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HANDLING THE CHEMICAL PART
IN LARGE AIR POLLUTION MODELS

JBRGEN BRANDT*, JERZY WASNIEWSKI**
ZAHARI ZLATEV*

Studying the transboundary transport of air pollutants is an important environ-
mental problem. Systems of partial differential equations are normally arising
when mathematical models are used in the solution of this problem. The inter-
relations between the different air pollutants are rather complicated. Therefore
many air pollutants are to be included in the models. This leads to very large and
very complicated numerical tasks. The chemical part of an air pollution model
is one of the most difficult parts for the numerical algorithms. It is necessary to
apply reliable and sufficiently accurate algorithms during the numerical treatment
of the chemical sub-models. Moreover, it is also necessary to apply fast numerical
algorithms that can be run efficiently on modern high-speed computers. These two
important requirements work, as often happens in practice, in opposite directions.
Therefore a good compromise is needed. Some results achieved in the efforts to
find a good compromise will be described. The advantages and disadvantages of
several numerical methods will be discussed. All conclusions are made for the par-
ticular situation where large air pollution models are to be treated on big modern
high-speed computers. Moreover, it is also assumed that a particular air pollution
model, namely the Danish Eulerian Model, is used. However, the ODE systems
that arise in the chemical sub-models have at least three rather common proper-
ties, which appear again and again when large scientific and engineering problems
are studied. These systems are large, stiff and badly scaled. Therefore some of the
conclusions are also valid in a much more general context, i.e. in all cases where
large, stiff and badly scaled systems of ODE’s are to be handled numerically.

1. Long-Range Transport of Air Pollutants (LRTAP)

Air pollutants emitted by different sources can be transported, by the wind, on long
distances. Several physical processes (diffusion, deposition and chemical transfor-
mations) take place during the transport. Regions that are very far from the large
emission sources may also be polluted. It is well-known that the atmosphere must be
kept clean (or, at least, should not be polluted too much). It is also well-known that if
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the concentrations of some species exceed certain acceptable (or critical) levels, then
they may become dangerous for plants, animals and humans.

The concentrations of many dangerous air pollutants have been increased dur-
ing the last two-three decades. Unfortunately, this process is continuing and the
concentrations of some pollutants have reached (or will soon reach) the critical (or
acceptable) levels. Therefore it is important to apply some control strategies by the
use of which it would be possible: o

1. to reduce the air pollution to the acceptable levels,
2. to keep the air pollution under the acceptable levels.

However, it must be emphasized that both processes are normally very expen-
sive. Therefore one must reduce the air pollution to the acceptable levels. Moreover,
one must solve the above two tasks in an optimal way (the procedure must be as
cheap as possible). This is why mathematical models are necessary in the attempt to
predict the optimal way of keeping the air pollution under certain levels. It should be
emphasized here that the mathematical models are the only tool by the use of which
one can predict the results of many different actions and, moreover, one can attempt
to choose the best solution (or, at least, a solution which is close to the best one) in
the efforts to reduce the air pollution in an optimal way.

The use of a mathematical model is only a necessary condition for achieving
success. In many cases it is not sufficient. Several other requirements are also to be
satisfied. The reliability of the mathematical model is one of these extra requirements.
The mathematical model selected should be correctly formulated and, furthermore,
it should be treated numerically by sufficiently accurate numerical methods. Some
results obtained in the attempts to satisfy the last requirement will be discussed in
the following sections. Achieving high-speed performance in the chemical part of a
large air pollution model is as a rule the most difficult task that can be solved in the
attempts to ensure global efficiency during the numerical treatment of the whole mo-
del. The use of some numerical methods in the chemical sub-model will be described.
Numerical results will be given to illustrate the advantages and disadvantages of the
methods studied.

2. Mathematical Description of an LRTAP Model

The long range transport of air pollutants over Europe is studied by the following
system of partial differential equations (PDE’s):

Ocs _ O(ucs) O(ves)  O(we,)
o oz dy 0z
0] Oc, a Ocs 0 Oc,
+ % (KEE) + Eﬂ—y (Ky%) + Ep (Kza) (1)

+E3+QS(CI>CZ;H-7CL]) - (’flls +K/25)c.57 s = 1521-"7‘1



Handling the chemical part in large air pollution models 333

The number of equations ¢ is equal to the number of species that are involved
in the model and varies in different studies. The largest number of equations used
until now was 168 (it may be necessary to involve more species in the future). The
different quantities that are involved in the mathematical model have the following
meaning:

. the concentrations are denoted by c¢;;

. u,v and w are wind velocities;

. K, K, and K, are diffusion coefficients;

. the emission sources in the space domain are described by the functions Ej;
. kK1s and kos are deposition coefficients;

(=2 T2 S - N SR R

. the chemical reactions are described by the non-linear functions Qs(e1,c2,- -0, Cq)-

The non-linear functions @, are of the form

q q9 q .
Qs(cl,62, e ,Cq) = -—Zasici + ZZﬁsijciCj, s=1,2,...,q (2)
i=1

i=1 j=1

This is a special kind of non-linearity, but it is not clear how to exploit this fact
during the numerical treatment of the model.

It is clear from the above description of the quantities involved in the mathemati-
cal model that all five physical processes (advection, diffusion, emission, deposition
and chemical reactions) can be studied by using the above system of PDE’s. The most
important processes are the advection (the transport) and the chemical reactions.
Kernels for these two parts of the model will be discussed in more detail.

2.1. Splitting the Model

It is difficult to treat the system of PDE’s (1) directly. This is the reason for using
different kinds of splitting. A simple splitting procedure, based on ideas proposed
in (Marchuk, 1985; McRae et al., 1984) can be defined, for s = 1,2,...,q, by the
following sub-models:
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The horizontal advection, the horizontal diffusion, the chemistry, the deposition
and the vertical exchange are described by the systems (3)—(7). This is not the only
way to split the model defined by (1). The particular splitting procedure (3)—(7) has
three advantages: (i) the physical processes involved in the big model can be studied
separately, (ii) it is easier to find optimal (or good) methods for the simpler systems
(3)-(7) than for the big system (1) and (iii) if the model is to be considered as a
two-dimensional model (which often happens in practice), then one should just skip
the system (7).

2.2. Space Discretization

Assume that the space domain is a parallellepiped which is discretized by using an
equidistant grid with N, x Ny x N, grid-points, where N, N, and N, are the
numbers of the grid-points along the grid-lines parallel to the Oz, Oy and Oz axes,
respectively. Assume also that the number of chemical species involved in the model
is ¢ = N;. Finally, assume that the spatial derivatives in (1) are discretized by some
numerical algorithm. Then the system of PDE’s (1) will be transformed into a system
of ODE’s

Y = fto) 8

where g(t) is a vector-function with N, x N, x N, x N, components. Moreover,
the components of function g(t) are the concentrations (at time t) at all grid-
points and for all species. The right-hand side of (8) is also a vector function
with N; x Ny x N, x N, components which depends on the particular discretization
method used and of the concentrations of the different chemical species at the grid-
points. If the space-discretization method is fixed and if the concentrations are cal-
culated (at all grid-points and for all species), then the right-hand side vector in (8)
can also be calculated.

As mentioned above, the large air pollution models are not discretized directly.
Some kind of splitting is always used. If the model is split into sub-models as in the
previous subsection, then the application of discretization methods (normally different
methods for the different sub-models) will lead to the following ODE systems:
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dg®

TR FO(t, ") (12)

dg®®

arral FO(t,9) (13)
where ¢ and f), i = 1,2,3,4,5, are again vector-functions with

Nz x Ny x N; x Ny components. The functions fO i =1,23,4,5, depend on the
discretization methods used. Some particular numerical methods, that can be used
in the discretization of the five sub-models (3)—(7) in order to obtain ODE systems
of type (9)—(13) are listed below.

The discretization of the spatial derivatives in the sub-model describing the hori-
zontal advection, the PDE system (3), can be carried out either by using pseudospec-
tral expansions or by applying finite elements; (Zlatev, 1995; Zlatev et al., 1994).
Other numerical methods can also be applied. It is important to emphasize that
the resulting system (9) contains ¢ = N, independent ODE systems (i.e. one such
a system per each chemical species). This fact could easily be exploited on parallel
computers.

The discretization of the second-order spatial derivatives in the horizontal dif-
fusion sub-model, the PDE system (4), is quite similar. Both the pseudospectral
algorithm and finite elements can be used. Again, other numerical algorithms can
also be applied. The number of independent systems of ODE’s in the resulting sys-
tem (10) is again ¢ = N, i.e. the same as in the previous case. It may be useful to
apply different numerical algorithms in the advection and diffusion parts; see again
(Zlatev, 1995; Zlatev et al., 1994).

The transition from (5) to (11) as well as the transition from (6) to (12) is trivial,
because there are no spatial derivatives in (5) and (6). In the first case, the resulting
ODE system (11) contains N, x N, x N, independent systems, each of them with
N, equations (because the chemical species at a given grid-point react with each
other but not with chemical species at other grid-points). In the second case, the
resulting system (12) consists of N, x Ny x N, x N, independent ODE’s (because the
deposition of a given species at a given grid-point depends neither on the deposition
of the other species nor on the deposition processes at the other grid-points). It is
seen from the above discussion that there arise a lot of parallel tasks, in a natural
way, when the ODE systems (11) and (12) are to be handled.

Finite elements can be applied in the discretization of the spatial derivatives
in the vertical exchange sub-model (7). The resulting ODE system (13) consists
of N, x Ny x N, independent ODE systems. Each of them is defined on a vertical
grid-line and, therefore, contains N, equations.

2.3. Time Integration

It is necessary to couple the five ODE systems (9)-(13). The coupling procedure
is connected with the time-integration of these systems. Assume that the values of
the concentrations (for all species and at all grid-points) have been found for some ,
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t = t,. According to the notation introduced in the previous subsection, these values
are components of the vector-function g¢(t,). The next time-step n+1 (at which the
concentrations are found at t,4; = t, + At, where At is some increment) can be
performed by integrating successively the five systems (9)-(13). The values of g(t,)
are used as an initial condition in the solution of (9). The solution of each of the
systems {9)—(12) is used as an initial condition in the solution of the next system.
The solution of the last system (13) is used as an approximation to g(tn+1). In this
way, everything is prepared to start the calculations in the next time-step n + 2.

Predictor-corrector methods with several different correctors are used in the so-
lution of the ODE systems (9) and (10). The correctors are carefully chosen so that
the stability of the method is enhanced (Zlatev, 1984).

Several different methods have been tried in the solution of the ODE system (11)
(Zlatev, 1995). The QSSA (quasi-steady-state approximation) is simple and relatively
stable but not very accurate (therefore it has to be run with a small time-stepsize).
The classical numerical methods (Backward Euler Method, the Trapezoidal Rule and
a second-order Runge-Kutta algorithm) lead to the solution of non-linear systems of
algebraic equations and, therefore, they are more expensive. On the other hand, these
methods can be incorporated with an error control and perhaps with larger time-steps.
The extrapolation methods are also promising. It is easy to achieve error estimation
and to carry out the integration with large time-steps when these algorithms are
used. However, it is difficult to implement such methods in an efficient way when all
five systems (9)-(13) are to be treated successively. The experiments with different
integration methods for the chemical sub-model (11) are continuing. The QSSA will
be used in most of the experiments described here.

The next ODE system (12) contains (see the previous subsection)
Nz x Ny x N, x N, independent ODE’s. Moreover, all these ODE’s are linear. There-
fore they are solved exactly during the numerical treatment of the model.

The last ODE system, (13), can be solved by using many classical time-
integration methods. The so-called §-method (Lambert, 1991) is used in the three-
dimensional version of the Danish Eulerian Model (Zlatev, 1995).

3. Need for High-Speed Computers

The size of the systems that arise after the space discretization and the splitting
procedures used to treat numerically (1) is enormous. Consider the case where
the model is two-dimensional. Let us assume that the model is discretized on a
(96 x 96) grid (such a grid has been used in the Danish Eulerian Model since 1993)
and that ¢ = 35. Then the number of equations in each of the four systems of ODE’s
(9)-(12) is 322560. The time-stepsize used in the advection step is 15 min. The chem-
ical sub-model (11) cannot be treated with such a large time-stepsize (because it is
very stiff; especially when photochemical reactions are involved). Therefore six small
time-steps are carried out for each advection time-step (this means that the chemical
time-stepsize is 2.5 min). From this description it is clear that in fact nine systems
of ODE’s (each of them containing 322560 equations) are to be treated per advection
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step. Assume that a one-month run is to be carried with the model. This will result
in 3456 advection time-steps (taking here into account that it is necessary to use five
extra days in order to start up the model).

Consider now the case where the model is three-dimensional. Assume that ten
layers are used in the vertical direction. Then the number of equations in each system
of ODE’s is 3225600 (i.e. ten times greater than in the previous case). The number
of systems to be treated at each time-step is increased.from four to five. The number
of time-steps remains the same, i.e. 3456. The chemlcal sub-model must again be
integrated by using smaller time-steps.

It is clear that such large problems can be solved only if new and modern high-
speed computers are used. Moreover, it is necessary to select right numerical al-
gorithms (which are most suitable for the high-speed computers available) and to
perform the programming work very carefully in order to exploit fully the great po-
tential power of the vector and/or parallel computers.

4. The Chemical Part of the Model

It has been mentioned several times that the chemical sub-model is the most time-
consuming part during the numerical treatment of a large air-pollution model. There
are a lot of open questions when the chemical part is handled. The basic question
is: What is the optimal chemical scheme? The answer will, of course, depend on the
requirements that are stated, and for different requirements different chemical schemes
will provide the best choice. However, even if the requirements are well-defined, it is
still difficult to select the chemical scheme which will satisfy these requirements with
minimal computational efforts. In an attempt to answer this question, experiments
with four chemical schemes are carried out (some other chemical schemes can be found
n (Borrell et al., 1990)).

The first of them contains only ten species. It has been tested in (Hov et al.,
1988). This scheme is rather good when different numerical algorithms are to be
tested (it is rather small, but contains all difficult reactions, including photochemical
ones).

The second chemical scheme contains 35 species. It has been proposed by (Gery
et al., 1989). This scheme is well-known under the name the CBM IV scheme and has
been used in several large air pollution models. In fact, the scheme actually used here
is an enhanced version of the CBM IV scheme; the enhancements have been obtained
by adding several reactions for handling the ammonia-ammonium transformations in
the atmosphere (Zlatev, 1995).

The third chemical scheme contains 56 species. It is very similar to the scheme
used by (Simpson, 1992; 1993).

The fourth chemical scheme contains 168 species. This scheme is similar to one
of the schemes developed by Derwent and Hov (1979).

The experiments with these schemes are continuing. The main conclusion from
the results obtained until now is that not only is the size of the systems (9)-(13)
increased quickly when the number of species in the scheme grows, but also these
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systems become very stiff and very badly scaled. This causes great difficulties when
the systems (9)—(13) are treated numerically.

It should be emphasized that the ODE systems (9)-(13) are very badly scaled
also for the first scheme with ten species. This is illustrated in Table 1. It is seen
that the initial values of the different species vary in the range [1072%,10%], while the
concentrations of nitrogen oxide, NO, vary in the range [10724,10'!]. The effect of
badly scaling is even more pronounced for larger chemical schemes.

Tab. 1. The initial values, the minimal values and the maximal values of the concen-
trations (measured in molecules per cubic centimeter) obtained in a short run
of the chemical scheme with ten species (the run starts at 6:00 and ends at
24:00 the next day).

' Pollutant l Initial condition 1 Minimal value l Maximal value

NO 1.0 x 101! 7.1x107% 1.0 x 101!
NO» 1.0 x 1012 7.6 x 107 1.0 x 10%!
HC 1.0 x 10! 8.4 x 10° 1.0 x 101!
ALD 5.0 x 1010 5.0 x 1019 5.1x 10!
O3 5.0 x 1011 5.0 x 101! 1.6 x 1012
HNO3 1.0 x 101° 1.0 x 100 2.1 x 10%!
HO, 1.0 x 108 1.0 x 108 1.3 x 10'2
RO, 1.0 x 10° 1.0 x 10° 4.3 x 100
OH 1.0 x 10° 1.9x1071° 7.3 x 107
o(*D) 1.0x 1073 3.4x10"% 2.6 x 1072

The fact that the chemical schemes are very badly scaled is not the only problem
for the numerical algorithms. The sun-rise and sun-set periods also cause troubles.
The photochemical reactions are switched on after sun-rise and switched off after sun-
set. This causes rapid changes of some of the concentrations. The changes around
sun-rises and sun-sets are clearly seen in Fig. 1.

5. The Quasi-Steady-State-Approximation (QSSA)

Consider the ODE system (11). This system reduces to small ODE systems; their
number is equal to the number of grid-points, and the size of each of them is equal
to the number of species (see Subsection 2.2). It is clear that one can consider the
ODE system at any of the grid-point in order to explain how a numerical method can
be chosen. It is worthwhile to simplify the notation. Let us select an arbitrary grid-
point and denote by ys the concentration of the s-th chemical species, s = 1,2,...,q.
Furthermore, let us denote the corresponding right-hand side by f,. Then the small
ODE system corresponding to the grid-point chosen can be written as:

dys
dt = fS(t7y17y2a"'7yq)7 § = 1727 e q (14)
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This notation is commonly used in the field of numerical methods for ordinary
differential equations. However, the chemists prefer to rewrite (14) in the following
form:

d
dg’:; = Py(t,y1,92, -, ¥q) — Ls(t, ¥1, Y25 -, Yq)Cs) s=1,2,..,¢ (15)

where Py = Py(t,y1,92,...,%) and Ly = Ly(t,y1,92,...,¥,) are non-negative func-
tions which are called production terms and loss terms, respectively.

Concentration (10) N,O,

Fig. 1. The variation of the N;Os concentrations from the scheme with 56
species (the concentrations are measured in molecules/cm?).

Assume that some approximations y7 to the solutions y,(t,) of (15) at ¢t = ¢,
have been found. Let At be a given increment such that tny1 = tn + At. Then the
QSSA (the quasi-steady-state-approximation) can be applied to calculate approxima-
tions Y71 to the solutions y,(tn41) of (15) at ¢ = t,4;. In (Hesstvedt et al., 1978)
the QSSA is defined by using (for s = 1,2,...,q) the following three formulae:

yrtl = -L& for AtL, > 10 (16)
P P _

=l - To)eT8 for 0.01 < AtL, <10 (17)

Yot =42 + At(Ps — Loay™) for AtL, <0.01 (18)

where it is assumed that the functions P, and L, are calculated for t = t,. This
means that all the three formulae are considered as explicit ones. However, this
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algorithm is normally combined with some iterative process. The following actions
are to be carried out at each iteration (until certain stopping criteria are satisfied)
when an iterative procedure is used:

1. Calculate approximations y?*! for s = 1,2,...,q.
2. Update the values of P; and L, or s =1,2,...,q.

3. Check the stoping criteria.

Such an iterative process is often used in practice (it is called either the functional
iteration or the simple iteration), but there is no guarantee that it will converge.
Moreover, very often no stopping criteria are specified (i.e. the third task in the
algorithm given above is simply omitted, and the iteration is stopped after some
prescribed number of iterations). Nevertheless, many experiments which were carried
out in (Hesstvedt et al., 1978) indicate that the QSSA gives good results when the
time-steps are small (At < 30 seconds).

The straight forward application of the QSSA on modern high-speed computers
(especially on vector processors) may result in slow performance. Indeed, three ques-
tions are to be asked at each grid-point and for each species (i.e. up to 10° times at
each time-step). Moreover, the calculation of the exponential function is expensive on
some computers. This is why some simplifications of this scheme has been proposed
in (Verwer and van Loon, 1996; Verwer and Simpson, 1996). Two main ideas are used
in these references: (i) only formula (17) is applied in the numerical integration and
(i) the exponential function with the approximation is replaced by

—AtL, _ 1

¢ = 1+ AtL, + 0.5(AtL,)?

(19)

Then it can easily be seen that the following formula can be used to calculate
approximations to y?*!, where s = 1,2,...,¢ and n = 1,2,... (assuming here that

some starting approximations y° for s =1,2,...,q are given):

nt1 _ Yo +[1+0.5ALL,]ALP;
Ys T 1 ¥ AtL, + 0.5(AtL, )2

The use of the last formula can be combined with all devices that are usually
used together with the QSSA algorithm (one can e.g. apply the lumped mass principle
and/or separate the chemical species into two groups, namely slowly varying species
and quickly varying species). One can apply this formula both as an explicit formula
(inserting in P, and L, the values of the concentrations obtained at step n) or as an
implicit formula (inserting in P; and L, the values of the concentrations obtained at
step n + 1). The simple functional iterative procedure may be applied in the former
case (as for the classical QSSA algorithm). In the latter case an iterative method must
be used. One can use again the functional iteration, but a more advanced iterative
method (some modification of the classical Newton method, methods based on the
use of a Krylov subspace or the Gauss-Seidel iteration) can also be applied in this
case.

(20)
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6. Use of Some Classical ODE Methods

Let us consider formula (14). Introduce the abbreviations f, = f(t,41,2,...,y4) for
s = 1,2,...,q. Several classical numerical methods can be formulated by using this
notation:

Yt =y ALfRL for s=1,2,...,q (21)
g+ = gt 4 05AKF + 1), for s=1,2,..,q (22)
Yot =y + 0.5A4KT + k3L, for s=1,2,..,¢ (23)
where
kT = fo(t + 0.5A8 YT + Aty v + Atk Yy + AtykDE) (24)
and

kgt = fo(t+0.5A8y7 + ALBKT + k3, y3 + AR + vk, (25)

co¥g + AUBKT + ki)
the constants 8 and + being defined by

The Backward Euler Method is defined by (21). Another implementation of
this method can be found in (Hertel et al, 1993). In the latter implementation
the chemical scheme is divided into blocks; the properties of the particular chemical
scheme, which is attached to the model, are exploited in order to determine proper
blocks (thus, the blocked method is tuned to the particular chemical scheme used).
The Trapezoidal Rule is defined by (22). Finally, the second-order Runge-Kutta
method from (Zlatev, 1981) is defined by the remaining formulae (23)—(26).

Each of these methods has both some advantages and some disadvantages. The
Backward Euler Method is computationally very simple. It has very nice stabili-
ty properties (it is L-stable, see e.g. (Hairer and Wanner, 1991) for the concept of
L-stability). However, this method is not very accurate; its order of accuracy is one.

The Trapezoidal Rule is more accurate (it is a second-order method). It is al-
so computationally simple (but it is slightly more expensive than the Backard Euler
Method). It is only A-stable, which indicates that one can have some stability prob-
lems when the ODE system solved is very stiff.

The Runge-Kutta method defined by formulae (23)-(26) is both an accurate and
very stable. Its order of accuracy is two and it is L-stable. However, this method
is computationally much more expensive than the other two methods. The imple-
mentation of this method which has been used in the experiments requires about
two or three times more computing time than the other two methods. The com-
puting time is a very important factor when large air pollution problems are to be
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treated numerically. Therefore this method (or, more precisely, the implementation
of this method used in the experiments) has been judged as unsuitable. However,
it should be mentioned here that either a better implementation of this method or
another Runge-Kutta method may be useful if it allows us to carry out the numerical
integration with large time-stepsizes. Further efforts in this direction are necessary.

The above discussion indicates that a combination of the Trapezoidal Rule and
the Backward Euler Method might work well if such a combination results in a nu-
merical method which has the advantages of the two underlining methods: the good
stability properties of the Backward Euler Method and the good accuracy of the
Trapezoidal Rule. An attempt to obtain a combination that preserves the good pro-
perties of the two underlining methods has been carried out by using the following
two major rules:

1. If the Trapezoidal Rule is in use and if the time-stepsize has been reduced suc-
cessively three times, then switch from the Trapezoidal Rule to the Backward
Euler Method.

2. If the Backward Euler Method is in use and if the time-stepsize has successfully
been increased three times, then switch from the Backward Euler Method to the
Trapezoidal Rule.

Some other rules are also to be used. For example, some rules for the treatment
of negative concentrations are necessary (negative concentrations will normally cause
great problems when chemical modules are to be handled). However, the above two
rules are the most important for the combined method. The procedure can perhaps
be refined. It will be shown here that even in such a simple form it produces rather
satisfactory results (see Table 2 to Table 4).

The combined method has been tested in a chemical module based on the reaction
scheme proposed in (Gery et al., 1989). The module has been run as a box-model.
This means that only the small ODE system (14) is treated; if the chemical scheme
contains 35 species, then (14) contains 35 equations. The difficulties which may arise
when the chemical module is inserted in a large air pollution model will be discussed
in the next section.

The combined method performs considerably better than the second-order
Runge-Kutta method. The same is true when the combined method is compared
with the method based on the Trapezoidal Rule only. Therefore the performance of
the combined method is compared with the performance of the QSSA and with the
performance achieved when only the Backward Euler is used in the calculations. The
computing times achieved when the methods selected were run over a time-interval
of 42 hours are shown in Table 2; some accuracy results are given in Table 3 and
Table 4. The accuracy of the results is checked by using a reference run performed
with a very small stepsize (At = 0.01s).

6.1. Comparing the Computational Efficiency

The computing times for QSSA, which are given in Table 2, were obtained by using
a constant stepsize and a fixed number of iterations (with no attempt to control the



Handling the chemical part in large air pollution models 343

errror). In the other two methods the time-stepsize shown is an upper bound of
the time-stepsize that can be selected during the calculations. Moreover, an error
control (based on simple local truncation error estimates) is carried out with these
two methods; in an attempt to keep, at every time-step, the relative local truncation
error (for every compound) less than 0.01. The results in Table 2 show that:

o The combined method is faster than the Backward Euler Method for all stepsizes.

o For small stepsizes (5s and 10s) the combined method is faster than QSSA, but
QSSA is faster when the stepsizes are larger than 10s (and much faster when the
stepsize is very large; say, At = 900s)

The choice of a good stepsize may be a problem for QSSA. Different values of
the stepsize are used in the literature. Hesstvedt et al. (1978) recommend the use of
At = 30s this recommendation is based on many experiments. The same choice of
the stepsize for QSSA has been made in (Chock et al., 1994) where several solvers are
compared. Shieh et al. (1988) have used At = 30s during daytime, At = 60s during
nighttime, but At = 12s during sunrise and sunset. Odman et al. (1992) move up
used At = 5s in photochemical simulations in order to improve the accuracy. On the
other hand, Simpson (1992; 1993) is permanently using At = 900s in the numerical
treatement of his photooxidant model.

Tab. 2. Computing times, measured in seconds, obtained on a SUN work-station by
using three numerical algorithms (the run starts at 6:00 and ends at 24:00 the
next day).

l Time-stepsize | QSSA ‘ Backward Euler | Combined Method

5s 85.8 82.3 80.7
10s 43.7 44.3 39.6
30s 14.9 19.9 16.4

150s 3.1 10.9 6.2
900s 0.6 11.3 4.7

Tab. 3. The largest relative errors found during the calculation of nitrogen dioxide by
using three numerical algorithms (the run starts at 6:00 and ends at 24:00 the

next day).
l Time-stepsize QSSA I Backward Euler | Combined Method
5s 2.3x1072 1.4x1073 1.4x 1074
10s 2.3x1072 29x1073 2.9x10"*
30s 2.0x1072 8.6x1072 8.8x107*
150s 2.9 x 1072 4.4x1072 4.3x1078
900 s 2.3x107! 8.9x1072 6.4 x 1072
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Tab. 4. The largest relative errors found during the calculation of the hydroxyl radical
by using three numerical algorithms (the run starts at 6:00 and ends at 24:00
the next day).

Time-stepsize t QSSA I Backward Euler l Combined Method

5s 3.5x 107! 2.1x 1073 2.1x1072
10s 3.5x107! 3.3x1073 3.3x1073
30s 3.5x 107! 1.1x1072 1.1x1072
150s 6.0 x 107! 5.3 x 1072 5.3 x 1072
900 s 1.1x107° 7.9%x1071 9.8 x 1072

In general, the choice At = 30s seems to be the best for the QSSA (taking into
account both the computational efficiency and accuracy). The results on the SUN
work-station indicate that for such a computer the combined method is much more
efficient than the QSSA when the fact that this method achieves the same degree
of accuracy with a stepsize At = 900s is taken into account. However, if a large
air pollution model is to be treated numerically, then a modern high-speed computer
(with vector and/or parallel capabilities) is to be used.  The QSSA, used in the form
given by (20), can be run very efliciently on such computers (due to its simplicity).
Some careful programming work is needed in order to answer the question: Is the
combined method competitive with QSSA (when it is run with At = 30s) on the
modern high-speed computers? If the answer to this question is positive, then the
combined method should be preferred because it also tries to control the errors during
the computations. There are plans to optimize the combined method on several high-
speed computers. Some standard building blocks, templates (see e.g. Barrett et al.,
1994), can be applied during the optimization process.

6.2. Comparison of the Accuracy of Different Methods

The accuracy achieved by different methods is measured in the following way. The
combined method has been run with a very small stepsize At = 0.01s. The results
obtained at the end of every interval of 15min (these are called reference concen-
trations) have been saved. The calculated concentrations CALC and the reference
concentrations REF are available (for each compound) at the end of every interval of
15min. Some background concentrations BACK are also available (again for each
compound); these are some typical concentrations for the rural regions. By using
these three quantities, the error made can be estimated (at the end of every interval
of 15min) by

_ |CALC - REF|
ERR = max(REF,10-5BACK)

(27)

This estimation is calculated (at the end of every period of 15min) for each
compound and for every method. At the end of calculations the maximal values are
computed (over the whole time interval of 42 hours) again for every compound and
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for each method. Some of these values (for the three methods chosen and for two of
the compounds: nitrogen dioxide and the hydroxyl radical) are given in Table 3 and
Table 4.

It is seen that the combined method is rather accurate. For some species and
for large stepsizes the Backward Euler Method has difficulties; see the results for the
hydroxyl radical in Table 4. The QSSA may have severe problems with accuracy; see
again Table 4. It should be mentioned that if the modified form of the QSSA, given
by (20), is used, then an error estimator can be incorporated in the QSSA. However,
if this is done, then this method will loose a lot of its computational efficiency, which
is the most important advantage of the QSSA.

7. Coupling Advection with Chemistry

Let us consider now the coupling of the chemical module with the other modules in
a large air pollution model. To simplify the discussion only the coupling of chemistry
and advection will be considered. Similar discussion can be carried out when the other
modules (the diffusion and deposition ones) are added to the advection-chemistry
combination.

It is relatively easy to test the advection module of an air pollution model. One
can construct test examples (whose analytical solution is known) and use them in the
verification process. The rotation test, proposed simultaneously in (Crowley, 1968;
Molenkampf, 1968) is commonly used. Other test examples can also be constructed;
see (Zlatev, 1995).

It is more difficult to test the chemical modules. The commonly used procedure
is to calculate a reference solution by running the chemical module with a sufficiently
small time-stepsize (this approach has been used in the previous section).

Assume that both the advection module and the chemistry module have been
carefully tested. Assume also that the tests indicate that both modules perform
satisfactorily well. Then the question is: Will also the combination of these two
modules perform well? It will be shown in this section that, unfortunately, the answer
to this question is in some cases negative.

The following simple test example (consisting of two modules: horizontal ad-
vection and chemistry) can be used in order to show why the above statement is
true:

5= - -e-n%
+Qs(cr,c,...,¢4), s=1,2,...,q (28)
where
0<z<2 and 0<y<?2 (29)

If the chemical terms are removed and if it is assumed that ¢ = 1, then this test
example is reduced to the classical Molenkampf-Crowley rotation test (Crowley, 1986;
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Molenkampf, 1968). Note that the wind velocities are defined in a special way, so that
the wind trajectories will be concentric circles whose common centre is the point with
coordinates z = 1 and y = 1. Moreover, the motion is with a constant angular
velocity. This means that if we have some given distribution of the concentrations at
the starting time tgart, then at some time t.,q a full rotation of the concentration
field around the point # = 1, y = 1 will be accomplished and, thus, at te,q the
concentrations must be distributed in the same way as at the beginning (at fstart)-

If the horizontal advection is removed, and if the space domain is discretized,
then the concentrations at each grid-point will vary (due to the chemical reactions),
but the variations are only caused by chemical transformations at each grid-point
(there is no motion of particles from one grid-point to another).

One can study separately the two physical processes (either the horizontal advec-
tion or only chemistry) by using this test example. Moreover, one can also study the
coupling of advection and chemistry (by treating at each time step first the horizontal
advection and then the chemistry). This generalization of the rotation test has been
proposed and used in (Hov et al., 1988); see also (Zlatev, 1995).

Some numerical results with the generalized test are given in Fig. 2 and in Fig. 3.
Four plots are shown in each of these two figures.

The upper-left plot represents the initial distribution of the concentrations. The
distribution forms a cone if the pollutant is a primary one (i.e. if it is emitted in the
atmosphere). All concentrations at the beginning are constant, at all grid-points, for
the secondary pollutants (the pollutants which are created in the atmosphere by the
chemical transformations; these are set to the background values at the beginning of
the computations).

The upper-right plot represents the distribution of the concentrations after a full
rotation in the case when a pure advection test is carried out (i.e. when the chemical
reactions are decoupled). This means that in the ideal case, when there are no errors,
both upper plots must be identical.

The lower-left plot represents the case where only a pure chemical test is run
over the time-interval needed to perform a full rotation (the transport part, i.e. the
advection, is decoupled).

The lower-right plot represents the distribution of the concentrations after one
rotation for the most general case that can be treated by this test, i.e. the case where
both the transport and the chemical reactions are activated. In the ideal case, when
there are no errors, both lower two plots must be identical.

The results shown in Fig. 2 are very good. However, the results shown in Fig. 3
indicate that problems could appear. In this particular case the difficulties are due
to the sharp gradients caused by the chemical reactions.

Similar difficulties have also been observed for some other chemical species. By
animation of the rotation, it could be seen that the problems arise mainly at sun-
rises and sun-sets (because the chemical subroutines produce sharp gradients in these
periods, which cannot be resolved by the advection subroutines). These experiments
tell us, once again, that one should be very careful during the periods when the
photochemical reactions are activated and desactivated. One should probably try to
run the code with smaller time-stepsizes in these critical periods.
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(2) NO 2 TIME: 30.00 HOUR

Initial distribution: 56 species (pseudo) Pure advection (pseudo): 3200 steps
File: data56/pseudo—puft/pureadv File: data56/ seudo—a}uf!ﬁ[fure.adv
Max=0.23E+13 Min=0.24E+11 Mean=0.59E+11 Max=0.22E+13 Min=024E+11 Mean=0.59E+11

Pure chemistry{QSSA): 3200 chem.steps Adv.4chem (pseudo): 3200 adv.+3200 chem. steps
File: data56/pseudo—puff /purekemi File: data56 /pseudo—puff/adv.kemi
Max=0.10E+1 Min=&45 +09 Mean=0.71E+10 Max=0.99E+ Min=0.38E+08 Mean=0.71E+10

Fig. 2. Distribution of the nitrogen di-oxide concentrations:

a.% at the beginning (upper, left),

b) at the end of the pure advection test (upper, right),

c) at the end of the pure chemistry test (lower, left) and

d) at the end of the advection-chemistry test (lower,
right).
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(47) CsH, TIME:  30.00 HOUR

Initial distribution: 56 s ecies (pseudu) Pure advection (pseudo): 3200 steps
File: dataSGégseudo r:‘(purea File: datasﬁégseudo— uff/pure.adv
Max=0.91E+ Min= 00 Mean=0.20E+01 Max=0.90E+ Min=0.78E+00 Mean=0.20E+01

Pure chemistry(QSSA): 3200 chem.steps Adv.+chem (pseudo): 3200 adv.+3200 chem. steps
File: dataSSé seudo—puff/purekemi File: data56/pseudo— uff adv.kemi
Max=0.29E. E Min=0.28E-35 Mean=0.66E-08 Max=0.15E~ Min=0. ~12 Mean=0.54E-07

Fig. 3. Distribution of the isoprene concentrations:
a) at the beginning (upper, left),
b) at the end of the pure advection test (upper, right),
c) at the end of the pure chemistry test (lower, left) and
d) at the end of the advection-chemistry test (lower,
right).
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8. Concluding Remarks and Future Plans

The general conclusion is that there are still a lot of unresolved problems when chemi-
cal modules are to be treated numerically. It is necessary to develop fast, rubust and
sufficiently accurate algorithms for these modules. This is not an easy task, because

1. the chemical modules lead to the solution of extremely stiff ODE’s,
2. the systems of ODE’s are very badly scaled,

3. some chemical species vary very quickly in certain short intervals (sun-rises and
sun-sets).

4. even when the chemical module itself works satisfactorily well, its performance
can be degraded in the process of coupling the chemistry with the other physical
processes.

If some splitting procedure is used in the treatment of the air pollution model
under consideration (and this is the case for all known large models), then it is perhaps
necessary to use one-step integration methods.

It seems to be necessary to apply some reliable error estimators. This is why
the use of extrapolation techniques, where the error estimators are naturally built
in the procedures, may be useful. The basic requirement is to select fast extrapo-
lation methods. Some of the methods developed by Deuflhard and his co-workers,
(Deuflhard, 1983; 1985; Deuflhard and Nowak, 1986; Deuflhard et al., 1987; 1990)
may be applicable in large air pollution models

Some of the chemical reactions are very fast. Therefore it is not uncommon to
assume that such reactions are performed instantaneously. This assumption leads in
a natural way to the solution of differential-algebraic systems in the chemical sub-
models. Therefore fast solvers for such systems are also necessary. It must be em-
phasized here that if some splitting procedure is used, then the differential-algebraic
systems solvers should be based on the application of one-step methods. Some of the
methods studied by Petzold (1983; 1986) or in (Deuflhard et al., 1987) could be useful
(perhaps after some adjustment) in the treatment of chemical modules in large air
pollution models.
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