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A FULL-STRESS TECHNIQUE FOR STRUCTURAL
SHAPE OPTIMIZATION!

Jost HERSKOVITS*, GILBERTO P. DIAS*
CRISTOVAO M. MOTA SOARES**

A technique for shape optimization based on a generalization of the Full-Stress
Design approach is presented. Full-stress procedures for trusses design are based
on the assumption that in an optimal structure each member is subjected to its
allowable stress under at least one loading condition. We extend this criterion to
shape optimization by assuming that a good shape design is obtained when the
boundary is subjected to its allowable stress under at least one of the load cases.
Based on this criterion, we present a procedure for plane structures, that, at the
same time, avoids stress concentration in many parts of the contour caused by
abrupt changes in the geometry and reduces the amount of structural material.
Four illustrative test cases are solved and compared with the published results
obtained with alternative models. In all the cases, good solutions are obtained
in a very efficient way.

1. Introduction

The traditional technique for shape design is based on an optimization model that
minimizes the structural weight under response constraints, namely displacements,
stress, eigenvalue and technological limitations. One of the pioneering works using
modern structural optimization is due to Zienkiewicz and Campbell (1973), where
a discrete finite-element model was employed, with nodal points as design variables.
The authors evaluated sensitivities of response and employed sequential linear pro-
gramming. Literature surveys describing previous work can be found e.g. in (Benett
and Botkin, 1985; Braibant and Fleury, 1984; Dems and Mréz, 1984; Ding, 1986;
Haftka and Grandhi, 1986; Haug, 1981; Haug and Céa, 1981; Haug et al., 1986;
Kristensen and Madsen, 1976; Morris, 1982). Recent overviews and related works
can be found in (Anido et al., 1991; Arora, 1995; Dems and Mréz, 1993; Haftka and
Adelman, 1989; Herskovits, 1995a; Hinton and Sienz, 1994; Olhoff and Lund, 1995;
Rasmussen, 1991; Rasmussen et al., 1992).
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The traditional approach requires an iterative procedure, based on a
mathematical-programming algorithm, that needs the evaluation of the functions
involved, constraints and their respective derivatives. These can be obtained ana-
lytically, semianalytically and by global finite differences (Arora, 1995; Olhoff and
Lund, 1995).

The objective of this paper is to establish a full-stress criterion for shape opti-
mization and to develop a design technique based on it. A fully stressed truss is such
that each member is subjected to its allowable stress under at least one loading condi-
tion (Bartholomew and Morris, 1976; Haftka and Gurdal, 1992; Kirsch, 1993; Morris,
1982). We extend this definition to shape optimization by assuming that a solid is
fully stressed when the points on the boundary are subjected to its allowable stress
under at least one of the load cases. Without proving that such a solid exists, it seems
reasonable to suppose that a solid shape is better as the stress distribution becomes
closer to a fully stressed one. Based on these ideas, a target stress is defined and the
shape with a stress distribution on the boundary closest to the target is obtained.
This can be carried out by minimizing the sum of the squared differences between the
equivalent stresses at points on the boundary and the target stress, which should not
be greater than a specified allowable stress.

In this paper, two-dimensional problems are considered with domain given by a
closed geometric shape in IR?. To get a smooth boundary, the geometry is defined by
B-spline curves (Mortenson, 1985; Plastock and Kalley, 1986). The design variables
will give the position of the control points that determine the B-spline curves. To solve
the unconstrained minimization problem included in the present model, a globally
convergent Gauss-Newton algorithm is proposed.

To illustrate the validity of the model, standard test problems are optimized. In
these cases, we obtain the sensitivities of the stresses with respect to the shape design
variables by finite differences.

2. A Full-Stress Model for Shape Optimization

Let us consider now elastic solids submitted to one or more static loadings. In most
cases, the equivalent stresses are maximum at points on the boundary of the solid,
or near the boundary. Then, in general, there is no stress concentration if the stress
distribution on the boundary is smooth. On the other hand, if the stress on the
boundary is low, we can reduce the amount of material by moving the boundary
inwards. Hence, it can be deduced that we have a “good shape” when the boundary
is subjected to the allowable stress, at least under one of the load cases. Based on
these ideas, we define the following full-stress criterion.

Definition 1. An elastic solid submitted to several load cases is fully stressed if
the stress distribution at the points on the boundary is allowable and equal to the
maximum allowable stress at least for one of the load cases.
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2.1. Full-Stress Design Model

Let us consider a 2D solid in a domain €, subjected to p load cases. We introduce
the Full-Stress Design Model for shape optimization by the following procedures:

1) Define sections of the boundary to be optimized, called ‘moving sections’ and
denoted by 09, i € Kj. The sections that remain fixed are 0Q;, i € Kp,
(Fig. 1).

2) Define a set of m ‘test points’ in the moving sections. The stress will be evaluated
at these points.

3) Define a parametrization (or discretization) of the moving sections:

o0, = BQI(I), T € Rn, 1€ Ky

04

0% 0Q,

i=1and3 € Ky , I ‘

i=2and

'=2and4 € Ky TEST POINTS

Fig. 1. Moving sections and test points.
4) Find the shape design that minimizes the function
1 j _\2 :
F@)=Y 5 (s (J@) -), i=1....p (1)

- j

=1

where @ is the target stress at the ¢-th test point and Jf is the Von Mises stress
at the i-th test point due to the load case j.

In this way, if a zero value is obtained for F, then the present Full-Stress Cri-
terion is strictly satisfied. This model has the advantage of being solved as an un-
constrained optimization problem. Very quick convergence is obtained with Gauss-
Newton method (Dennis and Schnabel, 1983), that requires only first derivatives.
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2.2. Discrete Model of the Geometry

The moving contours will be represented by B-spline functions (Mortenson, 1985;
Plastock and Kalley, 1986). In this way, smooth shapes are obtained avoiding singu-
larities in structural analysis. Each moving contour is determined by a set of points,
called wvertices or control points, Py, Ps,...,P,, (Fig. 2). These points form a base,
said to be the control polygon, tangent to the corresponding B-spline curve. The
quantities X; = (X1;, X2:) are the coordinates of P;.

P

A B - Spline

Pg.--- P3 Control points

Fig. 2. Discrete model of the geometry.

In this paper, the control points are determined by the design variables. Given an
initial configuration, at each control point P;, the user defines a direction of movement
d; = (di1, di2), such that ||d|| = 1. The design variables x; determine the steps of the
control points along the direction of movement. Then, if X? are the initial control
points’ coordinates, we have

Xi(z) = X2 + z; x d;, 1=1,2,...,n
as shown in Fig. 2.

At each iteration, given new design variables, the corresponding control points’
coordinates are obtained. For this new shape, a finite-element mesh is generated,
using the adaptive mesh generator GAMAT?2 (Guimaries and Feijéo, 1990).

3. Globally Convergent Gauss-Newton Algorithm

It should be noticed that F(z) introduced in (1) is not smooth, since the gradient is
not defined when the maximum equivalent stress at a test point is obtained-simulta-
neously for more than one of the loadings. Since the objective of the present paper is
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to obtain a simple and efficient method, F(z) will be minimized by means of smooth
optimization techniques, yielding a quick and satisfactory design.

Taking
R;(z) = sup (of (z)) - 57)

J

we have
F(z) = 5R{(2)R(z)
Then
VF(z) = R{(z)VR(z)
and
VF(z) = VR(5)VR(z) + B(z)
where

= Y Ri(z)V’Ri(z)
i=1
The Newton method can be employed to minimize F'(z), but it requires calcu-
lation of V2F(z) at each iteration and VZR;(z) is very hard to compute. In the
Gauss-Newton method, an approximation of V2F(z) is obtained by removing B(z).
Note that B(z) =0 when R(z) = 0, i.e. if the stress distribution on the boundary is
equal to the target stress. Then the Gauss-Newton iteration is defined as follows:

o = gk [VRt(:Ek)VR(zk)] T YRz R(a*)

In (Dennis and Schnabel, 1983) it is proved that, in the case when R(z) =0 in
the solution, the Gauss-Newton method has a quadratic rate of convergence, i.e.

[[(z*+! — 2]

ll(e* — z*)|I?

where z* minimizes F(z). It seems reasonable to assume that the convergence is
nearly quadratic when R(z*) is small.

<f <

In the proposed algorithm, we define the search direction as
dk — l‘k+1 _ l‘k

Since VR!(z*) is a full-rank matrix, VR!(z¥)VR(z*) is positive definite. If we
consider

d*'VF(z*) = d** VR (z*)R(z*)
then we conclude that

HYF(zh) = —dF [VR’(:E"")VR(:E’“)] &t <0
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which proves that d* is a descent direction of the objective function if z is not a
local minimum. To obtain a globally convergent algorithm, we introduce a line search
along d*.

In what follows, we propose a globally convergent algorithm based on the Gauss-
Newton method including Armijo’s line search procedure (Armijo, 1966; Herskovits,
1995b), that ensures a reasonable decrease in the value of the objective function.

Optimization Algorithm:

Parameters: n € (0,1) and v € (0,1).
Data: Initial design z° € R". Set z = 20,

Step 1. Computation of search direction d by solving the linear system
[VRf(x)VR(x)] d = —~VR'z)R(z)

Step 2. Line search.

Compute «, the first number of the sequence {1,v,v?%,13,...} satisfying
F(z + ad) < f(z) + anVF(z)d
Step 3. Updates.
(i) Set
T:=z+ad

(i) Go back to Step 1.

4. Applications

The present model is applied to four illustrative test cases. The designs obtained are
compared with the alternative solutions from the literature.

Hole in a Biaxial Stress Field. The determination of the optimal shape of a hole
in a biaxial 2D plane stress field is studied. Figure 3 shows the initial design, loading
and biaxial symmetric boundary conditions, as well as the finite-element mesh, the
initial control points and the directions of movement. The thickness is h = 5mm,
Young’s modulus E = 210 GPa, Poisson’s ratio v = 0.3, the load per unit length
g = 2.5N/mm. The target stress is taken as &; = 16 MPa.

Figure 4 shows the Von Mises contours of the initial design. The optimal design
and stress contours are presented in Fig. 5. The iteration history for the objective
function and the Von Mises stress is shown in Fig. 6.

The final shape obtained after 7 iterations looks like the ellipse obtained analyti-
cally under the assumption that the plate is infinite (Timoshenko and Goodier, 1970).
The present solution is also in good agreement with the optimal numerical design of
Rasmussen et al. (1992) whose objective was to find the shape that minimizes the
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largest stress concentration on the boundary of the hole. This solution was obtained
after 12 iterations.

Fillet Problem. The initial design, boundary conditions, and two loadings given
by ¢ and gz, as well as the finite-element mesh, the initial control points and the
directions of movement are shown in Fig. 7. The data used are A = lmm, E =
226 GPa, v = .3, q1 = 1.425N/mm, g2 = 2N/mm and &; = 100 MPa. Figure 8
shows the contours of the Von Mises stresses for the initial design due to load g¢;. The
optimal design, stress distribution and iteration history are shown in Figs. 9 to 11.

It can be observed that, even if in the initial shape only one of the loadings is
critical, both of them become active in the final design, with fully stressed points on
the boundary. If only ¢; is considered, an optimal fillet geometry is obtained that
is very similar to the designs presented by Rasmussen et al. (1992) and Mota Soares
et al. (1984), among others.

Portal Frame. Figure 12a shows the initial shape of a portal frame, boundary
conditions, loading, control points and moving directions. The finite-element mesh is
shown in Fig. 12b. The following data are used: h = 8 mm, E = 210GPa, v = .3,
g = 2N/mm, and &; = 300MPa. The Von Mises stress contours are shown in
Fig. 13, for the initial design. Figures 14a and 14b illustrate the final design and the
corresponding stress distribution. The iteration history is shown in Fig. 15.

The optimal shape design is achieved after 8 iterations and is very similar to the
one obtained by Rasmussen et al. (1992) for volume minimization with the bound on
the maximum Von Mises stress of 300 MPa. The latter design was obtained after 23
iterations, using the simplex algorithm. The near optimum was reached after 14
iterations.

Open-End Spanner. The objective is to find the outer and the inner shape of
an open-end spanner. The initial shape, loading, boundary conditions and finite-
element discretization are shown in Fig. 16. Figure 17 shows the control points,
moving contour and directions of movement. The following data are used: h = 5mm,
E =210GPa, v = .3, ¢ = 5N/mm, and &; = 250 MPa. The initial stress distribution
is shown in Fig. 18. Figures 19a and 19b illustrate the obtained shape and the
corresponding mesh and stress distribution. The iterative process, represented in
Fig. 20, stops after 10 iterations, but a very satisfactory solution is obtained after 7
iterations.

The present design is similar to the one obtained by Rasmussen et al. (1992)
and other authors for a spanner, with different data. Rasmussen et al. minimized the
volume subject to an upper bound on the Von Mises stresses and on the compliance.
The optimum was obtained after 20 iterations, but a very good solution was reached
after 10 iterations.

5. Conclusions

The present model is very simple regarding the mathematical formulation and imple-
mentation in a computer code. This fact suggests that it should be possible to employ
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this technique in large problems and to extend it to 3-D structures. The computa-
tional effort required by one iteration is lower than with traditional techniques, since
only an unconstrained minimization is performed. The number of iterations for the
cases studied is also reduced. This seems to be due to the fact that the Gauss-Newton
algorithm has a rate of convergence quadratic or close to quadratic.

108
q

‘. NI 0 A D 0 0

60,

2q|100
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Fig. 3. Hole in biaxial stress field. A quarter-symmetry discrete model.

Von Mises Stress [ MPa}
4 .
Min: 6.2
Max:  26.9
1 6.2
2 7.6
3 10.6
4- 12.0
5 13.2
6- 13.8
7 14.9
8 16.4
9 17.9
10- 18.3
11- 20.8
12- 22.3
13- 247
14- 26.9

Fig. 4. Hole in biaxial stress field. Contours of the Von Mises stress-
es for the initial design.
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Fig. 5. Hole in biaxial stress field (a) optimal design, (b) contours
of the Von Mises stresses for the optimal design.

F(x)/F() Von Mises Stress [ MPa ]

1.00 27.00
0.90 \ 26.00 \
0.80 \ 25.00 \
0.70 24.00
A 2300\
0.50 \\ 200
0.40 200 \

\ 20.00
0.30 \
020 19.00

18.00
0.10 S ——— 17.00
0.00 - 3] ] 16.00
Iteration
Iteration
(a)

(b)

Fig. 6. Hole in biaxial stress field. Iteration history.
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229 165 L 114 d1=( 00, 0.0)

d2=(-05-1.0)
5 d3=(-0.5-1.0)
Py d4=(-0.5-1.0)
P3 d5=(-0.5-1.0)

228 P q; d6=(0.0,0.0)
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Fig. 7. Fillet problem. A unixial symmetric discrete model.

Von Mises Stress [ MPa]

Min: 241
Max. 138.6
1- 24.1
2- 32.2
3- 40.3
4- 48.%
5- 56.6
6- 64.7
- 72.9
8- 81.0
9- 89.2
10- 97.3
1- 105.4
12- 113.6
13- 121.7
14 138.6

Fig. 8. Fillet problem. Contours of the Von Mises stresses for the
initial design, with load ¢;.

Fig. 9. Fillet problem. Optimal design.
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Von Mises Stress | MPa ]

Min: 16.1
Max: 100.0
1- 101
2- 17.8
3- 25.6
4- 334
5- 41.2
6- 48.9
7- 56.7
8- 64.4
9- 72.2
10- 80.0
11- 87.7
12- 95.5
13- 98.6
14- 100.0
(a)

Von Mises Stress [ MPa ]
Min: 9.2
Max: 99.9
1- 9.2
2- 16.3
3- 22.8
4- 33.1
L 4.7
6- 52.8
7- 62.3
8- 75.2
9- 81.3

10- 86.9
11- 90.1
12- 93.7
13- 96.1
14- 99.9

(b)

Fig. 10. Fillet problem. Contours of the Von Mises stresses
for the optimal design (a) load ¢, (b) load gs.

F(X)/F(X0) Von Mises Stress [ MPa ]
140.00
1.00
136.00 \
0.85 \ 132.00 \
0.75 \ 128.00 \
0.65 \ 124.00 \
0.55 \ 120.00 \
0.45 116.00
.35 112.00 \
0.25 108.00 \
0.15 104.00
0.0S 100.00
] 2 3 4 5 2 3
Iteration Iteration
(a) (b)

Fig. 11. Fillet problem. Iteration history.
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d1 =(-10,00)
d2 =(-10,05)
d3 =(-1005)
d4 =(0005)
d5 =(0505)
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d7 =(0500)
d8 =(0.0,00)
d9 =(-050.0)
d10=(-0500)
d11=(-0500)
d12=(-0500)
d13=(-0500)
d14=(-0500)
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Fig. 12. (a) Portal frame, (b) initial discrete finite-element model.

Van Mises Stress [ MPa ]

Min: 79.2
max:  1300.8
1- 79.2
2 158.4
3 237.6
* 316.8
5- 396.0
6 475.2
7 554.4
8- 633.6
9- 712.8
10- 792.0
11- 471.2
12- 950.4
13- 1130.2
14 1300.8

Fig. 13. Portal frame. Contours of the Von Mises stresses for the initial design.
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Von Mises Stress [ MPa |

Min: 18.6
Max:  298.8
1- 18.5
2- 37.2
3 55.8
4 74.4
5 93.2
6- 11.6
7- 130.6
8- 148.8
9- 167.4
10- 186.6
- 2043
12- 263.2
13- 281.9
14 298.8

(b)

Fig. 14. Portal frame (a) optimal design, (b) contours of the Von
Mises stresses for the optimal design.

Von Mises Stress [ MPa ] x 103

F(X)/F(X9) 130
1.00 ’
0.90 1.20
0' 0 \ 1.10
0.70 \ 1.00 \
0.60 0.90
0.50 0.80
0.40 \ 0.70 \
0.30 0.60
0.26 0.50
0.10 0.40
0.00 0.30

( 2 3 4 5 6 7 8 2 3 4 S 7
Iteration Iteration
(a) (b)

Fig. 15. Portal frame. Iteration history.
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Fig. 17. Open-end spanner. Control points and directions of movement.

Von Mises stress [ MPa ]

Min: 25.3
Max:  354.3
1- 25.3
2- 50.6
3- 75.8
4- 101.2
§- 126.5
6- 151.8
- 7L
8- 202.4
9- 221.7
10-  253.0
11- 278.4
12-  303.7
13- 328.0
14 3543

Fig. 18. Open-end spanner. Contours of the Von Mises stresses for the initial design.
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Von Mises stress [MPa ]
Min:  17.4
Max: 249.6
1 17.4
2 348
3 521
4 59.6
5- 86.9
6- 104.4
7 121.8
8 139.2
9-  156.6
10- 1740
11- 1914
12- 208.8
13- 226.2
14 249.2

(b)

Fig. 19. Open-end spanner (a) optimal design, (b) contours of the
Von Mises stresses for the optimal design.

F(X)/F ﬁ) ) Von Mises Stress [ MPa ]
1.00 355.00
0.90
\ 340.00
0.80 \ 330.00
0.70 \
320.00 \
0.60 310.00
0.56 300.00 \
0.40 290.00
0.30 280.00
0.20 \ 270.00
0.10 — 260.00
0.00 M- 250,00
) 2 3 4 5 6 71 ) 10 1 2 3 4 5 6 7 8 9 10
Iteration Tteration
(@) ) (b)

Fig. 20. Open-end spanner. Iteration history.
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