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DOMAIN OPTIMIZATION PROBLEMS
FOR PARABOLIC CONTROL SYSTEMS

Samira EL YACOUBI¥, JAN SOKOLOWSKI**

In the paper, a class of shape optimization problems associated with the optimal
location of distributed controls for parabolic systems is considered. The exis-
tence of solutions to optimization problems is established using a regularization
technique. The first-order optimality conditions are obtained by an application
of the material-derivative method. A relaxation method is proposed and the
resulting parametric optimization problems are analysed.

1. Introduction

In the paper, we consider a class of shape optimization problems associated with
the optimal location of controls for parabolic systems. The shape calculus is used in
order to establish the first-order necessary optimality conditions for the optimization
problem. Since the shape functional I(w) defined in Section 3 actually depends on
the characteristic function y,, the relaxed optimization problems are introduced in
Section 5 in a standard way.

The optimal location of controls is considered in (El Yacoubi, 1990; El Jay and
Pritchard, 1988; Zolesio, 1984). The related shape optimization problems can be
found in (Bendsoe and Sokolowski, 1995a; 1995b; Hoffmann and Sokotowski; 1991,
1994). The differential stability of solutions to the parametric optimization problems
is considered in (Rao and Sokolowski, 1991; Sokotowski, 1981).

We refer the reader to (Piekarski, 1995) and the forthcoming paper by Piekarski
and Sokolowski for results on the optimal location of controls for elastic plate models.

The standard notation is used throughout the paper.

2. Domain Optimization Problem

Let D be a bounded open subset of RY, N = 1,2 or 3, with smooth boundary
0D. We denote by (D) the family of all open subsets of D such that w € Q(D) is
(Lebesgue) mesurable and the volume of w is prescribed, |w| = a; « is given.
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Consider a diffusion system defined in D and described by the following equa-
tions:

g—‘z = Ay +u(z,t)xo in Q@=(0,T)xD (1)
ys =0 in £ =08Dx(0,T) 2)
y(0)=0 in D (3)

with w fixed in Q(D). Here x, denotes the characteristic function of the sub-
set w C D and (0,7) is the time interval. From now on, we assume that
A€ L(H}(D); H}(D)) is an elliptic operator of the second order.

Let us denote by y(u,w) the solution to eqns. (1)—(3), where v € L*(Q) =
L%*(0,T; L*(D)), u(z,t) = (ux.) (z,t) a.e.in Q, and introduce the cost functional
é
J(u,w) = 5”“”%2(0,T;L2(w)) + ly(u,w; T) = yallZ2(py (4)

with yq given in L%(D), § > 0. Set
Je(u,w) = J(u,w) + ePp(w) : (5)

where
Pp(w) = sup { [ v sdz1 6 € DD, RV mac (e =1} (6)

is the perimeter of w in D and € > 0 is a constant.

Let us formulate the minimization problem as follows:
min{J(u,w)|u€Uad, wEC’)ad} (7)

where the set of admissible controls U,q C L?(0,T; L%(w)) is assumed to be convex
and closed (an example of such a set is given in Section 4). For a given set w we shall
use the same symbol u(z,t) to denote an admissible control v € L?(0,T; L*(w)) and
the function wy. € L?(0,T; L?(D)). The family of admissible domains O.q C Q(D)
satisfies the following assumption:

For any sequence wy € O,4, k = 1,2,..., there exists a subset @ € O,q9 and a
subsequence of the sequence k = 1,2,..., still denoted by k =1,2,..., such that

Xwr = Xo (8)

weakly-(*) in L*(D) as k — oo.

The above condition constitutes a compactness assumption on the family ©,4 of
admissible domains. In particular, if there exists a constant M such that Pp(w) < M
for any w € O,q, then the compactness assumption is satisfied for @,q. We refer
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the reader to (Sokolowski and Zolesio, 1992) for details on regularization of shape
optimization problems using the perimeter.

We need the compactness assumption on the family O.q of admissible domains
to assure the existence of a solution to problem (7). For ¢ > 0 we consider the
regularized minimization problem

min {Je(u,w)| € Ung, w€ YD), Ppw) < oo} (9)

The optimization problem is considered as a two-level minimization one. First, for a
given domain w C D, the following optimal control problem is solved and a unique
optimal control u* = x,u* is determined such that

* 6 * *
T, w) = S 10,12y + ("0 T) = yall 2oy < J(uw,w)  (10)

for all u € U,q. The optimal control is denoted by u* = u(w) and the optimal value
of the cost functional by I(w) = J(u*,w) = J(u(w),w).

Then, the minimization of the resulting shape functional is performed with re-
spect to w,

min {I(w) + ePp(w)| w € (D), Pp(w) < oo} (11)

3. Optimality System

Let us consider the control problem (7) for a given set w. We assume for simplicity
that & = 2. The unique optimal control u* € U,q is given by the following non-linear
relation (Lions, 1968):

u* = P(-pxw) (12)

where P denotes the metric projection in L%*(wx (0,7')) onto the set U,y C
L*(wx (0,T)) of admissible controls. The adjoint state p is given by the unique
solution of the following parabolic equation

op . .
5 = A'p in Q (13)
ps =0 on X (14)

p(T) = y(T) —ya in D (15)
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Therefore the optimality system for the optimal control problem under consideration
can be rewritten as the system of two equations

Find (y,p) such that
%

5 = WHPlpx)  in @ (16)
ys =0 on % (17)
y(0) =0 in D (18)
—% = A'p in Q (19)
pe =0 on % (20)
p(T) = y(T) ~ ya in D (21)

The optimal value of the cost functional takes the form

I(w) = I1P(=xwP)|Z2(0,7,12(0)) + 19(T) = vall7z(py

Lemma 1. The functional I(w) is sequentially lower-semicontinuous with respect to
the weak-(x) convergence in L*°(D) of characteristic functions.

In view of the non-linear term P(—x.,p) in the optimal value of the cost func-
tional, we cannot expect in general that a stronger result can be obtained, i.e. that
the cost functional is sequentially lower-semicontinuous with respect to the weak-(x)
convergence in L*°(D). In Lemma 1 we assume that the weak-(*) limit of a sequence
of characteristic functions is a characteristic function.

For the particular case of unconstrained control problems, we have a stronger
result, i.e. the optimal value I(w) of the cost functional is sequentially lower-
semicontinuous with respect to the weak-(*) convergence in L*(D). In such a case
we introduce a relaxation of the shape optimization problem.

We consider the shape differentiability of the shape functional I(w).

4. Shape Sensitivity Analysis

In the present paper, the method of sensitivity analysis of optimal control problems
introduced in (Sokotowski, 1987; 1988) is used. The material-derivative method is
used for the purposes of shape sensitivity analysis. We refer the reader to (Sokolowski
and Zolesio, 1992) for a detailed description of the material-derivative method in shape
optimization.

Using the material-derivative method, a one-parameter family of domains
{ws}C D, s €]0,6), is defined as follows.
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The quantity w, = Te(w) for s € [0,8) where T, = Ty(V) : RY — RY,

N = 1,2,3, is a smooth transformation. It is given by a sufficiently smooth
T
vector field V(.,-) with V{(s,z) = a@s o T7'(z). We assume that V(-,-) €

C1([0,8); C*(RN;RY)) and write dws = T,(dw). For our applications, we assume
that any admissible vector field V' is compactly supported in D, and divV =0 in D.

Let us consider the shape functional
I (w) = min {Je(u,w)] u € Uad(w)}
parametrized by a real variable s € [0, §)

F(s) = min { J(s,0,)] s € Una(ws) b = min {Jusla0,2,5(0y)

+y(us,ws; T) = yallZ2(py + €Pp(ws)| us € Uad}

Here the set of admissible controls U,q(ws) depends on the parameter s, because
it depends on the set ws;. We show that the function s — F(s) is differentiable at
07. To this end, using the transformation 7, in a standard way, we can rewrite the
minimization problem in a fixed domain, i.e. with a fixed set w, and we obtain

F(s) = min {Js,s(u,w)| e Uad(w)} = min {117(5)%u||§2(0,T;L2(w))

Hv()E (a3 T) = va) [0y + €Pp ()] w € Vaa (@)} (22)

where v(s) = det DT,, DT, denotes the Jacobian of the transformation 7 : RN —
RY. We write *DT, for the transpose of DT, and DT, ! for the inverse.

Let
H(us,ws) = luslZao,zir2 () + 19(us,ws; T) = yallZ2(p)
G(w,w,) = [y(s) ullfago,ripacuy) + 17(8)% (s, T) = ) 32
‘We have
H{us,ws) = Q(u’,w,s), v=us0T,, w,=Ts(w), s€[0,8)
and

F(s) = min {’H(us,ws) + €Pp(ws)| us € Uad(ws)}

= min {Q(u,w, s)+ ePp{w)| v € Uad(w)}

where Pp(ws) = Pp (Ts(w)) = P§(w).
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In particular,

I{w;) = min {’H(vs,ws)] Vs € Uad(ws)} = H(us,ws)
= min {g(v,w,s)I vE Uad(w)} =G(u’,w,s)
Therefore, for directional differentiability of the function s — I{w,) at s = 0T,
it is suflicient to show, for the problem under consideration, the directional differen-

tiability of the function s +— G(u,w,s) for fixed (u,w).

Lemma 2. Assume for simplicity that Ay = Ay. The function G(u,w,-) is differen-
tiable at 0. The derivative is given by the following formula:

T T
asg(u,w,o)://|u|2divV(0)dmdt+// (w0 T) — ya|div V(0) dz dt
0 Jw 0JD

T
+/0/Dz](T)(y(u,w;T)—yd)dxdt

where
%7% = Ay —divV(O)% + A'y + u(z,t)x,divV(0) in Q (23)
gz = 0 on ¥ (24)
i) = 0 mbo ey

and, in the case of Ay = Ay,
A'z = div ({divV(O)I —*DV(0) - DV(O)} : Vz)
The proof of Lemma 2 is given below.
Remark 1. We show that we cannot directly differentiate the optimality system

(16)-(21) in order to obtain the Eulerian semiderivative dI(w;V) of the optimal-
value functional I(w).

Assume that the metric projection P is differentiable at —p*y,,, where p* de-
notes the solution to (19)-(21), and denote by P’ its differential. Then the Eulerian
semiderivative dI(w;V) is formally given by the following system:

H{w;V) = 2/ / w)(z, t)p' (w; V)(z,t) dz dt

/ / w)(z, )PV - ndl dt
Ow

12 /D (1" @)@ T) - ya)y' (@; V)(z, ) da (26)



Domain optimization problems for parabolic control systems 283

where the shape derivatives y'(w; V), p'(w; V) satisfy formally the following parabolic
equations: :

Y = AP el 0Q (27)
yIIE =0 onX (28)
y'(0) = 0 in D (29)
_%_I;' = A*p in Q (30)
Pls =0 on X (31)
P(T) = y'(T) in D (32)

We denote (Piekarski, 1995) by x/, € H~}(D) the distribution of the form
(X0 ) = /a oV (z,0) - n(z) dl(z)

Unfortunately, the right-hand side of the equation for %’ is not in general well-defined.
On the other hand, we can only expect the so-called conical differentiability of the
metric projection P.

The related results on the conical differentiability of the metric projection can
be found e.g. in (Sokolowski, 1985). A simple example of the set U,q for which the
assumption on the conical differentiability of the metric projection P is satisfied is
the set

Uwd = {v € L*(0,T; L*(w))| 0 < v(z,t) <1 aee. in w}

In this case, the mapping P’ evaluated at u* € U,q is given as the metric projection
onto the cone

S= {v € L*(0,T; L*(w))| v(z,t) > 0 a.e. on {(z,t)| u*(z,t) =0,z € w},
T
v(z,t) <0 a.e. on {(m,t)] u(z,t) =1,z € w}, / / v(u* + p)dzdt = O}
0 Jw
Proof of Lemma 2. We have

T
Gluyw,s) = / / ful?(s) dz dt + /D (ye(, 5 T) — ya)* 7(s) da

where y, is a unique solution of the following parabolic equation:

1(6)%e = div(y(s)DT N DTS Vy,) +(shuxe in Q
¥ = 0 on %
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Here we assume Ay = Ay. The result is obtained by an application of the formulae
for material derivatives of solutions to parabolic equations given in (Sokotowski and
Zolesio, 1992). u

Using the above results we obtain the necessary optimality conditions for the
shape optimization problems under consideration. We assume that the volume of an
admissible domain w'is prescribed, |w| = . We also assume that € > 0.

Theorem 1. There ezists an optimal domain w which minimizes the shape functional

JE('):
Je(w) = I(w) + ePp(w) (33)

subject to |w| = a.

Furthermore, if the optimal domain w is sufficiently regular, then for any vector
field V' with compact support in D and such that divV =0 it follows that

dJe(w; V) = dI(w; V) + e/ k(z)V(0,z) - n(z)dl(z) =0 (34)
dw
where & denotes the tangential divergence of the normal vector field n, K = —2H,

‘H stands for the mean curvature of Ow. The shape derivative dI (w; V) takes the
following form:

T
dl(w; V) = //|u |2div V/( )d:vdt+/ / ly(u*,w; T) — yq|?div V(0) dz dt

/ / u*,w;T) — yq)dz dt

where
% = Az —divV (0 )a"ét ) Ay) + utxudivV(0)  inQ (35)
z2g =0 on¥ (36)
z(0) = 0 inD (37)

Here we assume for simplicity that Ay = Ay.

5. Parametric Optimization—Relaxation of Shape
Optimization Problems

A parametric optimization problem is introduced. It is constructed in the same way
as the shape optimization problem in Section 2. The only difference is that the
characteristic function x,, is replaced by an admissible function from a convex subset
in L*(D), i.e. the non-convex set of admissible characteristic functions is replaced
by its convex hull in L*®(D).
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Let us consider unconstrained control problems, and replace the characteristic
function y, by a function 7(z),z € D, within the admissible set

ta={ner=D)o<n@ <1, [

A n(z)dz = a}

Consider the problem of minimization with respect to 7 of the optimal value of
the cost functional for the control problem, i.e.

min h(n) = min min j(u,7n) (38)
n n u

where u* = u(n) denotes the unique optimal control #* such that u* = nu*,

i(u,m) = llmullFagy + ly(w,m T) = yall22(p) (39)
h(n) = llnu*l32(q) + ly(u*,m: T) — yall7(p) (40)
Oy .
5 = Av+n@u(zt) inQ (41)
yz =0 on X (42)
y(0) =0 : in D (43)

In particular, we have I(w) = h(x,,) for any characteristic function yx, € Uaq, and
therefore the problem under consideration is a relaxation of the shape optimization
problem defined in Section 2.

Using the optimality system for the unconstrained control problem, it follows
that

h(n) = lnp*lZ2(q) + I9*(T) = yallZz(p) (44)
O e . .
5 = AT - in Q (45)
Yy =0 on X (46)
y*(0) = 0 in D (47)
&/ A ,
o = A*p in @ (48)
pr =0 on X (49)
p(T) =y (T)-va in D (50)

Lemma 3. The functional h(n) is sequentially lower-semicontinuous with respect to
the weak-(*) convergence in L (D).
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Proof. For a given sequence nr € U,q such that

e — 1 weakly-(*x) in L*°(D)

we write
h(ne) = lmepellZe(gy + lye(T) = yallzz(py (51)
o .
% = Ayx — Peh in @ (52)
t
yr = 0 on X (53)
ye(0) =0 in D (54)
apk A% .
_W = A Pk n Q (55)
pr =0 on ¥ (56)
pe(T) = ye(T) — va in D (57)
Under our assumptions,
lpellgzag) £ C, llurllazag) < C

and therefore there exist elements y,p € H*'(Q) such that, for subsequences, still
denoted by Yk, Pk, NPk, it follows that

yr — y weakly in H21(Q)
pr — p weakly in H*(Q)
Consequently, by the imbedding theorem,

yr — y strongly in L™ (0, T; L2(D))

pr — p strongly in L2(Q)

Hence
nePr — Mp weakly in L?(Q)
yk(T) — y(T) strongly in L*(D)
This completes the proof of the lemma. ]

Theorem 2. There exists a solution to the parametric optimization problem

h(n*) = min {h(n)] 1 € Usa } (58)
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which satisfies the following necessary optimality conditions:

dh(n*;v—n") >0 forall v € Uaq

where
dh(n;v) = (np*,v;v* + np’(v)) . (y*(T) - yd,y’(v;T))Lz(D)
WO o) ) i Q (59)
y'(v) =0 on ¥ (60)
y'(v)(0) = 0 in D (61)
S0 g in Q (62)
Plv) =0 on % (63)
P')(T) = y'(w)(T) in D (64)

It is an interesting question when the parametric optimization problem admits a
solution in the form of the characteristic function x.. From the necessary optimality
conditions formulated in Theorem 2 it follows that the optimal solution #* € U,g
is given in the form 7* = Py(¢p) of the metric projection onto the set of admissible
parameters:

/D [n*(z) - ¢(z)] [v(a:) - n*(z)]'z[)(m) dz >0 Vo €Ung
where

T
(z) = / Ip* (2, £) dt

/D¢(:U)v(z)1/)(w) dz = /;) (/(;Tp*(:c,t)p’(v;z,t) dt) dz

+ [ @09 - va@) T, 2)da
Here we assume that the function %(z) is strictly positive. Therefore, the necessary
condition to have
7"1l-7*)=0 ae in D
is that
o(z) ¢ (0,1) a.e. in D

However, the element ¢(z) depends on the unknown optimal design n* € L*°(D).
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6. Conclusion

In the paper, a class of shape optimization problems is considered. In our opinion,
an interesting question, is the investigation whether relaxed problems can be used for
numerical solution to the optimal location of controls. In addition to that, let us note
that in relaxed problems the control constraints are not directly present.
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