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MATHEMATICAL MODELLING AND NUMERICAL
SIMULATION OF INDUCTION HEATING PROCESSES!

JACQUES RAPPAZ*, MAREK SWIERKOSZ*

This paper deals with numerical simulation of induction heating for tri-
dimensional time-varying axisymmetric geometries. A mathematical model is
presented together with the numerical scheme used to solve it. The whole is
illustrated by results of sample computations.

1. Introduction

Induction heating is widely used in industrial processes involving heat treatment, such
as quenching, brasing, preheating for forging operations, coating of surfaces, melting
or stirring in electromagnetic crucibles. It involves both electromagnetic and thermal
phenomena, described by coupled non-linear partial differential equations.

The essential components of an induction heating setup are one or more inductors
and one or several metallic workpieces to be heated (Fig. 1). In most industrial
processes, the inductors move with respect to the workpieces. This is an essential
characteristic of quenching treatment and of most processes involving a production
line. The inductors are supplied with alternating current. The frequencies used range
from a thousand to several hundred thousand cycles per second.

The current flowing through the inductors generates a rapidly oscillating mag-
netic field. This in turn induces the so-called eddy currents in the workpiece. Due
to the Joule effect and, in some cases, also to the hysteresis effect, these currents
produce heat inside the workpiece. It is worth noticing that in most practical cases,
most heat is generated in a shallow layer below the surface of the workpiece. In fact,
the eddy current intensity decreases exponentially with the distance from the surface.
This phenomenon is known as the skin effect.

In this research, we considered induction heating setups which present an axial
symmetry. The aim was to obtain a model permitting efficient numerical simulations
that could be used for the design and optimization of induction heating plants. It
was assumed that the coils were supplied with sinusoidal alternating current, so as to
obtain a steady-state electromagnetic problem. The total voltage in each coil vy and
the angular frequency w were considered to be given. Under these assumptions, we
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Fig. 1. A sample induction heating setup.

developed a mathematical model and a numerical scheme which gave rise to an eddy-
current simulation package. This software was coupled with a heat equation solver
and a microstructure computation module. We thus obtained a complete induction
heating simulation code which is now used in industrial practice.

The paper is organized as follows. In Section 2, we describe the mathematical
eddy-current model. Section 3 is devoted to the numerical scheme used to compute
the solution to the model. Section 4 deals with the issue of simulating energetic
effects of hysteresis phenomena. In Section 5, we present shortly the other physical
models used and discuss briefly how they interact in the whole numerical simulation
scheme. Finally, in Section 6, sample numerical results are presented and compared
with experimental measurements.

2. Mathematical Eddy-Current Model

Let us consider an axisymmetric induction heating setup consisting of N con-
ductors, i.e. inductors and workpieces. Let A;, ¢ = 1,...,N, be N bound-
ed open sets of IR® corresponding to the areas in space occupied by the con-
ductors. These sets are obtained by revolution of N open simply-connected
sets ; ¢ R? ¢ = 1,...,N, around a straight line that we consider to be
the Oz axis of a Cartesian coordinate system (z,y,z). Let us denote by A
the union of the sets A;: A = UY,A;, by Q the union of the sets €;:
Q0 =UX,Q;, and by A’ the complement of A in IR® (A denotes the closure of A).
We order the sets A; in such a way that A1, As,..., A, correspond to the inductors
while A,41,...,An correspond to the workpieces. The sets A1, As,..., A, are not
simply-connected and therefore have necessarily a toroidal geometry.
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We start building our model from Maxwell equations with displacement currents
neglected, and the Ohm law. The following equations hold in R3:

divB =0 (1)
B

__98 2

curl E 5 (2)

curlH = j (3)

vB =H (4)

Moreover, in the domain A, the Ohm law can be written as
j =cE (5)

Here t denotes time, E the electric field, H the magnetic field, B the magnetic
induction, j the electric current density, ¢ the electric conductivity, and v the
magnetic reluctivity, i.e. the inverse of the magnetic permeability p. For the moment,
we assume that the values of o, u and v do not depend on time. In reality, they
will usually vary with temperature and, to a certain extent, with the magnetic field.

Let us consider now a cylindrical coordinate system (r,6,z) with its associated
natural tangent reference system (e, eq,e;). The Oz axis of this system is the same
as the Oz axis of the Cartesian coordinate system considered before, i.e. it coincides
with the symmetry axis of the setup. The following assumptions are made:

1. The fields B, H, E are such that their components in the reference system
(er,eg,e;) do not depend on 4.

2. The electric current density is of the form j = j(r,z)e*%eq, where j : (r,2) €
Rt xR — j(r,z) € C is some complex-valued function.

It will also be assumed that there are no surface currents, i.e. no Dirac é-like current
“concentration” on the surface of the conductors.

Suppose that a periodic voltage of the form wvge™? (with vy, possibly equal to
zero) is imposed in the sets Ay, k =1,...,r, which correspond to the inductor coils.
In the sets Ay, k =1,...,7 + 1, we shall set vy = 0 by convention. Due to the
linearity of the problem (with constant coefficients o, p and v), we can look for the
fields B, H, E in the form

B= (BT(Tﬂ z)e, + By(r, z)eq + B, (r, z)ez)ei“’t (6)
H= (Hr(r, z)er + Ho(r, 2)eq + H(r, z)ez) it "
E= (ET(T) z)e, + Ey(r, 2)eg + E.(r, z)ez>ei“t (8)

Here BT(T’ Z)’ BG(T, z)’ BZ(”"z)’ Hr(”" Z)’ HB(T’ z)7 HZ(T7 'z)’ ET'(Tﬁ 2)7 Eo(r72)i
E.(r,z) are complex-valued functions to be determined. In the sequel, we shall omit
the term e™*.
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Our aim is now to show that under the above assumptions, the magnetic induc-
tion B can be expressed in terms of a scalar potential

$:(r,z) ERY xR+ é(r,2) € C 9)

Let us consider eqn. (3) expressed in cylindrical coordinates. Using (7) and
Assumption 2, we get from (3) that

(—66—}?) e, — (agz ~aafir)e9+ <%6(;f9)>ez=jeﬂ (10)
which is equivalent to the system

_% =0 (11)

S A (12)

Equation (11) implies that Hy = Hp(r), and from (13) we get Hy = ;, where ¢
is a constant. If ¢ were non-zero, we would have lir% Hy = oo, which is absurd.
Therefore, the magnetic field H has the form

H=H.(r2)e, + H,(r,2)e, (14)

This result and eqn. (4) imply that the magnetic induction B also has the form

B = B,(r,2)e, + B.(r, z)e, (15)
Thus equation (1) yields

3} 3]

2 ("Br) + 55 (1B:) =0 (16)

Equation (16) states the fact that the field (r,2z) € Rt xR ~ (rB,,rB,) € €2
is divergence-free when we consider (r,z) as Cartesian coordinates. A well-known
result (see e.g. the book by Dautray and Lions (1988)) allows us to conclude that this
field can be expressed in terms of the curl of a scalar function. In other words, there
exists a function v : (r,2) € RT xR — 9(r, z) € C such that
__ _ o

TBT = ’—az, TBZ = "6—7:‘ (17)
Let ¢ : (r,z) € R" xR — ¢(r,2) € € be defined by ¢(r,z) = Ly(r,z).
Equations (17) can then be rewritten in the form

9  p _1009)

B, =-22 Y =
0z r Or

(18)
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We conclude that there exists a vector magnetic potential A of the form

A(r,2) = é(r, 2)eq (19)
such that

B =curlA (20)

Moreover, we clearly have

divA =0 (21)

. . 10¢ . . 1
since divA = ——. Using the Biot-Savart law, one can show that B ~ —————
r 06 (r2 + 22)2

as (r? + 22)12’ — 00. In (17), ¢ is defined up to a constant. Consequently, ¢ can be

chosen so that ¢ ~ — as (r? + 2%)7 tends to infinity, or, in other words,
T

+ 22

1
¢=O<m) as |’I"+IZ|—>OO ) (22)
Taking into account (20), (4) and Assumption 2, eqn. (3) yields
curl (vcurl A) = jeg (23)

which can be expanded to the form

(22252 () e

This result holds both inside the conductors and outside them.
Outside the conductors, j is zero and v is constant, so that (24) yields
0 (10 0?2
(2ogw) 2o

or \r or az2’0 (25)

This equation does not imply A¢ = 0. However, multiplying it by sinf, we get
A(¢sinf) =0 (26)

So far, we have expressed the magnetic field and the magnetic induction in terms
of a scalar magnetic potential ¢. Qur aim is now to find a relationship between the
current density j, the potential ¢, and the voltage v, imposed on the conductor.

From the Ohm law (5) and Assumption 2, we get that E = E(r, z)ep in each
open set Ay (corresponding to the location of a conductor). By rewriting eqn. (2) in
cylindrical coordinates, taking into account (6) and (15), we get

iw(Bre, + B.e,) + (—@) er + (% 8(7~E)> e:=0 @7

0z or
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ie. wB, = 57 whB, = T Substituting (18) into these equations, we get
. 0¢ OF '
S — = —— 2
*“a: T Bz (28)
1. d(r¢)  10(rE)
P or T T ar (29)

or, equivalently,

% (rE +iwrd) = 0, a% (rE +iwrg) =0 (30)

Consequently, there exist constants ¢, € C, k= 0,..., N, such that
rE+iwrg=c; inly, k=0,...,N (31)
The Ohm law (5) yields

j=a(—iw¢+c7k), k=1,... N (32)

Now, for every non-simply-connected toroidal conductor Ay, there exists a
disk X, centered on the Oz axis of the cylindrical coordinates system and orthogonal
to this axis, such that the Ay UX, is simply-connected (Fig. 2). The voltage vy is

then defined as a line integral of E + iwA along 8. Since A takes the form (19),
we get

v = / (E + iwg) eg dr (33)
0%
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Taking into account (31) and the fact that dv = egr d@ in this case, we obtain

27
vy = / ¢t d8 = 2wy, (34)
0
Therefore, in any non-simply-connected set A, we have

j=o (—iw¢ + %f;) (35)

Any simply-connected axisymmetric set must have a non-empty intersection with
the Oz axis, where 7 is zero. Since the current density cannot be infinite, eqn. (32)
implies that cj is zero in those of the sets Ay that are simply-connected.

Let us remark that an inductor cannot be simply-connected. In all workpieces,
the voltage vy is zero, which implies that ¢ is zero also in those workpieces that are
not simply-connected.

Equations (35), (24) and Assumption 2 yield the following condition, valid in any
conductor Ag:

0 (vd(ro) 0 (va(ro) . _OU
B (Br (r ar )t 0z \r 0Oz iwog = 27r (36)
We shall now attempt to find conditions on the boundary of the conductors. Let [f]
denote the jump of a function f on 8A, and let n = n,e, +n,e, be the unit vector

normal to 8A. Equations (19) and (20) imply that ¢ must be continuous. Since we
assume that there are no surface currents, we have

[Hxn]=0 (37)
on 8A. As Hxn = (H,n, — Hyn,)eq, we get
[Hm, — H;n]=0 (38)

Equations (18) and (4) yield

(250 220

or briefly [%ég—n(p)‘} = 0. We thus have the following interface conditions:

(6] = [KM} =0

T On (40)

Consequently, the model consists of eqn. (25) (or (26)) in A’ (outside the con-
ductors), eqn. (36) in A (inside the conductors), interface conditions (40) and the
condition (22) at infinity.
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3. Computation of the Eddy Currents

Our aim is now to formulate a set of equations that could be used in a numerical
simulation code. The difficulty arises on account of the fact that eqn. (25) is defined
over an unbounded domain. Therefore a straightforward solution by the finite-element
method is not possible.

Equation (25) could be solved over the whole unbounded domain using the so-
called “infinite elements”. Another common way of dealing with such problems is
to approach the infinite domain by a “sufficiently large” finite one, with suitable
conditions on the boundary, and to solve the whole problem by the standard finite-
element method.

In our case, these two solutions do not seem to be adequate. In fact, the assump-
tion is that inductors may move with respect to the workpieces. Therefore, the mesh
outside the conductors would have to vary with the inductor movement. Apart from
other considerations, the generation of such a mesh would lead to efficiency problems.

We thus opted for a boundary-element-finite-element formulation. The behaviour
of the magnetic potential outside the conductors will be expressed in terms of integrals
over their boundary, while a classical finite-element formulation was chosen for the
inside of the conductors.

The key of the boundary-element part is the so-called simple-double layer formu-

lation. Let G(y,z) = denote the Green kernel in IR®. Let f denote any

4m|z — y|

function of C?(IR%), harmonicin A’ and such that f = O (% as |z| — co. Then

the value of f at any point y € A is given by the equation (Nédélec, 1977)

0G(y,z)
N G(y,z)ds, A o, f(z)ds, (41)

fy) _ [ 9f(=)
2 _/a

where n, denotes the unit vector normal to A at the point z, oriented to the
outside of A’.

We apply the above formulation to the function ¢siné which satisfies eqn. (26).
Let the points 7,y € IR® be respectively denoted by z = (r,6,2), y = (15,6p,2) in
cylindrical coordinates. Then the Green kernel is

G(’I‘b, Hb, Zh, T, 9, Z)

1 1
T 4r [(rs cos 8y — 7 cos0)? + (73 sin By — 75in 0)2 + (25 — 2)2]1/2

(42)

O(sin 8)
Ong

Since the vector normal to A has no component along ey, we have = 0.
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Therefore eqn. (41) takes the form

@(1s, 2p) sin By _/ d(¢(r, z) sin )
aA

B = anr,z G('I‘b,eb,Zb,"',g,Z) dsr,z

- / 0G(rs, 60, 20,79, 2) @(r,2)sinfds, . (43)
GYN

on, .

Since the problem is axisymmetric, we can choose an arbitrary value for 6 in the

above equation. For 6, = § we get
ot )= [ (BB (55,0, 0)= 0l 205 2070, 20) e (44
where
2w T
g(r,2,Tb, 26) = 47r/ G(r,O,z,rb, 5’%) sin§ df (45)
0

oG 7',9,2,7‘ )E,Z
?j(’"vzaTb,Zb)=47r/ ( by 5> %b)

| o sin#df (46)

The integrands in (45) and (46) have an elementary expression in terms of 7,7y, z, 25, ¢
and n. However, the integrals themselves are of elliptic type and cannot be expressed
in an elementary way. Moreover, they involve multidimensional singular integrals and
their numerical evaluation is difficult. Such an evaluation can be found in the paper
by Hamdi and Mebarek (1984). We opted for a different approach, which consisted
in removing the singularity by integrating the singular parts exactly and performing
the integration of the regular functions numerically. This gave rise to challenging
numerical problems which are beyond the scope of this paper.

Equations (44) and (36) give rise to a finite-element approximation. A triangular
mesh 7, is built over Q. The mesh on the boundary 89 is induced by 7. Since the
normal derivative of ¢ is not continuous on 952, we introduce a new variable

5o rord)

r on (47)

which is continuous on 99 according to (40). To approximate ¢, we use standard P,
elements inside ), while Py elements are used to approximate A on 9f2. We thus
obtain a linear system where the unknowns are the values of ¢ at the mesh nodes and
the values of A on the boundary edges. Accordingly, we obtain a boundary-element-
finite-element model which was implemented in an eddy-current computation code.

4. Hysteresis Model

In the case of ferromagnetic materials, heat is generated not only through the Joule
effect, but also by losses due to hysteresis. Our aim was to implement a simple model
which would account for hysteresis and would be efficient from a computational point
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of view. Obviously, considering hysteresis on a microscopic scale was not an acceptable
solution and we had to opt for a macroscopic model. This model was developed in
the Electricity Department of the Swiss Federal Institute of Technology by M. Jufer
and M.M. Radulescu (see Jufer and Radulescu, 1994).

In non-ferromagnetic materials, the relation between the magnetic field H and
the magnetic induction B is given by (4). A good approximation for hysteresis is to
consider a dependency between H and B in the form

H(t) = vB(t + t4) ' (48)

where t; denotes a delay due to hysteresis. On account of (6) and (7), eqn. (48) can
be rewritten as

He™' = yBe™ () | (49)

where H and B do not depend on time ¢. If we define = ve™t relation (4) can
be replaced by

H=iB (50)

where 7 is a complex equivalent magnetic reluctivity. The rest of the model does not
change. The source term for the heat equation is therefore given by

n=q +q ' (51)
where
1 2 2
@ = jwiolgl (52)

corresponds to Joule’s power losses, while
1. 2
gz = EI/L‘)IBI (53)

accounts for power dissipated by hysteresis. If the inductor moves vertically with re-
spect to the workpieces at a speed v, additional heat is generated. The corresponding
source term is

2
1
q3 = 5’020'

9¢

Oo (54)

However, in industrial induction heating applications, the speed v is not high enough
to make this term significant. Details of this part of the work can by found in the
report by Jufer and Radulescu (1994).
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5. Other Computations

The source term obtained from the electromagnetic solver is included into a finite-
element heat equation solver. Based on an enthalpy formulation, this solver encom-
passes a number of advanced features, such as the computation of look factors for
radiation study and the possibility of including heat transfer conditions of any kind.
The latter feature is particularly necessary for the simulation of water cooling during
quenching. An attempt to solve the Navier-Stokes equation describing the water flow
on the surface, and solving the heat equation for water would give rise to a very
difficult problem. Alternatively, we opted for the use of an equivalent heat trans-
fer coefficient. Its value for different quenching conditions and liquids is deduced by
inverse methods from the results of experiments.

During quenching, steels undergo solid-state phase transformations which affect
their physical properties and generate latent heat. Taking into account these transfor-
mations is essential for obtaining correct simulation results. Therefore, the induction
heating simulation software was equipped with a module computing microstucture
changes, developed in the Material Science Department of the Swiss Federal Insti-
tute of Technology by Michel Rappaz and Alain Jacot (see Jacot et al. 1996). The
laws that describe phase changes between different microstructures in steels (such as
ferrite, perlite, austenite and martensite) take into account, generally speaking, the
temperatures reached and the heating rate. On the other hand, the generated latent
heat is included as a source term into the heat equation. A detailed account of this
work can be found in the paper by Jacot et al. (1996).

The structure of the whole simulation software is represented in Fig. 3. Its opera-
tion can be described as follows. An electromagnetic computation is performed for
given initial conditions. Its results are assumed to be valid for a short timestep 7, as
long as the electromagnetic properties of the conductors have not changed too much,
i.e. as long as there is no large increase in temperature, and as long as the displace-
ment of the inductors is small. Then the heat equation is solved for the timestep 7,
providing a new value of the temperature field. Next, the microstructure module com-
putes the steady-state phase changes. The possible latent heat influences the solution
to the heat equation. In this case, the solution to both the heat and microstruc-
ture modules is obtained in an iterative way. The data regarding the temperature,
the microstructures and the magnetic field are then used to update the values of
the physical properties of the inductors and the workpieces. If the inductors move,
their position after the timestep 7 is then computed. After performing all these
steps, we are ready for a new electromagnetic computation, and the whole process is
repeated as many times as necessary. The software presented here was provided with
a user-friendly input-output interface and is now used in industrial practice.

6. Sample Results and Comparison with Experimental Data

A stream heating experiment was carried out at the laboratories of the Amysa
Yverdon SA company. An inductor was moved downwards along a cylindrical work-
piece made of ferromagnetic ck45 steel. Only the heating effect was investigated; no
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SOLUTION TO THE ELECTROMAGNETIC PROBLEM new

for a given position, a given temperature field, material properties;
a given material structure new position
valid for a timestep 1. _pof the conductors

- as long as the position of the conductors,
the temperature field, the material structure
"have not changed too much"

new
energy input magnetic field
(Joule effect, hysteresis effect) ?ggngvAg&TT?gN
1 OF THE INDUCTORS
after the timestep 1
SOLUTION TO THE HEAT EQUATION I
new
A temperature field L 8g¥szAEVfN
enthalpy of - MATERIAL
transformation PROPERTIES
A
Y
COMPUTATION OF
THE STEADY-STATE PHASE TRANFORMATIONS now

material structure

Fig. 3. The structure of the simulation software.

quenching was performed. (For results involving quenching, refer to the paper by
Jacot et al. (1996).) The characteristics of the experiment are shown in Fig. 4. Sever-
al thermocouples were arranged inside the workpiece. Their locations are represented
in Fig. 5. A numerical simulation was performed according to the same specifications.
Figure 4 shows the isotherms at different moments, obtained by numerical simulations.
Figure 7 shows a comparison of temperatures at the measurement points between the
experiment and numerical simulation. It can be observed that the measurement of
temperatures is not easy in the conditions of the experiment presented here. More-
over, the size of the thermocouple is about 0.5 mm, while temperature gradients in
the workpiece can reach magnitudes of 100 Kelvins per mm. Therefore, it can be
concluded that discrepancies between the measurement and experiment observed in
Fig. 5 are of the order of experimental error.
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STREAM HEATING EXPERIMENT
A H l 5mm
: O
' 5 mm/s
100 mm é ' 80 mm
E preheating: 0.8 s
E v stream heating at 5 mm/s: 16 s
; goas stationary heating: 0.8 s
5 Breelt
' H cooling: 60 s
— frequency: 10000 Hz
r=30 mm

Fig. 4. The stream heating experiment.

LOCATION OF THE THERMOELEMENTS
A

100 mm

Fig. 5. Location of the thermoelements.
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Comparison between experiment and numerical simulation
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Fig. 7. Comparison between experiment and numerical simulation.
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