'3& Kuhn-Tucker vector (33)
k=n.
kzl [Ji(ze)ll < €5y constraints

where J" is the cost functional evaluated at the n-th iteration, L is the Lagrangian
for the discrete problem and J; are the equality constraints. Inequality constraints
are under the same condition if they are active. By default, we choose €, = 1. x 1074,
€rl, =1.x1071% and €5, =1.x107°.

All computations were performed on a SparcStation 5 with 64 MB of memory
and on a Dec-Alpha 400 with 96 MB of memory. All times will be given for the
SparcStation.

3.1. Optimal Design of a Freely-Supported Beam

Fig. 2. Freely-supported beam.

3.1.1. On Results of Banichuk

Banichuk (1983, p.66) considers a freely-supported beam subjected to bending. The
initial beam has a constant thickness and is shown in Fig. 2. The volume V and
the length 2l are given. We have S(z) = B,(z)h(z) for the cross-section area
distribution and D(z) = EI(z) = Aa(z)h*(z), where o depends on the shape of
the cross-section. If the cross-section is rectangular, then o = 3. Here h(z) is the
thickness distribution and & is the constant width of the beam. The beam is subjected
to a transverse point load applied at zp = 0, i.e. F = A§z(0). Banichuk optimizes
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the rectangular (o = 3) cross-section area distribution S(z) in order to minimize
the displacement w(0) of the middle point of the beam:

+1

J(h) = |wa(0)] with / S(z)dz =V (34)
~1
The equilibrium equation is (Dwgy )z = ¢ with boundary conditions
('U))a:=+l = (w)x:—l =0, (Dwzm)m=+l = (Dwzz):r:—l =0 (35)
The following results hold for 0 <z <1 and a = 3:
3V T
4pPi%y?
Jo = ==
0 11)0(0) 3A3V3 (37)
64 PI%p°
Ji = w*(O) = ms—vs- (38)

64P15p3 T [z

where w(z) is the optimal displacement and the solution is symmetric with respect
to £ =0.

3.1.2. Proposed Model

We approximate the previous problem with the use of our beam model. We use the
same physical parameters as in the previous example, but we have to restrict the
thickness to be strictly positive: h(z) > hmin = ho/3 > 0. The lower bound on the
thickness is to ensure reasonable conditioning of the tangent rigidity matrix. The
functional j = y(0) — yo(0) is approximated by the smooth cost

Jp(®0,%0) = [/0’ ( (y - yo)z)p dsg

with {=1m, 3V/(4b) = 0.1 and 64Pb%1%/(814;5V3) =0.3.

The same problem is solved with an increased load factor. The results are pre-
sented in Fig. 5 for a small load and Fig. 8 for a large load.

1/p
(40)

3.1.3. Comparison

We compare the analytic solution proposed by Banichuk with the results we obtain
for a small load (see Fig. 5). The difference is due to the minimum thickness which
cannot be zero on our model, because the system loses its stability for a very low
thickness. When the load increases, the thickness distributions for the linear and
non-linear example are not very different, because the deformations are essentially
due to bending, and stretching is small.
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cost initial optimal improvement

analytical Jo, eqn. (37) | J«, eqn. (38) | Jo/J. = 0.47
computed for p = 02 0.498 0.320 0.35
computed for p = 04 0.466 0.291 0.37
computed for p = 10 0.468 0.286 0.38
computed for p = 20 0.478 0.301 0.37
computed for p = 30 0.484 0.331 0.31
computed for p = 40 0.487 0.334 0.31
computed for p = 50 0.490 0.334 0.32

For p > 20 the optimal thickness evolves far from the optimal one described by
Banichuk, and the algorithm finds another distribution, see Fig. 6. For this new
distribution, we remark that the constraint on the minimum of the thickness is not
active. The evolution of the cost functional for different values of p is shown in Fig. 7.
We see that for large values of p the algorithm is slow. We guess that this is related
to the fact that SQP does not work with a non-differentiable cost.

3.2. Optimal Design of a Compressed Rod with Pin-Jointed Supports

F

Fig. 3. Compressed rod with pin-jointed supports.

Smax

Smin

0 T 1

Fig. 4. Distribution of thickness with a lower-bound constraint.
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3.2.1. Banichuk’s Problem

For details, the reader is referred to (Banichuk, 1990, p.259). A pin-jointed beam
compressed by two opposite forces at both ends is optimized; see Fig. 3 for a descrip-
tion of the beam and the boundary conditions. The cross-section is rectangular. This
problem differs from the previous one because the beam exhibits a pitchfork bifurca-
tion for a small value of the load parameter. The equilibrium equation and boundary
conditions are respectively given by

Elug +pu=0 (41)
1(0) = 0 = u(l) (42)
where a = 3, EI = A h®. Then we minimize

1/p

Jp(Zo,90) = [/Ol (\/(33 —z0)? +(y — yo)z)p dsﬂ} (43)

subject to

/l S(z)dz=V (44)
0

with p=2,4,6, I =1m, 3V/4b= 0.1 and 64I1°Pb3/8143V? = 0.3. The solution of
this problem is implicitly given by the following equations:

B g, 0<h< (45)
9(6) = arctan | ——b (46)
(a+1)(1-p)
I(0,,5) = (8 ~ 46+ 35)y/T— B (47)
é-(a 1)/2 B 2\/]7—0' B
Il(a ﬁa —L \/1—_‘— d£ \/IT .’I) .’I}*) (48)
o 26°P(8) + VaTTh(a,B1) )
T 24 29(8) + Vo + 11(a, B)
_ (I2(a, B) = B (@, 6,1)) Sunin
= (a+ 1)( e ) (50)
_ SminIQ(anB) — ﬁll(aaﬂ, 1)
= 2Smin(I2(a7,B) - ﬂll(a);g: 1)) (51)

and the solution is symmetric with respect to z = 0.
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Fig. 5. Example 1: 1 initial thickness distribution, 2 optimal computed thick-
ness, 3 optimal theoretical thickness.

0.1 ] %--
O--—--0 p=50

Fig. 6. Example 1: optimal thickness distribution, initial thickness distribu-
tion, p = 02, p =50 optimal computed thickness.
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'Fig. 7. Example 1: cost per iteration with a varying value of p.
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Fig. 8. Example 1: 1 initial thickness distribution, 2 optimal computed thick-
ness with large load, 3 optimal theoretical thickness with small load.
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Fig. 9. Example 2: optimal theoretical thickness distribution, p =02, p =04
and p = 06 optimal computed thickness distribution with small load.
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Fig. 10. Example 2: 1 initial thickness distribution, 2 optimal computed thick-
ness distribution with large load, optimal theoretical thickness with
small load.
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3.2.2. Our Model

We approximate the problem 3.2.1. with our beam model. We use the same physical
parameters, but we have to restrict the thickness to be strictly positive: h(z) >
hmin = ho/3 > 0. The cost functional is given by (43). We consider the foregoing
example, but with an increasing load. The results are presented in Fig. 9 for a small
load and in Fig. 10 for a large load.

3.2.3. Comparison

We compare the analytic solution obtained by Banichuk and the results of our com-
putations, see Fig. 9. Then we show new results when the load increases. In this
case, the thickness distributions for the linear and non-linear example are very differ-
ent, because the strain is due to bending and stretching, and hence the linear model
equation cannot be considered to be accurate. With a large load, the constraint on
the minimal thickness is not active.

cost initial | optimal | improvement

analytical Jo Je Jo/J. = 0.06
computed for p =2 | 0.0147 | 0.0139 0.05
computed for p =4 | 0.0143 | 0.0138 0.03
computed for p =6 | 0.0146 | 0.0143 0.02

4. Conclusion

We validated the sensitivity analysis of a geometric non-linear arch. We proved that
this method is efficient and that it remains stable at a turning point. The total
cost needed to compute an optimal shape is 7 or 8 times higher than that of the
finite-element analysis, but the successive shapes do not change a lot after the second
iteration, and this shape may be sufficient in many cases.
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