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GLOBAL OPTIMIZATION USING AUTOMATIC
DIFFERENTIATION: APPLICATION TO
QUANTUM CHEMISTRY

MOHAMED MASMOUDI*, CHRISTINE MASSAT*
RoMmuaLD POTEAU**

‘We present a new optimization method and one of its applications in quantum
chemistry. The problem is to find the most stable configurations of sodium clus-
ters. We have to minimize a weighted sum of eigenvalues of the Hamiltonian
operator which corresponds to the energy of the molecules. According to the
Rellich theorem, the eigenvalues/eigenvectors are analytic when the matrix fol-
lows an analytic path. Using automatic differentiation, we compute higher-order
derivatives of the matrix. The eigenvalue/eigenvector derivatives are calculated
by solving several factorized linear systems. The higher-order derivative method
is used to obtain an explicit solution of the cost function (Taylor’s expansion).

This approach leads to a new global optimization algorithm whose idea
is as follows: if we apply the optimality condition to the approximated cost
function, we obtain a polynomial equation. We find its roots. The “best” zeros
are used to restart the algorithm with a new search direction. This algorithm
presents a natural way of parallelization: computation of Taylor’s expansion and
its minima in many directions can be performed independently.

This method applied to our chemical problem gives very promising results.
All the lowest energies of small sodium clusters have been found. This optimiza-
tion algorithm can also be applied in dynamics of mechanical structures.

1. Introduction

The Automatic Differentiation (AD) was introduced (Griewank, 1989; Speelpenning,
1980) in order to compute first- and second-order derivatives needed by optimization
algorithms. AD and the higher-order derivatives method can be used to obtain an ex-
plicit expression (Taylor’s expansion, Pade’s approximation, etc.) of the cost function
(Guillaume and Masmoudi, 1994; Masmoudi et al., 1995). This method was applied
to a shape optimization problem involving Maxwell equations yielding very promising
results.

The aim of this paper is to apply this method to an eigenvalue problem. We
first describe in Section 2 the higher-order derivative method and its application to
an eigenvalue problem. This method leads to the resolution of several linear systems.
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In Section 3 we give an efficient method to solve them. We describe the application
of AD to our problem in Section 4. This approach suggests a new global optimization
algorithm which we present in Section 5. This method is applied to a chemical problem
giving very satisfying results (Section 6).

2. Higher-Order Derivative Method and Its Application
to an Eigenvalue Problem

2.1. Higher-Order Derivative Method in the Linear Case

We first recall an application of the parametrization method (Guillaume and
Masmoudi, 1994; Masmoudi et al., 1995) to the linear system

H(u)Y, = B(u) (1)

depending on a parameter u € IR (shape, material properties, etc.).

We assume that H(u) is an invertible matrix and that the maps v — H(u) and
u — B(u) are regular (analytic).

We differentiate eqn. (1) with respect to u and obtain the following systems:

Hu)Y, =B (u)-H

(v) Y

........................ i
N

H Y™ = B0 () - 3 O HO () Y-

=1

where Ysz) denotes the N-th order derivative of Y, with respect to u (N > 0).

The higher-order derivatives of Y., are obtained by solving the linear systems (2).
The terms H™)(u) and B™)(u) (N > 0) appearing on the right-hand side of (2)
can be computed by AD. The derivatives of Y can be calculated efficiently applying
LU factorization of H. This method can also be generalized to non-linear problems.
The aim of this paper is to apply it to eigenvalue problems.

2.2. Differentiability of Eigenvalue with Respect to a Parameter
Let
{ H(v)g=Xg
g#0

. be an eigenvalue problem where H is a symmetric matrix which depends on a pa-
rameter v = (vy, ..., v) € RF (k> 0).
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We know that the map v € IR¥ — A(v) € IR is not differentiable with respect
tov (k> 1). In fact, let us consider e.g.

v v
H(Ul,vz) = ( vl 12) )
2 —U

It is easy to see that the eigenvalue

vy, v2) = y/vE +v2

is not differentiable (Fig. 1) at v =0 with respect to (vy,v2).

V3
AV(u))

AV, Vy)

Fig. 1. Eigenvalues of H.

We assume now that v depends analytically on a parameter u € IR. According
to the Rellich theorem (Kato, 1966), the map u -+ A(u) = A(v(u)) is analytic with
respect to wu.

From now on, we can talk about derivatives of eigenvalues/eigenvectors with
respect to a real parameter and characterize them.

2.3. Eigenvalue and Eigenvector Derivatives with Respect
to a Real Parameter

Let us denote by
A =diag(A1, ..., An)

the diagonal matrix of eigenvalues and let @ = (g1, ..., ¢.) be the corresponding
orthogonal matrix of eigenvectors. We have

H=QAQT
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For a given 1 < 4; < n, the couple (g;;, A;;) is the solution of the non-linear system

{ H(u) @i = Ay qiy (3)
g l* =1

where u is a real parameter.

Let us differentiate (3) with respect to u, calling 2’ the first derivative of z with
respect to u:

H(u) QZl = Ay Q;l = ’\;1 a4, — Hl(u) a4,
¢t g, =0
H - ’\i1 I —q;, q;l H' i,
-q; 0 X; 0
where I is the identity matrix.

Proposition 1. If ¢;; and X;, are of class CN (N >0), the N-th order derivatives
of g;, and A, with respect to the scalar u are solutions of the system

H")\il-[ —qi qz(lN) ___Nz_:l -_C;V(H(l) - Agz)I)Qz(IN_Z) _ H(N)Qil (4)
0

N i ) —1
—q}: 0 ’\51 ) i=1 ON—I(qO))qu('lN )

21

The recurrent approach is used to prove this proposition.

In the following section, we give an efficient method to solve the successive sys-
tems.

3. How to Solve the Linear Systems?

The successive systems to be solved in order to obtain the derivatives of ¢;; and A,
can be written in the same form

HU=B (5)
where
P H-M\ I —g e R(nHDx(n+1)
_qgl" 0
up \ . by
U= is the unknown vector (uv1 € R", u2 € R), and B = X stands
Uz 2

for the right-hand side vector of eqn. (4) (b, € R", b2 € R).
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Proposition 2. If );, is a single eigenvalue of H, then
o H is invertible;

o The solution of the linear system HU = B is given by

T

q; b .
, Ve =y, k#F G
u = Qu with A= Aiy
Vi, = _b2

up =—q- b
Proof. System (5) can be written as
(H =iy Duy —uzqi, =b (6a)
{ . (6)
—q;, u1 = by (6b)
Using the decomposition QTHQ = A, we obtain
H-) I=QA-xDNQ"
From (6a), we have
(A =X, Dv = QT (by + uag;,) : (7
where v = QT u;, v € R™. The i;-th equation of system (7) gives, using QTQ = I,
Ny = Aig sy, = (QT01)s, + u2(QT gy )iy
= Uy = —(QTbl),-1 = —ngl
The other equations give v, for 1 <k <n and k#4;1
Ak = i)ve = (@Tb1)x = gi by
We assume that );, is a single eigenvalue, hence we have

Ty
Vg = qr 01

= r - <k< L
= 1<k<n, k#14

We use eqn. (6b) in order to calculate v;,

T —
(Gb) = g u = by
T —
= ¢, Qu=-b
— U; = —by

Thus, we have proved that if A;, is a single eigenvalue, then the linear system (5)
has a unique solution, i.e. H is invertible. n
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Remarks.

e The analyticity of the map u — A(u) can be obtained as a consequence of the
implicit function theorem using the invertibility of H .

e In order to find the solution of system (5), we do not invert the matrix H . The
cost of this search is only the cost of a matrix-vector product.

The linear system is very easy to solve, but how to build its right-hand side? We give
the answer in the following section.

4. Application of the Automatic Differentiation
to an Eigenvalue Problem

The knowledge of higher-order derivatives of eigenvalues and eigenvectors of H with
respect to u requires computation of successive derivatives of the matrix H with
respect to u. In order to generate these derivatives, we use AD software as a black
box. This one uses operators’ overloading (redefinition of *, +, etc.), the technique
which is available in modern languages, e.g. C++, FORTRAN90, etc.

AD permits differentiation of a function defined by its program (in Fortran or C).
The resultant derivative is exact whereas the derivative obtained by finite differences
is not.

It follows from the classic results of Strassen (1990) and Morgenstern (1985) that
if a differentiable function can be evaluated using m operations, its derivative can be
computed in only 5m operations.

How to use the AD software? Let

g: R — RM

uw — v=g(u)

be a differentiable function defined by a program named prog.c which computes v =
g(u). To perform AD, we have just to modify the declarative part of the program
prog.c. We define

o the independent variables (a subset of u components),
e the dependent variables (a subset of v components),
o the active section of the program, i.e. its part to differentiate.

Using AD, we create a new program PROG-DIFF.c which provides successive deriva-
tives of the function g for an arbitrary order. The AD process can be represented by
the scheme shown in Fig. 2. In the case considered, we used the AD software called
Adogen (Rochette, 1994).
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r — | prog | — g(2)
prog.c — | AD | — PROG - DIFFc
r — | derive | — g(z),¢'(2),...

Fig. 2. The AD scheme.

5. Global Optimization Algorithm

In the following, we shall minimize the energy of sodium clusters in quantum chemi-
stry. The goal of this application is to find the most stable configurations of the
molecule. The energy to be minimized is a function of eigenvalues. We explain this
chemical problem in Section 6. For this reason, we are interested in the solution of
the following generic problem:

How to find the “lowest” minima of an analytic cost function

J:R*" — R 0

r — J&)
Various minimization algorithms are used in quantum chemistry (Liotard, 1992):

1. Local algorithms such as the conjugate gradient one (Preuss et al., 1986). They
lead to the nearest minimum of the initial configuration. This means that the
chemist must have good intuition of the most stable geometry of the molecule.

2. Global algorithms which do not require a priori knowledge of the shape of the
most stable geometry. The most popular method used in quantum chemistry
software is the simulated annealing algorithm (Kirkpatrick et al., 1983).

We introduce a new global optimization method which is detailed in what follows.
Given an initial guess zy and a search direction dy, we compute Taylor’s expansion
of the cost function

](t> = J(l‘o + tdO)a te [tminy tmax]

The approximated optimality condition is a polynomial equation. Using an improved
Weierstrass method (Bellido, 1992), we compute all the roots of this equation and we
retain the best ones zy,...,Tm.

From each selected point, we start again the algorithm computing Taylor’s
expansion in a new direction. This direction is e.g. the conjugate gradient one al-
lowing for local convergence of the process.
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This method is a recursive algorithm with exponential increase of the memory
required. For this reason, we keep in the memory at most p points. Before introducing
a new point, we discard another point using the following rules:

o If the new point is too close to an existing one, we discard the latter;
e Otherwise, we discard a point with high level of energy.

Let us denote by J = 3°7_, J(x;) the global energy of the population zy, ...,
We stop our process if J cannot be improved after a given number of iterations.

P

This algorithm gives a set of local minima corresponding to stable configurations
of clusters (this set may include the global solution). Those minima are obtained with
good accuracy owing to the local convergence of the conjugate gradient method.

The proposed algorithm suggests a natural way of parallelization: computations
of Taylor’s expansion and its minima in many directions can be performed indepen-
dently of one another.

6. Application to Quantum Chemistry

Minimization algorithms are important tools in quantum chemistry, mainly in the
study of structural properties of molecules. Before introducing some technical aspects
related to the function we want to minimize, it seems necessary to review briefly
the usual vocabulary and the associated physical background of quantum chemists
(Atkins, 1983; Karplus and Porter, 1970; Szabo and Ostlund, 1982).

In what follows, we always assume that the nuclei have fixed positions, i.e. we
work with the so-called Born-Oppenheimer approximation. Information about the
electronic structure and chemical bonding is obtained through the analysis of a func-
tion called the wavefunction and usually written as v¥(ry,7s,...,7,), where r; repre-
sents the coordinates of the i-th electron. The wavefunction must be antisymmetric,
because electrons are fermions (this is known as the Pauli principle), and it is usually
normalized:

/ Y (r, 72, T)Y(T1, T2, . L, TR)dmdry L dry, = / [ dridry .. .dr, =1
R3n R3™

The quantity |9|* is the density probability that the n electrons are respectively
localized at the coordinates rq,...,7,. The wavefunction 1 which describes the
electronic system and its associated electronic energy E are solutions of the time-
independent Schrédinger equation Hy = Ei. The quantity H is the Hamiltonian
operator: H=T+ V, where T is the kinetic operator and V includes the nuclei-
electrons and electron-electron interactions.

Many methods have been developed for finding the solutions to the Schrédinger
equation. They are based upon approximations that are more or less justified physi-
cally. The usual methods consist in searching the solutions of the Schrédinger equa-
tion using a finite basis set of functions (). These functions are localized on N
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atoms. They are called atomic wavefunctions or atomic orbitals. Thus, the electronic
wavefunction v is developed upon this basis set of size N:

N
b= aX
p=1

The Hamiltonian is a matrix and solving the Schrdédinger equation consists in
the diagonalization of the Hamiltonian operator in the space spanned by the atomic
orbitals. Because we work in a finite basis set, the Hamiltonian operator h is an
approximation to the exact operator H. The energies and wavefunctions are the
eigenvalues and eigenvectors of the Hamiltonian operator h respectively. Here h is
a hermitian operator (self-adjoint), thus the eigenvalues are real

The N eigenvectors v; are called molecular orbitals. Their analysis leads to
the understanding of the chemical bond between atoms. The N eigenvalues ¢; are
the energies of the molecular orbitals. The electrons occupy the lowest energy levels:
two electrons per orbital, only one in the last occupied orbital for an odd number
of electrons. The total electronic energy E of the molecule is the sum of the lowest
eigenvalues €;:

E= z NiEq, n; = 1 or 2

i€occupied

A minimum of the energy E corresponds to a stable structure of the molecule. The
molecule can adopt many geometries, but the most stable of them will correspond to
the lowest minimum of the energy.

The reliability of the minimization method will be checked using the Hamiltonian
operator. In particular, we shall study alkali clusters (Poteau and Spiegelmann, 1992;
Spiegelmann and Poteau, 1995). This is an improvement of one of the simplest
theory in quantum chemistry, namely the Hiickel method (Heilbronner and Bock,
1976). Clusters of atoms have an intermediate size between the atom and the solid
state, and they may reveal specific properties. They were the subject of numerous
studies, both experimental and theoretical (Bonacic-Koutecky et al., 1991; Haberland,
1987; Koutecky and Fantucci, 1986). Alkali clusters are usually called prototypes of
metallic clusters. From a theoretical point of view, they are quite interesting because
their study requires less computational efforts than other metallic clusters, such as
transition metal ones. As a matter of fact, only one atomic orbital per atom is
sufficient for a good description of the metallic bond between two alkali atoms. Thus,
the size of the matrix to be diagonalized is equal to the number of atoms. The
elements of the matrix are dependent on the distance between atoms. The diagonal
elements are the sum of repulsive functions between two atoms:

M=

hii = )  pss(Rix)
k=1
ki
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The off-diagonal terms are interaction functions called transfer integrals between two
atoms i and j:

N

— tso(Rik)tsa(Rj ) Rik.R‘k

hij = teo(Rij) — kZl AL RikR;k
k#i,j

where R;; is the distance between atoms i and j, and AE is a constant.

The Hamiltonian elements are combinations of three distance-dependent func-
tions pss, tss and t,,. These functions are constructed to reproduce some known
energetic properties of sodium clusters. For practical convenience linked to the n-th
order differentiation, we give them the following analytic form:

pss(R) = ae R L peBR
tss(R) = D, [e=c(R—Re) _ 2 e~d(R-R.)]

where t,, is the same as t,,. The parameters of these functions are given in Table 1.
Moreover, in the case of sodium, AE is taken as 0.077307.

Tab. 1. Values of different parameters.

tss

tsd

Tss

D. = —-.000262033
R. = 14.920840175
c = 0.662022408
d = 0.599083352

D. = —.001002885
R. = 13.149411127
¢ = 0.540246063
d = 0.464888416

a = 1.286228004
a = 1.327600652

b = 19486.594912775
B = 4.430431756

The problem is now formulated and we can use the global optimization algorithm.
We recall that the dimension of the problem is n = 3N. It was shown by the use of
graph theory that, for ten atoms, there are at most eleven million of stable structures.
Moreover, the minima of the hypersurface are separated only by an infinitesimal
amount of energy. We started to check our method within the range of size 2-20.
The method was the same as used in Section 5 where we kept in each step only one
point, namely the best one. This point was supposed to be the global minimum.

For three atoms, the initial structure is linear. The global minimum was found
with the use of our algorithm. It is an isosceles triangle (Fig. 3). For four atoms,
we start with a square. After the use of the algorithm, we find a rhomb, which is
the most stable configuration (Fig. 4). Our method gives good results for five atoms.
The global minimum corresponds to a plane structure (Fig. 5). For seven atoms, we
observe an important decrease in energy. In the most stable configuration, five atoms
are on the same plane (Fig. 6).
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E =2.6029 E = -1.083082

Fig. 3. The initial and the best configurations for Nag. We give the
corresponding energies (in eV).

E=-1.16 ' E = —1.830454

Fig. 4. The initial and the best configurations for Nas. We give the
corresponding energies (in eV).

E =-0.17016 E = -2.370973

Fig. 5. The initial and the best configurations for Nas. We give the
corresponding energies (in eV).
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E =2.577751 E = —-3.791287

Fig. 6. The initjal and the best configurations for Na;. We give the
corresponding energies (in eV).

7. Conclusion

This paper describes a new global optimization method based on Taylor’s expansion
of the cost function. Those higher-order derivatives are calculated by automatic
differentiation. The application of this algorithm in quantum chemistry gives very
promising results. All the lowest energies of small sodium clusters have been found.

Our next aim is to use the natural parallelization of the algorithm and to study
larger sodium clusters.

This method can be applied in structural dynamics optimization, but the domain
of its applications is by far larger than eigenvalue problems.
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