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A SIMPLE METHOD FOR IMPROVING

THE ACCURACY AND CONVERGENCE
OF FEM COMPUTATIONS

ANTONI ZOCHOWSKI*

In the paper, a simple method for improving the convergence rate and accuracy
of finite-element computations is presented. It is based on a discrete formula-
tion of the problems on certain types of superelements and uses the formal-series
technique. It makes possible a uniform treatment of problems with corner singu-
larities and an improvement of accuracy in ordinary FEM computations, without
any increase in the dimensionality of the problem.

1. Introduction

The accuracy of approximate solutions for boundary-value problems is of prime im-
portance in every case, but there are circumstances, when it takes on a special value.
One of such instances is shape optimization, where the gradient of the goal functional
depends on derivatives of state variables, and therefore is very sensitive to the rate
of convergence of approximation. The quality of approximation depends in turn on
several factors, in particular:

e suitability of shape functions;

o the existence of singularities, which limit the rate of convergence and may cause
significant errors even far from their origins, as we shall see in one of the exam-
ples.

In this paper, we present a uniform approach to both sources of error. The
method is quite general and may be used in finite-element computations for partial
differential equations or systems of any order (2-nd, 4-th or higher if it makes sense),
but we shall concentrate here on the second-order examples and plane problems.

Let us imagine a bounded star-shaped domain €,, having the centre at 0 €
IR?. The examples are shown in Fig. 1, where the centre is marked with a small
circle. Assume for simplicity that they are already polygons. Next we construct
from the outer boundary I'y the consecutive cuts of these domains by similarity
transformation, I'; = r* - T'g, where 0 < r < 1. Between I'; and I';4; lay the ring-
like parts of €25, denoted by ;. These rings are also similar, and sum up to the
whole .
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Fig. 1. Two types of domains (superelements): nonsingular (a) and with a
singular point (b).

Our goal is to solve the elasticity or Laplace equations in such a domain using the
finite-element method. For simplicity we assume here the absence of volume forces or
sources. Let the parts between cross-sections & and k + 1 be discretized with some
kind of elements. We shall denote by wuj the vector of all the nodal values of the
solution corresponding to the k-th cross-section. Now the elastic energy of the whole
body after discretization can be written as

E= ZEk(uk,u;H.l) (1)

k=0

where E; denotes the energy of the k-th ring. Let us concentrate on Ey. By
eliminating internal nodes between sections I'® and T, i.e. treating the rings as
superelements, we get

Ep(uo, 1) = %[%T,Uﬂ "M - [ Z(: } (2)

where the 2nx2n symmetric stiffness matrix M (n = dim u;) has the form

AlB]

BT 4, @)

Observe that the nxn matrices 4; and A, are symmetric and positive definite.

Now comes the crutial observation. Assume that ; has been triangulated and
the linear finite elements have been used. Then the matrix M is proportional to the
area of the ring, i.e. 72, and inversely proportional to the squares of the lengths of
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the sides of triangles, since the discretized gradient of u computed in terms of nodal
values is inversely proportional to 7. As a result, M is the same for all rings, and
E; have the same form for all k.

Using the above notation we may write the energy of the whole Q; as

- - T £ - -
Ug Al B U W
(75} BT A B U
E = l U2 . BT A B . Uz (4)
2] . .

BT

where A = A; + As. If we could express E as a function of a ug only, E = E(ug),
then it would be possible to write down the whole energy in terms of a finite number
of nodal values.

For the sake of simplicity we shall conduct all the subsequent reasoning in the
case of homogeneous equations with constant coefficients and containing only the main
part of the elliptic differential operator. However, as mentioned later, the method may
be extended to non-homogeneous equations with variable coefficients as well. The
differential operators of lower order may be treated as disturbances.

The above cosiderations are related to the problem of representing the infinite
body, which has received some attention in the FEM literature. The relation results
from the fact that a star-shaped domain can be always transformed by inversion
to an external one. In (Givoli, 1992; Grote and Keller, 1994) use is made of the
exact analytic solutions in certain kinds of infinite domains in order to get substitute
boundary conditions. Here we treat the problem from the beginning in its discrete
formulation and use the energetic approach. In (Sharau, 1994) a completely different
method is used, depending on treating the infinite body as a certain kind of elastic
support. The method presented here may be proved to be correct (convergent), but
of course it has also some limitations.

2. Problem Formulation

Let us return to the expression for E, (4), and solve the elasticity equations in the
whole right part imposing the boundary conditions on ug. The neccessary condition
for the minimum of energy takes the form

A B 1 w1 [ -BT]
BT A B U9 0
Moy -ueo = BT A B us | =1 0 |y (5)

BT
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As a result, after putting u; = Q;ug, 7=1,2,..., we must solve the matrix equation
of infinite order

(A B 1 [e] [-BT]
BT A B Q- 0
BT . .
where (1,Q2,... have dimensions nxn.

It is well known (Cooke, 1950) that such systems may have infinitely many so-
lutions. Therefore we impose the physical condition that the consecutive energy
terms (2) diminish, or the requirement that the neccessary condition gives a mini-
mum, not a saddle point or maximum of the elastic energy. As it will turn out, this
makes the solution unique.

If we could obtain the expression for Q; in the multiplicative form, Q; = @7,
then, taking into account that uy = Qruo = Q*uq, the energy on the whole domain
takes the form

1
E(uk,ukﬂ) = —2—(U{A1uk + ufHBTuk +- u{BukH + U{+1A2uk+1)

= Jul@)F 11 + Q7BT 4 BQ + QT4:Q]- Q*u (1)

Hence, assuming the convergence of the infinite sum, the whole E may be computed
as

1
E:§ug~8~u0

where
§=3"(Q"* R-Q", R=A+QTBT+BQ+QTAQ
k=0

The series for S can be, as we shall see later, computed exactly in a closed form.

3. Formal-Series Approach

In this section we shall solve eqn. (6) by embedding the problem into the frame-
work of operations on infinite series, see e.g. (Stanley, 1986). Let us establish the
correspondence between the infinite vector fo, = [f1, f2,...]T and the formal power
series:

0 i1
fz) = Zl f’m (8)
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Differentiating this series gives
o0 2
Df(z) = ; A

or, in vector representation,

foo:[flaf2a-~-]Ta Dfoo:[f2;f37“-]T (9)

This shows that the differentiation may be represented as multiplication by the matrix
1
Dfo = “ foo (10)

and similarly for integration. Let us notice that M. has a block structure, i.e.
every n-th row repeats itself after shifting n places to the right. Therefore we must
introduce a whole vector of functions

o0

k(o — g o _
w(m),;wj(j_l)!, k=1,...,n (11)
and write u; = [w},...,wP}T, so that
@] L
. —_ . ml_
u(z) = : = Z Ay (12)
=1
w* ()

If we neglect the first » rows, the system (6) is equivalent to
BT-/u+A-u+B-Du=O

and putting @ = [u gives finally the differential equation
B-@'+A-w+BT-a=0

The solution must have the form @ = 7y - e*®, where dim 75 = n. Furthermore, X is
the root of the 2n-th order characteristic polynomial

det(B-X2+A-A+BT)=0 (13)
and 7, should be the right eigenvector:
(B-X+A-2+BT).r =0

In general, (13) has 2n roots. However, from the particular form of (13) it follows
that these roots occur in pairs, (A;,1/X;), ¢ =1,...n. Let us eliminate at this point
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the roots with absolute values greater than 1, and consider (after rearranging) only
Al;- -+, An. The corresponding solutions have the form

@ =c1,17x, XP(MZ) + co,17, €xp(A2) + ... +cn17a, exp(Anz)  (14)

The constants ci,1,...,¢n,1 are chosen in such a way that the first n rows of (6) are
satisfied. Let us notice, however, that eqn. (6) has n right-hand sides. That is why
we have double subscripts here: ¢, , denotes the p-th constant corresponding to the
g-th column on the right.

Let us now introduce the following notation:
Ry =1[ra,---,7a.)s  C=[ciklik=1,.,n A =diagrs,..., )]

It may be proved by replacing the exponential functions in (14) with equivalent infinite
series and taking into account the definitions of coefficients in the formal series, that
the solution of (6) takes the form

Qi=Ry-A-C, Qu=Ry\-A*-C,...,Q.=Ry-A"-C

The choice of the matrix of constants C must ensure the fulfilment of the first block
of equations, which leads to the formula C = R;l. More precisely, from

AQ, + BQ, + BT =0,
BTQ1+ AQ:+BQ; =0
one obtains the matrix equation
(AR\A + BR\A*)- (I-CR))-AC =0

and det(C) # 0 because det(B) # 0. In consequence, we get, as was required,
Q=Q=Ry\-A-R{', Qi=Q'=Ry-A"-R', i=12,...

In general, there may appear A = 1, which corresponds to the constant solution.
For the scalar Laplace equation it must have multiplicity 2, with only one eigenvector.
For the elasticity system, there exist pairs consisting of eigenvalue A = 1 and an
eigenvector responsible for constant displacements in 2 or 3 independent directions.
However, they do not contribute to the energy, so the convergence of the energy series
is assured by the next eigenvalue strictly less than 1.

We may also prove that, after regrouping the terms, the matrix S takes on the
simple form:

S = A, + BQ
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4. Three-Dimensional Case

Let us consider the three-dimensional domains, where the layers 2;,Q2,... are cut
out from the 3-D body by the outer surface transformed by similarity with origin at 0.
The derivatives of discretized functions still contain terms proportional to 1/r, but
the volumes of elements are proportional to 3, so as a result

E; = ';‘[(u?)Ty(u?H)T] ' (Ti_lM)' { Ui ] o 1=12 (15)
Uit

with M having the form as in (3). Hence the system My - Qoo = Boo becomes

As + 1A rB 0 e -BT
rBT TAs + 72 A B cen 0
0 1‘2BT T2A2 + TsAl ’I‘SB Qoo o 0 (16)

The rows do not repeat here exactly, so the solution requires some scaling. Let I be
the nxn identity matrix, and define

P= diag[r“l/zl,r_lf, - ,r_i/zI,...]
Then (16) may be rewritten (the diagonal infinite matrix is invertible) as
(P! Me P ') Qoo = Bwo

where Mog = P - My - P. Moreover, the system My - Qoo = B, where Qoo =
P~ 1Qu, Beo = PBy, has the form

R L gt S N
BT A+ 4 1B
0 %BT %Ag + A1 N Qoo = 0 (17)

i | e R
which falls into the framework of our method, with eigenvalue problem (13)

1 1 1
det[AQWB + )\(;Az + A1)+ ——\/-?BT] =0 (18)
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5. Superelements

Singular elements. Consider a discretized problem on some domain Q% (finite or
infinite). Let po be a point on 8Q4, where a geometrical singularity of the solution
may occur (a reentrant corner, a change of the type of boundary conditions), belonging
also to the nodes of triangulation. The standard way of dealing with such problems is
to refine locally the discretization at the cost of increasing dimensionality (Grisvard,
1985). Our method suggests another approach. Let us create a star-shaped domain
consisting of all triangles having py as a vertex, see Fig. 1. Then we may treat this
star as a superelement and construct a stiffness matrix for it using py as a similarity
origin. In this way, we have a mesh refinement without dimensionality increase.
Moreover, the rate of convergence is the same as in the smooth case.

Improving accuracy. Let us consider the discretization consisting of convex quadri-
laterals. Taking centres of these quadrilaterals as similarity origins, we may construct
stiffness matrices in the same way as for superelements. Such an approach does
not increase dimensionality, but, as shown by experiments, improves the accuracy in
comparison with ordinary linear elements on triangles, also in the non-singular case.

Generalizations. As mentioned in the introduction, the method may be extended in
two directions. If we assume piecewise constant over the superelements (quadrilaterals
as in Fig. 1), coefficients approximating the real ones, the derivation does not require
any change. Two approaches are possible:

1. Assuming constant forces (sources) over the superelements, we may also solve
the infinite system, at the expense of much more complicated derivation.

2. Treating the solutions of the discrete (infinite) homogeneous system over the
superelement as the shape functions (basis) in the FEM approximation. Such
an approach is often used with continuous solutions. However, our method has
the advantage that it does not require the knowledge of classical solutions. The
right-hand side is of course also assumed piecewise constant over the superele-
ment. This approach is used in numerical experiments and shows an increase
in the accuracy.

6. Numerical Experiments

Corner singularity. In this case, the test domain constituted a unit circle with one
quarter cut out. On the radii bounding the cut out part the homogeneous Neumann
boundary conditions have been imposed. A well-known singular solution u = 2/3 .
cos(2¢) has been used as a test function, see (Grisvard, 1985).

The discretization consisted of 7 evenly spaced radii and [n/3] rings. We have
computed two error indicators: the maximal error along the line I' = {r = 0.5}
and the L»(I") convergence rate. The star mentioned in the last section consisted
of all triangles having a vertex at 0. The results are summarized in Table 1. Since
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the convergence rate is computed for a projection on a line, theoretically it should
be equal to 1.166...for the ordinary FEM and 1.5 for the FEM using local singular
elements (Grisvard, 1985). As we see, our approach is as good as the second case.
This example also demonstrates that singularity destroys convergence not only in its
vicinity, but in other places, as well.

Tab. 1. Maximal error and convergence rate for corner singularity.

n=6 n=12 n=24 | Ly(T)-conv. rate
FEM 0.083 0.023 0.008 1.27
Series approach 0.057 0.012 0.003 1.60

Tab. 2. Maximal error and convergence rate for the homogeneous case.

n=6 | n=12 n=24 Ly-conv. rate
FEM 9.79 3.34 1.03 2.25
Series approach | 4.76 1.49 0.45 2.22

Improving accuracy. Here the computational domain consisted of the square
[0,4]x[0,4] divided into nxn subsquares. Each subsquare was replaced by the su-
perelement as shown in Fig. 1(a). We have compared the performance of the ordinary
linear finite element with our modified one for two cases:

a) Test function uw = exp(z)siny satisfying the homogeneous Dirichlet equation.
The results are in Table 2.

b) Test function u = y? exp(z) satisfying non-homogeneous Dirichlet equation. The
results are in Table 3.

In both cases we have obtained the same rate of convergence as for the ordinary FEM,
with twice better accuracy.

Tab. 3. Maximal error and convergence rate for the non-homogeneous case.

[ n=6 n=12 n=24 La-conv. rate

FEM 0.246 0.072 0.021 2.18
Series approach | 0.197 0.049 0.013 2.17
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