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THEORETICAL AND NUMERICAL ESTIMATES
OF INSTANTANEOUS LYAPUNOV EXPONENTS
OF QUASI-GEOSTROPHIC OCEAN DYNAMICS

CHRISTINE BERNIER*, EUGENE KAZANTSEV*

This paper deals with the problem of predictability of the ocean circulation. Theo-
retical estimates of instantaneous Lyapunov exponents of a quasi-geostrophic ocean
model are developed and compared with calculated values. The comparison shows
a rather good correlation of temporal variability of calculated exponents and their
estimates.

1. Introduction

It is currently known that non-linear processes can involve instabilities of solutions
of dynamical systems, and due to this fact, any error in the initial data increases
with time. This leads to the chaotic behaviour of trajectories and limits the time
period of the deterministic predictability of the system. This is one of the reasons of
rather restricted weather-forecast skills in meteorology, ocean-current predictions in
oceanology and the use of predictions in many other fields of science where one deals
with non-linear systems.

Attempts to understand principal restrictions of predictability of dynamical sys-
tems appear in numerous predictability studies. In particular, this concerns geophysi-
cal sciences, because this question is related to the weather prediction, one of crucial
problems of meteorology.

Any solution of a forced and dissipative non-linear system reaches asymptotically
a bounded region called the attractor. One of the most appealing features of an
attractor of a geophysical system is that it has a finite dimension, even though the
dynamics is governed by infinite-dimensional systems of partial differential equations
(see e.g. Bernier, 1994; II'in, 1991). However, the behaviour of the system on the
attractor could be rather complex. Even in the simplest cases, as e.g. Lorenz’ system
(Lorenz, 1963) which is composed of three ordinary differential equations, the non-
linearity and internal instability of the system lead to the appearance of a fractal
attractor of dimension about 2.06.

The predictability of a system is determined by the rate of divergence of initially
close trajectories. For infinite time evolution of the system, this rate is given by
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positive Lyapunov exponents which characterize the system from a global point of
view, i.e. they concern the whole attractor of the system. However, analyses of simple
chaotic models show that the divergence rate of finite segments of trajectories is
different for trajectory segments starting from different points on the attractor set
(Abarbanel et al., 1991; Dymnikov and Kazantsev, 1993).

The divergence rate of an infinitesimal initial perturbation for finite time evolu-
tion of a system can be determined by the singular values of the integral evolution
operator of the linearized equation (Lorenz, 1965) integrated over this finite trajecto-
ry segment. The logarithms of these values divided by the time interval are called the
local Lyapunov exponents (Abarbanel et al., 1991). So, if a trajectory part produced
by integration of a dynamical system is known, the predictability of this system on
this part of the trajectory can be estimated.

However, local exponents possess several shortcomings. First, they correspond
to infinitesimal perturbations of initial conditions only. Moreover, the perturbation
must be infinitesimal not only at the initial time, but it is supposed to remain small
for all the time period considered. But if we take into account a real system, we
have to work with initial data of finite accuracy. Even if we can suppose that the
initial error is sufficiently small to be considered as infinitesimal, after some time
of integration the error may attain a significant magnitude. In such a case, the
discussion of predictability of the system on a particular trajectory has no sense: this
trajectory can be realized as well as any other which has a close initial point, but
which nevertheless differs a lot.

Furthermore, the estimates of local exponents of a system require the knowledge
of a trajectory of this system. Thus, to estimate them, we first have to perform the
integration of the model. This means that we can speak of a posteriori estimates
only. If we are interested in a priori estimates, we should use a point on the attractor
rather than the whole trajectory segment.

Owing to these two reasons we shall consider instantaneous Lyapunov exponents,
which are local Lyapunov exponents with composition length tending to zero. These
exponents can be considered as predictability characteristics at a given point on the
attractor, i.e. we study the evolution of an error in the initial conditions of a trajectory
of infinitesimal length issued at this point.

The paper discusses the instantaneous Lyapunov exponents of quasi-geostrophic
ocean dynamics. In Section 2 the model equations and boundary conditions are
presented. Section 3 is devoted to the study of the theoretical estimates of instan-
taneous exponents as eigenvalues of the symmetric part of the linearized operator of
the model. In Section 4 the calculation of eigenvalues of finite-element discretization
of this operator is performed. These eigenvalues are compared with the estimates in
Section 5. )

The results of comparison reveal a good coincidence of the temporal variability
of calculated exponents and their estimates. This fact gives us a possibility to use
these estimates as predictability characteristics of the multi-layer quasi-geostrophic
ocean model. Such characteristics are very easy to evaluate.
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2. Model Equations

We consider the ocean dynamics in the quasi-geostrophic formulation, i.e. we neglect
all the thermodynamic effects. The vertical structure of the ocean is modelled by
dividing the domain  into K layers of depth thickness Hy. Following (Holland,
1978; Le Provost et al., 1994), the equation of the dynamics can be written as

6;: + J(Wr, O + By) = pA2yy, + Find — Dhettom in Q, k=1,...,K (
1)
where ¥ = ¥ (z,v), k= 1,..., K is the quasi-geostrophic stream function of the k-th

layer. We suppose that € is a bounded open subset of IR? with smooth boundary
O9. The k-th layer is characterized by its thickness Hy, its reduced gravity g, and its
streamfunction ;. The forcing F#*¢ influences only the upper layer: Fpind =0
for k # 1, and Fj*"™® is equal to the curl of the wind stress on the surface. The
bottom drag is neglected: D™ = 0. The parameter of Coriolis and its meridional
gradient in the middle of the basin are fy and (3, respectively. We consider a linear
approximation of the Coriolis parameter f = fo + 8y. The term W is the K x K
tridiagonal matrix defined by

Ry -R 0
R' R +R’ R R f2p()
—It'y Itp 2 —hy e H, !
W e | ‘ . | with ) kipk-;l k) @)
: - - - R, = fipo
0 ~R'x Rk ng(Pk—Pk 1)

where pg is the mean density of water, p; stands for the mean density in the k-th
layer and g is the gravity acceleration.

We remark that the matrix W has a complete system of eigenvectors. So we
introduce A as the diagonal matrix of the eigenvalues of W, and define the matrix
of passage to its basis of eigenfunctions P so that

A=P'WP (3)

We shall indicate each vector in the eigenbasis of W by a star: ¢* = P19, 6* =
P19, etc.

The boundary conditions and initial data for eqn. (1) are formulated as

Az[)k(:u,y,t)=0 on dNx]0,T[, k=1,....K
(z,y,t) = Ci(2) on dNx]0,T[, k=1,...,K
(4)
/wde_O k=2,...,K, C{=0

Or(z,y,0) =g r(z,y) in Q, k=1,....K

where C}(t) are determined by the condition / P d2 = 0.
Q
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3. Theoretical Estimates of Instantaneous Lyapunov
Exponents

3.1. Existence and Uniqueness of the Solution, Existence of Attractor

We denote by H~! the space (H~1(Q))", by L? the space (L?(Q))V, etc. The
forcing Fy*"¢ is supposed to be independent of time and it belongs to L2(). We
recall some results from (Bernier, 1994; 1995) concerning solvability of the system (1).
We do not give here the proofs, since they are beyond the scope of this paper.

Theorem 1. (Bernier, 1994). For 6y in H™1, the system (1) admits a unique
solution 6(t,z) in C([0,T), H )N L?(0,T, L2)ﬂLl2 (0,T,H}). The semigroup G(t)
from H™' to H™', G(t)8y(x) = 0(t, z), associated with these equations, is such that
there exists a mammal attractor A which is bounded in L?, compact and connected in
H™', and whose basin of attraction is the whole space H. This attractor has finite
Hausdorff and fractal dimensions. For 6y in H*, the system (1) admits a unique
solution 0(t,z) in C([0,T),H) N L?(0,T, H?).

To study the evolution of a small initial error 6 we consider the system linearized
around the solution é of (1) on the attractor:

B + Tk, 0) + I (e, 0 + By) = pb%pi + B in 0x]0,TY,
k=1,...,K (5)
0= Ay — Wy in © x]0, T

The boundary conditions_ for the perturbation 1 are the same as the boundary con-
ditions for the solution ¥ of (4):

[ Ay =0 on A0x]0,T[ fork=1,2,....K
Pr=0 on 99 x]0,T

Y vr=cr) on 90x]0,7[ fork=23,...,.Kk &
/wkdn /¢k limo d) fork=2,3,...,K

From now on, for every 6, we define ¥ and 9 by

(AY-—Wip =0 in Qx]0,T[

AYp =0 on ANx]0,T|
Yr(z,y,t) =Ci(t) on Nx]0,T[, k=2,3,...,K

) Pr =0 on dNx]0,T| )
A«b,’;dﬂ:o fork=2,3,...,K

\ ’wk = 'l/;k 'l’Clc in QX]O)TL "Z}k € H&(Q)
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where Cj = PC;. We introduce the norm on H~! defined by the scalar product
(Bernier, 1994):

=K

((6,6) = (6, HY') = = Y Hi(6:,9i)-11 (8)

=1

where (H¢)r = Hir and (-,-) = (-,-)_1,1 denotes the duality product H~! x Hj.

2
Introducing pi = m;{%pﬂ—m, px = 0, we obtain
=K
16121 = > Hil Vabil® + pilthis — ¢il?
=1

This norm is equivalent to the standard one. On L?, we introduce the norm

=K
1613 = > Hi |AGi* + pi [Vpisa — Viiul? NG
=1
- 1/2 . 1/2
The norms |- ||z, ( =Kq, [A¢i12> and |6]? = (z;;f Hi]9i|2) , where |- |

denotes the usual scalar product on L?({2), are equivalent (Bernier, 1995).

Theorem 2. (Bernier, 1995). For 6(0,z,y) = 6o(z,y) in H™!, the system (5)
admits a unique solution 0(t,z,y) in C([0,T],H-)n L%(0,T,L*) N L% (0,T,H").

loc

The third theorem links systems (1) and (5).

Theorem 3. (Bernier, 1994). For t > 0, the semigroup G(t) is uniformly dif-
ferentiable on A. Its differential at 8y is the linear operator on H™ () given by
6 — L(to,00)80 = 0(to), where 8(to) is the value at time t =ty of the solution 6(t)
of the linearized system (5). Moreover, supg,ca |L(tg,90)lL(H_1) < 0.

In what follows, we consider 8, € H} and denote by B = B(t,fo) the unbounded
operator on H~! with D(B) = H{, defined by

Ot
ox

Let us determine the adjoint operator B* and the symmetric part S of B,
defined by S = (B + B*)/2. The adjoint B* can be easily calculated as follows:

(BO)k = —pA%y + J(Px, 0k) + J (i, 0k) +

E = ((B6',6%)_1 = —(B6*, Hy?)

= 3 (A, B} + (I, 01), Hid)

15 72 _‘?ﬂ 72
+ (J(d)k’gk)’kak) +ﬂ( 51 7Hk1/)k)
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= (~HBAGE ) - B, 93), A1)
— (T Pk, ¥7), Yy — V) + D1 (T (B, ¥2), Df — PDh_y)
2 n 1 a‘/’% 71

- BT 80,9 ~ Pk, )

= = 3" (~nEAME,4}) - Bl AT (e, 42), 9h)

— Phoa (T (D1, Y1), O + e (T (P, 02), B2

+ Pre1{J (P, ¥3), L) —Pk(J(IEk+1,1/)£+1),%)

~ H (IR, B), L) — BH <6¢k,¢k>)

and then

(B*6%)r = —plA2g2 — AJ(i, 2) — = F e, YE) + ”’; T(e, 92)

Pkl 3_7/1122

orx

J(Pr,92) — %J(?ﬁkﬂ,ﬁﬂ) — J(¥3,0) —
Furthermore, for the operator S = (B + B*)/2 we have

(38)% = —p + 3 (T, ) — AT, )

pkl

T (Tt Y1) = T 00) + o (T, 0) = T 1)

or

(5)x = —pA+ 3 (T, Acke) — AT 1)

Pk1

J(l/)k V1, Y 1)_"_J("/’k+1 Vi, Yrt1)

3.2. Eigenvalues of the Operator S and Predictability

Let us consider m solutions of the system (5), 61(t), 62(t), ..., @m(t), corres-
ponding to m initial conditions 69,469, ..., 6%, respectively. We denote by
169 A 63 A ... A 6°| the m-volume of ‘the parallelepiped with edges 69, 69, ... ,6° ,

and by |91( ) A 02(75) A ... A 8n(t)] , the m-volume of the para.llelepiped with
edges 6:(t), 62(t), ..., 0:(t). Define

16:(8) A 62(t) A ... A Om(D)]

wm(tago)z sup le? A 98 A ... A 99,.,"

69 ¢ H~1(Q)
e?ll <1
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The numbers wn,(t,£y) determine the largest distortion of an infinitesimal
m-dimensional volume generated by G(t) around the point & € H~().

One can prove (Temam, 1988) that

100(8) A ... A Bn(t) =160 A ... A 62 |exp (/o Tr(—B(s,go)on(s))ds)

where Q.n(s) = Qm(s,609,69,...,6%) is the projector from H~1(f2) onto the space
spanned by 64(t),0:(%),..,0m(t ) and Tr denotes the trace operator. It follows that

1 1 [
tnome) = s} [ MEBG@oQue)a) (0
t 8% ¢ H1() tJo
el <1
But by definition, we have
Tr( = B(s, &) 0 Qm(s)) = Z(( Bei(s), 6:(s) )
where ¢;(s), ¢« € IN, is an orthonormal basis of H (0 ) #:(s) € L), with.

)
#1(8),--.,¢m(s) spanning Q.,.(s)H~1(Q) = Span|fi(t),0:(t),..,0m(t)]. Noticing
that

((=B¢i(s), di(s) ) = ((—=5¢i(s), ¢i(s) ))

we conclude that

Te( =~ B(s,60) 0 @m(s)) = Tr( ~ 5(s,£0) 0 Qu(s))

and, since S is self-adjoint,

Tr( = 5(s5,60) 0 Qun(s)) = Y((~56:(s),61(5) ) < ZAZ ~S(s,60))
=1
From (10) we obtain
fing 7 logwn(t &) < Jim (% / ;Ai(—S(s,fo»ds) (1)

Theorem 4. The following equality holds:

=m

1,
}%Zlogwm(t,ﬂo 2;‘,\1 5(0,8))
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In the proof we use the following lemma proved in (Bernier, 1995):

Lemma 1. The eigenvalue A;(S(t,00)) converges to X;(S(to,8)) continuously
when t tends to t;.

Proof of Theorem 4. Since the operator Tr(—S(s, &) o Qm(s)) is continuous in s, we
have

t

Tr( - 5(0,60) 0 @m(0)) = Jim 1 (= 506, 60) 0 Qm(s)) ds
Thus by (10), it follows that

Te( = S(0,8) 0 Qm(0)) < lim - logn(t, o)

Taking the supremum of the left-hand side, we get

1
sup  Tr( — S(0,60) 0 Qm(0)) < Jim 5 logwm(t,0) (12)
60 € HT}(2) -
fedil <1
We now consider an orthonormal basis ¢,...,#m consisting of the first m eigen-

vectors of S(0,&) and we denote by @Q, the projector in H~1(Q) onto 1, =
Span{¢1, ..., ¢m]. We thus have

Tr(-50,6)0Q0) = 3 ((-5¢x,0) Z Xi(~5(0,6))

i=1,...,m

But we also have

Tr(-50,6)0Q) < sup  Tr( = 5(0,6) 0 Qm(0))
0 € HH(Q)
et <1

and consequently

Z py ( - 5(0, Eo)) < sup Tr( - 5(0,&) 0 Qm(O))
i=1,...,m 0? € H_I(Q)
62l <1

This result, together with (12), gives

> (= 50,60)) < lim * loguin(t, &)

=1,...,m

To obtain the converse inequality, we recall that (cf. (11))

. 1 . tl m

Now, by using the continuity of the eigenvalues of S, the result follows. [ |



Theoretical and numerical estimates of instantaneous Lyapunov exponents ... 231

3.3. Operator S

Theorem 5. The operator S is a self-adjoint closed one on H™! with compact
resolvent. Its eigenvalues A; are real and bounded from below:

N> v = [Pllge/3My if |19l < 24/ 557

(13)
Ai > —||1/)||2 3M otherwise
where
1 1
M= max 1 14
( P (Hk Hk+1)) a4
and v; are the critical points of the functional
G(0) =Y Hi|Ayx|® (15)
k

subject to the constraint K = {6 € L*, Atp =0 on 89,61 =1} .
We use the lemma proved in (Bernier, 1995):

Lemma 2. For all € > 0, the following inequality holds:

k=K

Spe Y HylAyyl?

k=1

3l L m
e o (1, (g + 72 ) ) 101, 1)

Proof of Theorem 5. The operator S is self-adjoint by construction. Let us prove
that S is closed. We examine the scalar product ((S6,8)):

((58,8)) = —(S6, Hy)

—Z( (A%, Hiy)

ZHk (Pr,0k), )

+ % ((J(ﬁkyek)sHHﬁk) - <AJ(15k,¢k),HkTZ’k>)
%(pk 1{J (@k-m/)ka)ﬂﬁk)—Pk—1<J(15k,¢k),1/3k))
+ % ( k(T (i ), Yk —Pk(J(¢k+1,¢k+1)ﬂ/3k)))

I
M

(— pHe| Ay |?

+
N} =

(_<J(7~/7k,¢k)aHkék) - (J(lzk,'lﬁk)aHkA?Z;k))
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(Pk(J("Z’kﬂ/)k)ﬂ;H-l) —pk<-]('¢_}k,¢k),"zk))

N =

+ % (Pk—1(J(1Zk,¢k),ZLk) —Pk_1(J(%Ek,¢k)ﬂZ;k—1>))

= > uHe|AG® + ) (T (P, i), Hibr)
From (16) with ¢ = %, we have

k=N

(J(T/;kﬂﬂk Hiby)

k=1

/,L k=N
<3 Hi| Ay |?
k=1

3H¢HH2 1 1 )
Lpk | = 9
o S\ b\ T 1611=1
k=

/112
(90925 ~ ol 0 (g (L L —)) et

=1

Hence

Let us consider the operator T = S+ hId where Id is the identity operator on H~!
and h is a non-negative real. We have

((T6,0)) = ((56,6)) + hl6)J2, > & Z HelApi* 2 0 (17)
v 3[1Pl3
for any real h such that h > o max . On the other

hand, from Hoélder’s inequality we see that ((TH S 0” 1“6” 1. From (17), we
deduce

k=N
5 > Hil Al < [176]-1]6l]- , (18)
k=1

The Poincaré inequality implies that

k=N
2V X H Vol || < 701 6]

and by Holder’s inequality and the equivalence of the norms

k=N k=N
SCOHIVGP 2 cl6]2,, Y HulAgl? > clo)2
k=1

k=1

we have c||0]|-1]|f]l2 < [|T6]|-1]|6]|-1, and then c||f||lz < ||T6||-;. Since ||f]|_; <
[|6]l2, we deduce that the operator T—! is bounded. Thus the operator T is closed
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and so is S. From the compactness of the embedding of L? into H~!, we conclude
that 77! is a compact operator. Then S is an operator with compact resolvent.

We estimate the eigenvalues of S using some ideas of the theory of critical points
(Kavian, 1993). We want to find the critical points of Eq(f) on the constraint set K:

Eo(8) = 1y HelAvl* + J (6)
k

K= {0 € L% Ay =0 on O, [|6]_1 = 1}

where

J(G) = _ZHk(J(&kywk);A¢k> + Zpk(‘]('&kv'(wbk)’d)k-i-l - wk)
k

k

= P (J (e, Yr), i — Y1)
%
Since ||6||2, = 1, we obtain from (16)

M _
Eo®) 2 (1~ 9) Y Heldwl = S0 3 [l
k k

1 1
M= 1 —_—
m’?x< Pk (Hk - Hk+1))

We denote by v; the critical points of the functional

G(6) = > HilAyy|?
k

where

on the constraint set K. By the inf-sup definition of the eigenvalues, we obtain
M, -
Ai(S(t0)) = pu(l —e)vi — Zlﬁ_e”w”%”

We now optimize this result with respect to e € [0,1] and obtain precisely the asser-
" tion of the theorem. |

Let us determine the critical points v; of the functional G(#) on the constraint
set

K= {e €L, AY=0 on AN, ||f]|l_1 = 1}
These points are the eigenvalues of the problem

Hy A%y = V( — Hy Ay — pe(Yrg1 — Ur) + pr—1 (Yr — ¢k-1))
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i.e.
A% = v (A — Wep)

Let us restrict our attention to the eigenbasis of W (3). In this basis, our problem
takes the form

A21/)* — U(A’d)* _ A,d)*)

with boundary conditions (6). As before, we introduce 9* such that

vi=bao =i [
el
where |0 = meas(Q), ¢* € H}, and rewrite the problem in the following form:
2 7* * * Ak
A% :V(Ad) ~ A% Tl 1/)) (19)

Thus, v is a critical point of the functional G*(6*) = 3, |A%|? on the constraint
set

A . 2
T={orer adi=0 on 00,371V il - ([ o) =1)

Recall that the Schwarz inequality gives

A -\

Using the inf-sup definition, we obtain

v; = inf sup G*(6*
! A€L? dimA=i G*EARK* ( )
or
A T2
v; = inf sup Zk | "»bkl
A€L? dimA=:

: 2
0*€ A,Ad*=0 on 9Q Zk |V,¢}zl2 +Ak|¢}§|2 - AQLT (/ﬂ'd/)*)

which is equivalent to

. G*(68%)
vi= _jof sup etz
AEL,dimA=i g, 4 Aje=0 on 90 116~

But since

2
S IVP < X2 VU + Aukdif ~ g = ([ ) < ST IVGLE + Axldp?
k

k
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we obtain

LelAGP G e N AP
ZelVOil® T N0 T S VP + Al

As before, we now take the supremum over 6 € A with Ay} = 0 on 91, and next the
infimum over all subspaces A of L?(Q2) of dimension i. We denote by p; the i-th
eigenvalue of the Laplacian operator with homogeneous Dirichlet boundary condition.
The left-hand side equals p;. Let us determine the right-hand side. We seek the
critical points of the functional G*(6*) on the constraint set

R= {9* € L% AJ; =0 on 90, ) |Vii[* + Axldil =1}
k
These are the eigenvalues 7; of the problem
A’ = n(-Ag; + M)

It is easy to see that

2
{m,z':l,...,oo}:{ : ,k:l,...,N;i:l,...,oo}

Consequently,
Wi 2> Vi 27

Notice that for homogeneous boundary conditions on 1, we have v; = 7;.

We remark that the estimates take into account the inverse of the radius of
deformation for each layer.

4. Calculation of Instantaneous Lyapunov Exponents

The operator of the linearized system (5) can be rewritten in the form

63—(? + P7LI(, Ap = W) + PTHI (9, AY + By — W)
= u(AOF + ArOf + ALY}) (20)
P =AY — Ay
% = Py*

In order to find a weak solution to the problem (20) with boundary conditions (6),
we use the variational formulation of this problem. We denote by (-,-) the scalar
product on Ls:

(¥, ) =//Q¢sodwdy (21)
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Let us multiply eqn. (20) by a test function ¢(®)(z,y) € H(R) and integrate it over
the domain €. Using notation (21) and the Green formula, we get

<6§Z ! %"(°)> + <P-1J(zﬁ, Ay —Wy) + P7LI (4, A% + By = W), ‘P(O)>

= (= (VOL, Ve + (405 + AL, 0)) (22)

(05, 00) = —(Vor, V) — (At (@)
Wk, 90 = (Pyp*, @)

since p(® € HY(N), ie. o |pq=0.

In order to solve eqns. (20) and to satisfy the boundary conditions (6), we intro-
duce auxiliary functions

POz,9,8), $W(z,9), 0 (z,y,1), ©MN(z,y)
so that
e = 1O (2,9,1) + CeOv M (2,9), 9 = 0,9 =1 on 90
Or = 0:V(z,9,8) — ACr(0)0:V(z,y), 0@ =0,0,) =1 on 80 (29)

The values of Cy(t) are calculated according to the formulae

/Tﬁk lt=0 dzdy — / '\ (z,y,t) dzdy
Ck(t) — Q , Q
[ 44 dady
Q

Hence, eqn. (22) can be written in the form

80, . ACk(t
< ——, 00 ) — Ai(O% "1’,<p(°’)~———'°()

, k=23,...K, C;=0 (24)

ot ot
+ (P71, 5 = W), 0 ) + (P71I(w, 8+ By), 00

= u( = (O}, Vo) + (440} + Afyi, o)) (25)

The representation (23) allows us to split_the relationship between v¥* and ©*
into

{ @k*v(o) —_ A'l/}k*’(n) — Ak?,bk*,(o) (26)

—A0 M) = Ay — Ak¢k*’(1)
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In the variational formulation, we obtain

(01, ¢®) = —(vip®, V@) — (A @, o)

(1) () 1) 0 (27)

~Ax(©y ’90(0)) = (Vg ’V‘P(O)) - (Akw*’( )a‘ﬂ( )>

To develop a finite-dimensional approximation of the operator S, we shall use

the finite-element method. The feasibility and utility of the FEM for modelling ocean

dynamics was first recognized by (Fix, 1975). He observed that the use of the FEM

has numerous advantages regarding modelling, such as the precision, natural conser-

vation of model invariants, flexibility of discretization of complex domains, etc. These
advantages remain even though irregular discretisation of the domain is performed.

Since the solution produced by the QG model of the North Atlantic typically
includes a western boundary layer with intense velocity gradients, the possibility
of refining the triangulation along the western boundary of the domain is clearly
avantageous. This helps us to maintain the quality of explicit eddy resolution by the -
model while working with a lower number of grid nodes. The comparison of finite-
element and finite-difference models performed in (Le Provost et al, 1994) revealed
that differences between simulations by FE and FD techniques can be considered as
insignificant.

Although the number of operations per time step and grid node is much higher
for a FE model, by exploiting the possibility of the reduction of the number of grid
points one can considerably diminish the computational cost of a model run. The
possibility of reaching good precision while working with a lower number of grid
points is especially valuable for Lyapunov exponent calculations where a very high
number of operations per point is needed.

In this paper, we use P2 finite elements, i.e. polynomials of second-degree
pi(z,y) = a:x® + bixy + ¢iy? + diz + e;y + fi. We cover our domain Q by a set
of non-intersecting triangles and we define the set of integration points as the union
of vertices and mi-edges of the triangles. We construct finite elements p;(z,y) so that
they are equal to one at the i-th integration point and zero at all other points. We
enumerate the integration points beginning with internal points of the domain, and
pushing all the boundary points at the end of the set. In other words, we require

(zi,4:) € Q\OQ fori=1,...,N©
(zi,y:) €02 fori=NO+1,...,N

Since 1[)500), OECO) € H} (), they can be expressed as linear combinations

N©®
(,y,1t) Z v 0P (z,9)

N(U)

0 (@, v,t) =Y 001" (z,y)

=1

(28)
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The functions z/),(cl), @)Sj) € H' and therefore they can be represented as
21)(1'13/ Z?/)(kpz -'E y

@(1) (z,9) Z@zkpl(x Y)

Using these expressions, we can write down the discretized version of the
system (25), (27):

ELTA 8C(t)
0) k k
MU= ATy

-y P! (Z Bi(J(Pi, ), PV (A — ww)m)

M2 g, D)

=50 P (B + By = W), 0 )

+ ,L<-c<1/2>e,: + MM D7 AﬁM“/z)z/;,’;) (29)

MO = _c©@ynO) _ p, pgf©y0) (30)
—AMAD@EM = (/g m ) g(1/2) 0 (31)
= Py (32)

where M and C are respectively the matrices of mass and rigidity:

i=1,...,NO©
M(°) <p5°),p§°)), ¢ = (vp{?, Vp§-°’) {

b j=1,...,NO
(33)
(1/2) — (0) (1/2) _ o (0) i=1,...,N
Mg = et G5 7= (VR VET) {J’:L...,N(O)
We choose ©;*1) 50 as to have M1/2@,*(1) = 0. Then by (30) and (31)
_(6(1/2) + AkM(1/2))1/)Z — M(1/2)®Z (34)

"Aszi:ezi? A 'L:N(O)+1a;N

or simply

¥i = HOL. (35)
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Equation (29) can be rewritten as
)36* p) )1, + A} = GO;
= Z (k Icl) (k kl)("p) k1t A, =GO, (36)

where

J((;i’)kg)’(]‘,i) ("Z) = Z P]&h (Z "/;m,kl (J(pi,Pm),Pgo))) Pri ko
k1l m

J2

— 0
(, u) 3, 1) Z Pk k1 Z (Z(g)m kl pz,pm),pg» ))) Pkl,k2Hk2,(i,l)

Ay = u(—c(l/” +AMOA AiM(I/”Hk)

Taking into account the evolution of the boundary constants obtained from (24),
(30) and (36), we get

& / Y9 dzdy / (€O 4 A MO p1(0) @ak dzdy

dc,c 3
/ ' dzdy / v dzdy
9]
1

= (CO + A M) 1go* (37)

/ ¥ dzdy

Q

Hence

00~ _ a0y _ pc0r 40
ot ot dt

(g mer®
Joe® dady

We calculate the adjoint operator using the finite-dimensional approximation of
the scalar product on Ls:

N N N
0.0)= [ 0pdady =503 0:0; [ pipy dudy = 3 6:(M0): = (M6, ) (39)

i

(c<°> + AkM(O))—lg) 0* = A0*

Consequently,
(A0, ¢) = (MAG,$) = (8, APM@) = (M, MTLA* M) = (8, A*¢) (39)
hence
A* = MTTA'M (40)
and

A+A* A4+ MTAM
S = 5 = 5 . (41)
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5. Comparison of Eigenvalues of S with Their Estimates

The package MODULEF (Bernadou, 1988) was used to perform triangulation of a
domain. This package produces quasi-regular triangulation of the domain based on
prescribed grid nodes on its boundary. We need to refine the triangulation near
the western boundary and especially in the middle of the domain where velocity
gradients are extremely sharp. Due to a high computational cost we take a very
simple triangulation of the domain. This triangulation is composed of 26 triangles.
The integration point set, being a union of vertices and mi-edges of triangles, counts
67 nodes. Thus the resolution of the grid varies between 1/10 of the side length
(about 400 km) near the western boundary and 1/4 of the side length (about 1000
km) near the eastern one.

In this experiment, we take a square basin of characteristic length L = 4000 km.
We suppose that the depth of the ocean is composed of three layers of different
densities. The depth thickness for each layer is respectively equal to H; = 300m,
Hy; = 700m and H3 = 4000 m. The difference in the water density between layers is
taken so that the Rossby deformation radii of the baroclinic modes Ry = 1/v/A; are
about Ro =34 and R3 = 18 km.

The mean wind stress field applied to the upper layer of the ocean is approximated
by a steady zonal wind composed of two gyre antisymmetric patterns:

| . 2
Find = Fprind(y) = —m sin 72 : (42)

To calculate theoretical estimates of instantaneous Lyapunov exponents (Theo-
rem 5) we first have to find the critical points of the functional G(U) in (15). As was
noted, we can obtain them by solving the eigenvalue problem (19). The variational
formulation of this problem takes the form

(we, ) = (AP, 9)
() = (01 - At + 2 [ GDe), weeml®) @)

The approximation of this problem by the finite-element method can be written
as follows:

MOy, = —cOr
COuwy = (€@ + AMO 4 A K)o} (44)

where M and C are respectively the matrices of mass and rigidity (33), and K, ; =
JopidQ [, p; dQ . Hence the eigenvalue problem to be solved is of the form

(€@ + AM© — A, K)"1COMO) 1O g = i (45)

The eigenvalues v; are the critical points of G which we shall use.
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The norm ||9)||g> in the estimates (13) is given by
5 Hy - - = 0P
191132 = Z F(coojnzp,i dQ +c1L2/Q|V¢,§|dQ +c2L4/gA¢,3 +( By )2 dQ)

k=1

where H = H, + Hy + H; is the total depth of the ocean. Since the coefficients
co,C1,C2 are not known exactly, we choose an overestimate of this norm

_ it XK _ »
191 < <57 S He [ AdEa , (46)
k=1 :

where the constant ¢ is to be determined. We note that this norm is proportional to
the enstrophy of the solution.

For the problem described above, we calculate the eigenvalues of the operator S
and their theoretical estimates. We perform a number of computational experiments
with our model corresponding to different forcing magnitudes 7y and lateral friction
coefficients p.

The value of 79 was choosen from the range 1.6 x 10713...1.6 x 10712572, i.e.
the characteristic values of velocity of the flow given by the linear Sverdrup balance
U = 19/p are comprised between U = 0.8cm/s and U = 8cm/s. The lateral friction
coefficient g was choosen to avoid numerical instability which occurred due to the
concentration of variability of the model at grid scales. The parameters of each experi-
ment, i.e. the characteristic velocity values, which indicate the forcing magnitudes,
and lateral friction coefficients are shown in Table 1.

Table 1. Experiment parameters.

A

Number | U(<2) ‘ ,u(—@;) | Atheor (day™1) | Anum (day™1) | a(Atheors Anum ) |

1 0.8 200 154.5 0.88 0.71+£0.03 ~
2 0.8 400 54.5 0.80 0.75 +0.03
3 0.8 600 24.9 0.71 » 0.63 +0.04
4 2.0 500 24.5 1.29 0.79 £ 0.02
5 2.0 800 10.2 1.12 0.68 +0.03
6 4.0 600 11.2 1.79 0.75 £ 0.03
7 4.0 800 74 1.73 0.80 £0.02
8 4.0 1000 4.95 1.61 0.73 £0.03
9 6.0 1000 4.14 2.06 0.63 +£0.04
10 6.0 1500 2.01 1.81 0.66 + 0.04
11 8.0 1500 1.81 2.22 0.54 +0.04
12 8.0 2000 1.02 1.97 0.64 £0.04

The QG model in this experiment was integrated over 20 years from the zero
state. We suppose that after this period the spin-up phase is terminated and the
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solution of the model attains its attractor. After the spin-up phase, the model was
integrated over 100 years. We used this part of the trajectory as (z,y,t) to create
the operator S in (41) and to calculate instantaneous Lyapunov exponents of the
model as well as their estimates (13). From this trajectory we took 1000 samples
¥i(z,y) = ¥(z,y,t;) spaced by one month.

Altough Theorem 5 gives us only overestimates of the instantaneous Lyapunov
exponents, we shall compare their temporal variability with calculated instantaneous
exponents. This will provide us with a characteristic of the quality of these estimates.
The comparison of temporal variability helps us to avoid difficulties in the choice of
the exact value of the parameter ¢ in the expression (46). Since this constant does
not influence the variability of the norm, we can choose it arbitrarily. Here we use
c=25x10713,

As the characteristic of the behaviour of temporal variability of these two values,
we use the correlation coefficient

f (Atheor Atheor)(A'rLum - num)dt
\/fg (/\theor /\theor dt\/fg num"’ num)2 dt

where X = % fo Adt. In Table 1 we present the time mean values of calculated
exponents and their estimates, as well as their correlation coefficients a with 95%
confidence interval.

(47)

(Atheor ) num =

As can be noted, the correlation coefficients are always positive, and, for experi-
ments with relatively low forcing, they are even rather high. This indicates a good
matching of the temporal variability of instantaneous exponents and their estimates.

The plot of normalized values of exponents and estimates is shown in Fig. 1. As
you can see, estimates and exponents exhibit similar behaviour. The positions of local
maxima and minima of curves are close to each other.

To illustrate the variability of exponents and estimates we plot the scatter dia-
gram of their values Fig. 2. One can see that points on the scatter diagram form
a cloud around the line representing the proportionality of instantaneous exponents
and their estimates

)‘theor = AAnum + B

the coefficients A and B of this line are about A = 6.4 £ 0.3 and B = -3.7. Since
A is positive, we can state that, generally, a greater H? norm of 9 corresponds to
a less stable situation. The major part of points on this diagram are concentrated

in the vicinity of this line. The mean distance between the line and points is about
0.18.

In this paper, we have used the enstrophy of the solution as its H2-norm to obtain
the best correlation of the temporal variability of instantaneous exponents and their
estimates. Consequently, to estimate the QG model predictability at time t, we can
calculate the enstrophy of the solution at this time as the first approximation of
predictability estimates.
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Fig. 1. Temporal variability of exponents and their estimates.
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6. Conclusions

In this paper, we propose a priori estimates of instantaneous Lyapunov exponents of
a quasi-geostrophic multi-layer ocean model. The a priori estimates we obtained give
us not only a bound from below for each eigenvalue, but also a bound from above for
the number of negative eigenvalues. These estimates remain valid for a very small
coefficient of viscosity.

The temporal variability of these estimates demonstrates a rather high corre-
lation with variability of calculated exponents. Consequently, we can use them as
an easy calculable approximation of predictability estimates of the multi-layer quasi-
geostrophic ocean model.
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