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EVOLUTIONARY COMPUTATION: MAIN PARADIGMS
AND CURRENT DIRECTIONS

ZBIGNIEW MICHALEWICZ*, MAcies MICHALEWICZ**

Evolutionary computation techniques, which are based on a powerful princi-
ple of evolution: survival of the fittest, constitute an interesting category of
heuristic search. Evolutionary computation techniques are stochastic algorithms
whose search methods model some natural phenomena: genetic inheritance and
Darwinian strife for survival. This paper discusses the main paradigms of evo-
lutionary computation techniques (genetic algorithms, evolution strategies, evo-
lutionary programming, genetic programming) as well as other methods, which
are hard to classify. Also, we discuss the major current trends in this field.

1. Introduction

During the last two decades there has been a growing interest in algorithms which
are based on the principle of evolution (survival of the fittest). A common term,
accepted recently, refers to such techniques as evolutionary computation (EC) meth-
ods. The best known algorithms in this class include genetic algorithms, evolutionary
programming, evolution strategies, and genetic programming. There are also many
hybrid systems which incorporate various features of the above paradigms, and con-
sequently are hard to classify; anyway, we refer to them just as EC methods.

The field of evolutionary computation has reached a stage of some maturity.
There are several, well established international conferences that attract hundreds
of participants (International Conferences on Genetic Algorithms—ICGA (Belew
and Booker, 1991; Forrest, 1993; Grefenstette, 1985; 1987; Schaffer, 1989), Paral-
lel Problem Solving from Nature—PPSN (Minner and Manderick, 1992; Schwefel
and Manner, 1991), Annual Conferences on Evolutionary Programming—EP (Fogel
and Atmar, 1992)); new annual conferences are getting started, e.g., IEEE Inter-
national Conferences on Evolutionary Computation (EC, 1994; 1995). Also, there
are many workshops, special sessions, and local conferences every year, all around
the world. A relatively new journal, Evolutionary Computation (DeJong, 1993), is
devoted entirely to evolutionary computation techniques; many other journals or-
ganized special issues on evolutionary computation (e.g., Fogel, 1994; Michalewicz,
1994)). Many excellent tutorial papers (Beasley et al., 1993a; 1993b; Fogel, 1994;
Reeves, 1993; Whitley, 1994) and technical reports provide more-or-less complete
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bibliographies of the field (Alander, 1994; Goldberg, Milman and Tidd, 1992; Nissen,
1993; Saravanan and Fogel, 1993). There is also The Hitch-Hiker’s Guide to Ewvo-
lutionary Computation prepared initially by Jorg Heitkotter and currently by David
Beasley (Heitkotter, 1993), available on comp.ai.genetic interest group (Internet), and
a new text, Handbook of Evolutionary Computation, is currently being prepared (Bick
et al., 1996).

In this paper we survey evolutionary computation algorithms and discuss the
major current trends in this field. The next section provides a short introductory
description of evolutionary algorithms. Section 3 discusses the paradigms of genetic
algorithms, evolution strategies, evolutionary programming, and genetic program-
ming, as well as some other evolutionary techniques. Section 4 presents some current
research direction and Section 5 concludes the paper.

2. Evolutionary Computation

In general, any abstract task to be accomplished can be thought of as solving a
problem, which, in turn, can be perceived as a search through a space of potential
solutions. Since usually we are after “the best” solution, we can view this task as an
optimization process. For small spaces, classical exhaustive methods usually suffice;
for larger spaces special artificial intelligence techniques must be employed. The
methods of evolutionary computation are among such techniques; they are stochastic
algorithms whose search methods model some natural phenomena: genetic inheritance
and Darwinian strife for survival. As stated in (Davis and Steenstrup, 1987):

“.. the metaphor underlying genetic algorithms ! is that of natural evo-
lution. In evolution, the problem each species faces is one of searching for
beneficial adaptations to a complicated and changing environment. The
‘knowledge’ that each species has gained is embodied in the makeup of
the chromosomes of its members.”

As already mentioned in the Introduction, the best known techniques in the class
of evolutionary computation methods are genetic algorithms, evolution strategies,
evolutionary programming, and genetic programming. There are also many hybrid
systems which incorporate various features of the above paradigms; however, the
structure of any evolutionary computation algorithm is very much the same; a sample
structure is shown in Fig. 1.

The evolutionary algorithm maintains a population of individuals, P(t) =
{z%,...,2%} for iteration ¢t. Each individual represents a potential solution to the
problem at hand, and is implemented as some data structure S. Each solution z*
is evaluated to give some measure of its ‘fitness’. Then, a new population (iteration
t + 1) is formed by selecting the more fit individuals (select step). Some members of
the new population undergo transformations (alter step) by means of ‘genetic’ opera~
tors to form new solutions. There are unary transformations m; (mutation type),

1 The best known evolutionary computation techniques are genetic algorithms; very often the
terms evolutionary computation methods and GA-based methods are used interchangeably.
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Fitness of an individual is assigned proportionally to the value of the objective func-
tion for the individual; individuals are selected for the next generation on the basis
of their fitness.

The combined effect of selection, crossover, and mutation gives the so-called
reproductive schema growth equation (Holland, 1975):

£(S,t+1) > £(S,t) - eval (S,8)/F(t) |1 - p.

where S is a schema defined over the alphabet of 3 symbols (07, ‘1’, and ‘+’ of length
m ; each schema represents all strings which match it on all positions other than ‘+');
£(S,t) denotes the number of strings in a population at time ¢, matched by schema
S; 6(S) is the defining length of the schema S —the distance between the first and
the last fixed string positions; o(S) denotes the order of the schema S—the number
of 0 and 1 positions present in the schema. Another property of a schema is its fitness
at time ¢, eval(S,t) is defined as the average fitness of all strings in the population
matched by the schema S; and F(t) is the total fitness of the whole population
at time ¢. Parameters p. and p, denote probabilities of crossover and mutation,
respectively.

The above equation tells us about the expected number of strings matching
a schema S in the next generation as a function of the actual number of strings
matching the schema, the relative fitness of the schema, and its defining length and
order. Again, it is clear that above-average schemata with short defining length and
low-order would still be sampled at exponentially increased rates.

The growth equation shows that selection increases the sampling rates of the
above-average schemata, and that this change is exponential. The sampling itself
does not introduce any new schemata (not represented in the initial ¢ = 0 sampling).
This is exactly why the crossover operator is introduced—to enable a structured, yet
random information exchange. Additionally, the mutation operator introduces greater
variability into the population. The combined (disruptive) effect of these operators
on a schema is not significant if the schema is short and low-order. The final result
of the growth equation can be stated as:

Theorem 1. (Schema Theorem): Short, low-order, above-average schemata receive
ezponentially increasing trials in subsequent generations of a genetic algorithm.

An immediate result of this theorem is that GAs explore the search space by
short, low-order schemata which, subsequently, are used for information exchange
during crossover:

Building Block Hypothesis: A genetic algorithm seeks near-optimal
performance through the juxtaposition of short, low-order, high-perfor-
mance schemata, called the building blocks.
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As stated in (Goldberg, 1989):

“Just as a child creates magnificent fortresses through the arrangement of
simple blocks of wood, so does a genetic algorithm seek near optimal per-
formance through the juxtaposition of short, low-order, high performance
schemata.”

A population of pop_size individuals of length m processes at least 2™ and at
most 2P°P-5i%¢ gchemata. Some of them are processed in a useful manner: these are
sampled at the (desirable) exponentially increasing rate, and are not disrupted by
crossover and mutation (which may happen for a long defining length and high-order
schemata).

Holland (1975) showed that at least pop_size of them are processed usefully—he
has called this property an implicit parallelism, as it is obtained without any extra
memory/processing requirements. It is interesting to note that in a population of
pop-size strings there are many more than pop_size schemata represented. This
constitutes possibly the only known example of a combinatorial explosion working to
our advantage instead of our disadvantage.

To apply a GA to a particular problem, it is necessary to design a mapping
between a space of potential solutions for the problem and a space of binary strings
of some length. Sometimes it is not a trivial task and quite often the process involved
some additional heuristics (decoders, problem-specific operators, etc). For additional
material on applications of genetic algorithms, see e.g. (Michalewicz, 1996).

3.2. Evolution Strategies

Evolution strategies (ESs) were developed as a method to solve parameter optimiza-
tion problems (Schwefel, 1994); consequently, a chromosome represents an individual
as a pair of float-valued vectors,® i.e., 7= (T,7).

The earliest evolution strategies were based on a population consisting of one in-
dividual only. There was also only one genetic operator used in the evolution process:
a mutation. However, the interesting idea (not present in GAs) was to represent an
individual as a pair of float-valued vectors, i.e., ¥ = (Z,&). Here, the first vector T
represents a point in the search space; the second vector & is a vector of standard
deviations: mutations are realized by replacing # by

#1 = 3t + N(0,5)

where N(0,d) is a vector of independent random Gaussian numbers with zero mean
and standard deviations &. (This is in accordance with the biological observation
that smaller changes occur more often than larger ones.) The offspring (the mutated
individual) is accepted as a new member of the population (it replaces its parent) iff
it has better fitness and all constraints (if any) are satisfied. For example, if f is

the objective function without constraints to be maximized, an offspring (F'*!,5)

6 However, they started with integer variables as an experimental optimum-seeking method.
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procedure evolutionary algorithm
begin

t+0

initialize P(t)

evaluate P(t)

while (not termination-condition) do

begin
t—t+1
select P(t) from P(t —1)
alter P(t)
evaluate P(t)
end
end

Fig. 1. The structure of an evolutionary algorithm.

which create new individuals by a small change in a single individual (m; : § — S),
and higher order transformations ¢; (crossover type), which create new individuals
by combining parts from several (two or more) individuals (¢; : Sx...xS — §).2
After some number of generations the algorithm converges—it is hoped that the best
individual represents a near-optimum (reasonable) solution.

Despite powerful similarities between various evolutionary computation tech-
niques there are also many differences between them (often hidden on a lower level of
abstraction). They use different data structures S for their chromosomal represen-
tations, consequently, the ‘genetic’ operators are different as well. They may or may
not incorporate some other information (to control the search process) in their genes.
There are also other differences; for example, the two lines of Fig. 1:

select P(t) from P(t—1)
alter P(t)

can appear in the reverse order: in evolution strategies first the population is al-
tered and later a new population is formed by a selection process (see Section 3.2).
Moreover, even within a particular technique there are many flavors and twists. For
example, there are many methods for selecting individuals for survival and repro-
duction. These methods include (1) proportional selection, where the probability of
selection is proportional to the individual’s fitness, (2) ranking methods, where all
individuals in a population are sorted from the best to the worst and probabilities
of their selection are fixed for the whole evolution process,® and (3) tournament se-

2 In most cases crossover involves just two parents, however, it need not be the case. In a recent
study (Eiben et al., 1994) the authors investigated the merits of ‘orgies’, where more than two
parents are involved in the reproduction process. Also, scatter search techniques (Glover,
1977) proposed the use of multiple parents.

For example, the probability of selection of the best individual is always 0.15 regardless its
precise evaluation; the probability of selection of the second best individual is always 0.14, etc.
The only requirements are that better individuals have larger probabilities and the total
of these probabilities equals one.
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lection, where some number of individuals (usually two) compete for selection to the
next generation: this competition (tournament) step is repeated the population-size
number of times. Within each of these categories there are further important details.
Proportional selection may require the use of scaling windows or truncation meth-
ods, there are different ways for allocating probabilities in ranking methods (linear,
nonlinear distributions), the size of a tournament plays a significant role in tourna-
ment selection methods. It is also important to decide on a generational policy. For
example, it is possible to replace the whole population by a population of offspring,
or it is possible to select the best individuals from two populations (population of
parents and population of offspring)—this selection can be done in a deterministic
or nondeterministic way. It is also possible to produce few (in particular, a single)
offspring, which replace some (the worst?) individuals (systems based on such gene-
rational policy are called ‘steady state’). Also, one can use an ‘elitist’ model which
keeps the best individual from one generation to the next*; such model is very helpful
for solving many kinds of optimization problems.

However, the data structure used for a particular problem together with a set
of ‘genetic’ operators constitute the most essential components of any evolutionary
algorithm. These are the key elements which allow us to distinguish between various
paradigms of evolutionary methods. We discuss this issue in detail in the following
section.

3. Main Paradigms of Evolutionary Computation

As indicated earlier, there are a few main paradigms of evolutionary computation
techniques. In the following subsections we discuss them in turn; the discussion puts
some emphasis on the data structures and genetic operators used by these techniques.

3.1. Genetic Algorithms

The beginnings of genetic algorithms can be traced back to the early 1950s when
several biologists used computers for simulations of biological systems (Goldberg,
1989). However, the work done in the late 1960s and early 1970s at the University of
Michigan under the direction of John Holland led to genetic algorithms as they are
known today. A GA performs a multi-directional search by maintaining a population
of potential solutions and encourages information formation and exchange between
these directions.

Genetic algorithms (GAs) were devised to model adaptation processes, mainly
operated on binary strings and used a recombination operator with mutation as a
background operator (Holland, 1975). Mutation flips a bit in a chromosome and
crossover exchanges genetic material between two parents: if the parents are repre-
sented by five-bit strings, say (0,0,0,0,0) and (1,1,1,1,1), crossing the vectors after
the second component would produce the offspring (0,0,1,1,1) and (1,1,0,0,0).5

4 This means that if the best individual from a current generation is lost due to selection or gene-
tic operators, the system forces it into next generation anyway.
5 This is an example of the so-called 1-point crossover.
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-

replaces its parent (Z*,5) iff f(Z**1) > f(#'). Otherwise, the offspring is eliminated
and the population remains unchanged.

The vector of standard deviations & remains unchanged during the evolution
process. If all components of this vector are identical, i.e., = (g,...,0), and the
optimization problem is regular, it is possible to prove the convergence theorem (Bik,
1991):

Theorem 2. (Convergence Theorem): For o > 0 and a regular optimization problem
with fope > —00 (minimization) or fop < 0o (mazimization), we have

p{Jim f(#)= fo} =1
The evolution strategies evolved further (Schwefel, 1994) to mature as

(b +A)-ESs  and (1, A)-ESs

The main idea behind these strategies was to allow control parameters (like muta-
tion variance) to self-adapt rather than changing their values by some deterministic
algorithm.

In the (u + A)-ES, p individuals produce A offspring. The new (temporary)
population of (x4 A) individuals is reduced by a selection process again to x indi-
viduals. On the other hand, in the (u,))-ES, the p individuals produce A offspring
(A > p) and the selection process selects a new population of g individuals from
the set of A offspring only. By doing this, the life of each individual is limited to
one generation. This allows the (u,A)-ES to perform better on problems with an
optimum moving over time, or on problems where the objective function is noisy.

The operators used in the (u+M)-ESs and (u, A)-ESs incorporate two-level learn-
ing: their control parameter & is no longer constant, nor it is changed by some deter-
ministic algorithm (like the 1/5 success rule), but it is incorporated in the structure
of the individuals and undergoes the evolution process. To produce an offspring, the
system acts in several stages:

e select two individuals,

(@, 6")=((ah 3h), (o1, 0h)) and (2, 6%)=((ah, ..., 22), (03, .. ,02)

7 An optimization problem is regular if the objective function f is continuous, the domain of
the function is a closed set, for all € > 0 the set of all internal points of the domain for which
the function differs from the optimal value less than € is non-empty, and for all Fp the set of
all points for which the function has values less than or equal to f(Zo) (for minimization
problems; for maximization problems the relationship is opposite) is a closed set.
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and apply a recombination (crossover) operator. There are two types of
CrOSSOVers:

— discrete, where the new offspring is
(7,8) = (@', 22), (o 08

where ¢; =1 or ¢; = 2 (so each component comes from the first or second
preselected parent),

— intermediate, where the new offspring is
(#,3) = (@ +23)/2..., (@ +22)/2), (o} + oD)/2,..., (0h +02)/2))

Each of these operators can be applied also in a global mode, where the new
pair of parents is selected for each component of the offspring vector.

o apply mutation to the offspring (Z,d) obtained; the resulting new offspring
is (&,5"), where & = & -eN(®A%)  F = 7+ N(0,6'), and where Ad is a
parameter of the method.

The best source of complete information (including recent results) on evolution
strategies is recent Schwefel’s text (Schwefel, 1995). ‘

3.3. Evolutionary Programming

The original evolutionary programming (EP) techniques were developed by Lawrence
Fogel (1996). They aimed at evolution of artificial intelligence in the sense of develop-
ing an ability to predict changes in an environment. The environment was described
as a sequence of symbols (from a finite alphabet) and the evolving algorithm supposed
to produce, as an output, a new symbol. The output symbol should maximize the
payoff function, which measures the accuracy of the prediction.

For example, we may consider a series of events, marked by symbols a;,as,...;
an algorithm should predict the next (unknown) symbol, say an+1 on the basis of
the previous (known) symbols, a1,as,...,a, . The idea of evolutionary programming

was to evolve such an algorithm.

Finite state machines (FSM) were selected as a chromosomal representation of
individuals; after all, finite state machines provide a meaningful representation of
behavior based on interpretation of symbols. Figure 2 provides an example of a
transition diagram of a simple finite state machine for a parity check. Such transition
diagrams are directed graphs that contain a node for each state and edges that indicate
the transition from one state to another, input and output values (notation a/b next
to an edge leading from state S; to state S indicates that the input value of a,
while the machine is in state S, results in output b and the next state Sy.

There are two states ‘EVEN’ and ‘ODD’ (machine starts in state ‘EVEN’); the
machine recognizes a parity of a binary string.

So, the evolutionary programming technique maintains a population of finite
state machines; each such individual represents a potential solution to the problem
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0/0 1/1 0/t

| ( EVEN ) (\0?19(_
1/0

Fig. 2. An FSM for a parity check.

(i.e., represents a particular behavior). As already mentioned, each FSM is evaluated
to give some measure of its ‘fitness’. This is done in the following way: each FSM is
exposed to the environment in the sense that it examines all previously seen symbols.
For each subsequence, say, a;,as,...,a; it produces an output a;,,, which is com-
pared with the next observed symbol, a;;;. For example, if n symbols have been
seen so far, an FSM makes n predictions (one for each of the substrings a;, a1,as,
and so on, until a;,as,...,an); the fitness function takes into account the overall
performance (e.g., some weighted average of accuracy of all n predictions).

Like in evolution strategies (Section 8.1), the evolutionary programming tech-
nique first creates offspring and later selects individuals for the next generation. Each
parent produces a single offspring; hence the size of the intermediate population
doubles (like in the (pop_size, pop_size)-ES). Offspring (new FSMs) are created by
random mutations of the parent population (see Fig. 3). There are five possible muta-
tion operators: change of an output symbol, change of a state transition, addition of
a state, deletion of a state, and change of the initial state (there are some additional
constraints on the minimum and maximum number of states). These mutations are
chosen with respect to some probability distribution (which can change during the
evolutionary process); also it is possible to apply more than one mutation to a single
parent (a decision on the number of mutations for a particular individual is made
with respect to some other probability distribution).

1/b 1/b
0/b 0/a 0/b 0/c
O/c 0/c
1/c 1/d l/c 1/d
FSM parent FSM offspring

Fig. 3. An FSM and its offspring. Machines start in state 1.



402 Z. Michalewicz and M. Michalewicz

The best pop_size individuals are retained for the next generation; i.e., to qualify
for the next generation an individual should rank in the top 50% of the intermediate
population. In the original version (Fogel et al, 1996) this process was iterated
several times before the next output symbol was made available. Once a new symbol
is available, it is added to the list of known symbols, and the whole process is repeated.

Of course, the above procedure can be extended in many ways, as stated in
(Fogel, 1995):

“The payoff function can be arbitrarily complex and can posses tempo-
ral components; there is no requirement for the classical squared error
criterion or any other smooth function. Further, it is not required that
the predictions be made with a one-step look ahead. Forecasting can be
accomplished at an arbitrary length of time into the future. Multivariate
environments can be handled, and the environmental process need not be
stationary because the simulated evolution will adapt to changes in the
transition statistics.”

Recently evolutionary programming techniques were generalized to handle nu-
merical optimization problems; for details see (Fogel, 1992; 1995). For other examples
of evolutionary programming techniques, see also (Fogel et al., 1996) (classification
of a sequence of integers into primes and nonprimes), (Fogel, 1993) (for application
of EP technique to the interated prisoner’s dilemma), as well as (Fogel, 1992; 1993;
McDonnel et al., 1995; Sebald and Fogel, 1994) for many other applications.

3.4. Genetic Programming

Another interesting approach was developed relatively recently by Koza (1990; 1992).
Koza suggests that the desired program should evolve itself during the evolution pro-
cess. In other words, instead of solving a problem, and instead of building an evolution
program to solve the problem, we should rather search the space of possible computer
programs for the best one (the most fittest). Koza developed a new methodology,
named Genetic Programming (GP), which provides a way to run such a search.

There are five major steps in using genetic programming for a particular problem.
These are:

¢ selection of terminals,

¢ selection of a function,

e identification of the evaluation function,

o selection of parameters of the system, and

e selection of the termination condition.

It is important to note that the structure which undergoes evolution is a hierar-
chically structured computer program.® The search space is a hyperspace of valid

8 Actually, Koza has chosen LISP’s S-expressions for all his experiments. Currently, however,
there are implementations of GP in C and other programming languages.
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programs, which can be viewed as a space of rooted trees. Each tree is composed of
functions and terminals appropriate to the particular problem domain; the set of all
functions and terminals is selected a priori in such a way that some of the composed
trees yield a solution.

For example, two structures e; and es (Fig. 4) represent expressions 2z + 2.11
and z-sin(3.28), respectively. A possible offspring e (after crossover of e; and e, )
represents - sin(2z) .

Fig. 4. Expression e3: an offspring of e; and es;. Dashed lines include areas
being exchanged during the crossover operation.

The initial population is composed of such trees; construction of a (random) tree
is straightforward. The evaluation function assigns a fitness value which evaluates
the performance of a tree (program). The evaluation is based on a preselected set of
test cases; in general, the evaluation function returns the sum of distances between
the correct and obtained results on all test cases. The selection is proportional; each
tree has a probability of being selected to the next generation proportional to its
fitness. The primary operator is a crossover that produces two offspring from two
selected parents. The crossover creates offspring by exchanging subtrees between two
parents. There are other operators as well: mutation, permutation, editing, and a
define-building-block operation (Koza, 1990). For example, a typical mutation selects
anode in a tree and generates a new (random) subtree which originates in the selected
node.

In addition to five major steps for building a genetic program for a particular
problem, Koza (1994) recently considered the advantages of adding an additional
feature: a set of procedures. These procedures are called Automatically Defined
Functions (ADF). It seems that this is an extremely useful concept for genetic pro-
gramming techniques with its major contribution in the area of code reusability. ADFs
discover and exploit the regularities, symmetries, similarities, patterns, and modulari-
ties of the problem at hand, and the final genetic program may call these procedures
at different stages of its execution.

The fact that genetic programming operates on computer programs has a few
interesting aspects. For example, the operators can be viewed also as programs,
which can undergo a separate evolution during the run of the system. Additionally,
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a set of functions can consist of several programs which perform complex tasks; such
functions can evolve further during the evolutionary run (e.g., ADF). Clearly, it is one
of the most exciting areas of the current development in the evolutionary computation
field with already a significant amount of experimental data (see, for example, apart
from (Koza, 1992; 1994), also (Angeline, 1996; Kinnear, 1994)).

3.5. Other Techniques

Many researchers modified further evolutionary algorithms by ‘adding’ the problem
specific knowledge to the algorithm. Several papers have discussed initialization tech-
niques, different representations, decoding techniques (mapping from genetic rep-
resentations to ‘phenotypic’ representations), and the use of heuristics for genetic
operators. Davis (1989) wrote (in the context of classical, binary GAs):

“It has seemed true to me for some time that we cannot handle most real-
world problems with binary representations and an operator set consisting
only of binary crossover and binary mutation. One reason for this is that
nearly every real-world domain has associated domain knowledge that is of
use when one is considering a transformation of a solution in the domain
[..] I believe that genetic algorithms are the appropriate algorithms to
use in a great many real-world applications. I also believe that one should
incorporate real-world knowledge in one’s algorithm by adding it to one’s
decoder or by expanding one’s operator set.”

Such hybrid/nonstandard systems enjoy a significant popularity in the evolution-
ary computation community. Very often these systems, extended by the problem-
specific knowledge, outperform other classical evolutionary methods as well as other
standard techniques (Michalewicz, 1993; 1996). For example, a system Genetic-2N
(Michalewicz, 1993) constructed for the nonlinear transportation problem used a ma-
trix representation for its chromosomes, a problem-specific mutation { the main oper-
ator, used with probability 0.4) and arithmetical crossover (the background operator,
used with probability 0.05). It is hard to classify this system: it is not really a genetic
algorithm, since it can run with mutation operator only without any significant de-
crease of quality of results. Moreover, all matrix entries are floating-point numbers.
It is not an evolution strategy, since it did not encode any control parameters in its
chromosomal structures. Clearly, it has nothing to do with genetic programming and
very little (matrix representation) with evolutionary programming approaches. It is
just an evolutionary computation technique aimed at a particular problem.

There are a few heuristics to guide a user in selection of appropriate data struc-
tures and operators for a particular problem. It is a common knowledge that for a
numerical optimization problem one should use an evolutionary strategy or genetic
algorithm with floating-point representation, whereas some versions of the genetic
algorithm would be the best to handle combinatorial optimization problems. Genetic
programs are great in the discovery of rules given as a computer program, and evolu-
tionary programming techniques can be used successfully to model a behavior of the
system (e.g., the prisoner dilemma problem). It seems also that neither of the evolu-
tionary techniques is perfect (or even robust) across the problem spectrum; only the
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whole family of algorithms based on evolutionary computation concepts (i-e., evolu-
tionary algorithms) have this property of robustness. But the main key to successful
applications is in heuristics methods, which are mixed skillfully with evolutionary
techniques. :

4. Evolutionary Computationzn Current Directions

The field of evolutionary computation has been growing rapidly over the last few
years. Yet, there are still many gaps to be filled, many experiments to be done, many
questions to be answered. In this section of the paper, we examine a few important
directions in which we can expect a lot of activities and significant results; we discuss
them in turn.

4.1. Theoretical Foundations

As indicated in the previous section, some evolution programs enjoy some theoretical
foundations. For evolution strategies applied to regular problems a convergence pro-
perty can be shown. Genetic algorithms, on the other hand, have the Schema Theorem
which explains why they work. However, many techniques are modified while applied
to particular real world problems. For example, to adapt a GA to the task of func-
tion optimization, it is usually necessary to extend them by additional features (e.g.,
dynamic scaled fitness, rank-proportional selection, inclusion of elitist strategy, adap-
tation of various parameters of the search, various representations, problem-specific
operators, etc). Evolution strategies, applied to a constrained numerical optimization
problem, usually incorporate some heuristic method for constraint-handling. Most
of these modifications pushed simple algorithms away from their theoretical bases,
however, they usually enhanced the performance of the systems in a significant way.
In the context of genetic algorithms, these modifications (De Jong, 1993):

[19

had pushed the application of simple GAs well beyond our initial
theories and understanding, creating a need to revisit and extend them.”

This is one of the most challenging tasks for researchers in the field of evolutionary
computation.

It is also important to continue research on factors affecting the ability of evo-
lutionary systems to solve various (usually optimization) problems. What makes a
problem hard or easy for an evolutionary method? This is a fundamental issue of
evolutionary computation; some results related to deceptive problems, rugged fitness
landscapes, epistasis, royal road functions, are steps towards approximating an answer
to this challenging question.

4.2. Function Optimization

For many years, most evolutionary techniques have been evaluated and compared
with each other in the domain of function optimization. It seems also that this
domain of function optimization would remain the primary test-bed for many new
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4.6. Co-Evolutionary Systems

There is a growing interest in co-evolutionary systems, where more than one evolution
process takes place: usually there are different populations there (e.g., additional
populations of parasites or predators) which interact with each other. In such systems
the evaluation function for one population may depend on the state of the evolution
processes in the other population(s). This is an important topic for modeling artificial
life, some business applications, etc.

Co-evolutionary systems might be important for approaching large-scale prob-
lems (Potter and De Jong, 1994), where a (large) problem is decomposed into smaller
subproblems; there is a separate evolutionary process for each of the subproblem-
s, however, these evolutionary processes are connected with each other. Usually,
evaluation of individuals in one population depends also on developments in other
populations.

The recently developed Genocop III system (Michalewicz and Nazhiyath, 1995)
for numerical optimization problems with nonlinear constraints incorporates some co-
evolutionary ideas: two populations (of not necessarily feasible search points and fully
feasible reference points) co-exist with each other. In this system, evaluation of search
points depends on the current population of reference points. In an approach proposed
by Le Riche et al. (1995), two populations of individuals co-operate with each other
and approach a feasible, optimum solution from two directions (from the feasible and
infeasible parts of the search space). Also, Paredis (Paredis, 1993) experimented with
co-evolutionary systems in the context of constraint satisfaction problems.

Recently, a co-evolutionary system was used (Nadhamuni, 1995) to model
strategies of two competing companies (bus and rail companies) which compete for
passengers on the same routes. Clearly, profits of one company depend on the cur-
rent strategy (capacities and prices) of the other company; the study investigated the
interrelationship between various strategies over time.

4.7. Diploid/Polyploid versus Haploid Structures

Diploids (or polyploids) can be viewed as a way to incorporate memory into the in-
dividual’s structure. Instead of a single chromosome (haploid structure) representing
a precise information about an individual, a diploid structure is made up of a pair of
chromosomes: the choice between two values is made by some dominance function.
The diploid (polyploid) structures are of particular significance in non-stationary en-
vironments (i.e., for time-varying objective functions) and for modeling complex sys-
tems (possibly using co-evolution models). However, there is no theory to support
the incorporation of a dominance function into the system; there is also quite little
experimental data in this area.

4.8. Parallel Models

The parallelism promises to put within our reach solutions to problems untractable
before; clearly, it is one of the most important areas of computer science. Evolutio-
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nary algorithms are very suitable for parallel implementations; as Goldberg (1989)
observed:

“In a world where serial algorithms are usually made parallel through
countless tricks and contortions, it is no small irony that genetic algorithms
(highly parallel algorithms) are made serial through equally unnatural
tricks and turns.”

However, there is not any standard methodology for incorporating parallel ideas into
GAs: existing parallel implementations can be classified into one of the following
categories:

o massively parallel GAs. Such algorithms use a large number of processors (usu-
ally 2!° or more). Often a single processor is assigned to an individual in the
population. In this model there are many possibilities for the selection method
and mating (combining strings for crossover). Some experimental work in this
area is reported by Miihlenbein (1989).

e parallel island models. Such algorithms assume that several subpopulations
evolve in parallel. The models include a concept of migration (movement of an
individual string from one subpopulation to another) and crossovers between
individuals from different subpopulations. There are many reported experiments
in this parallel model; the reader is referred to Whitley’s work (1990) for full
discussion. .

o parallel hybrid GAs. It is similar to the first model (massively parallel GAs)
in that there is one-to-one correspondence between processors and individuals.
However, only a small number of processors is used. Additionally, such algo-
rithms incorporate other (heuristic) algorithms (e.g., hill-climbing) to improve
the performance of the system. Usually the reported experimental results are
satisfactory (Gorges-Schleuter, 1989; Miihlenbein, 1989), however, an analysis
of such systems is far from trivial.

Parallel models can also provide a natural embedding for other paradigms of
evolutionary computation, like non-random mating, some aspects of self-adaptation,
or co-evolutionary systems.

5. Conclusions

It is worthwhile to note that there are many other approaches to learning, opti-
mization, and problem solving, which are based on other natural metaphors from
nature—the best known examples include neural networks and simulated annealing.
There is a growing interest in all these areas; the most fruitful and challenging di-

rection seems to be a ‘recombination” of some ideas at present scattered in different
fields.

Moreover, it seems that the whole field of artificial intelligence should lean to-
wards evolutionary techniques; as Lawrence Fogel stated (Fogel, 1994) in his plenary
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talk during the World Congress on Computational Intelligence (Orlando, 27 June-2
July 1994):

“If the aim is to generate artificial intelligence, that is, to solve new prob-
lems in new ways, then it is inappropriate to use any fixed set of rules.
The rules required for solving each problem should simply evolve ...”
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