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SELF-ORGANIZING NEURO-FUZZY CONTROL
OF COMPLEX SYSTEMS

ToAo FABRO*, FErNaANDO GOMIDE*

An autonomous system control creates a need for classes of control systems
whose behaviour should emerge as a consequence of its interaction with the en-
vironment. Autonomous systems must be able to adapt continuously to new
and unpredictable situations and to be successful in accomplishing their tasks.
In this paper, a self-organizing, neuro-fuzzy control architecture for complex
systems is presented. The emphasis is on an autonomous-vehicle navigation
problem that has been recognized to be of considerable challenge. The aim is
to find target positions without colliding with obstacles within an unknown en-
vironment. The architecture combines neural networks and fuzzy systems with
the theory of neuronal group selection to acquire navigation skills. Neuro-fuzzy
sensor information builds up adaptive fields whose intensity triggers fuzzy con-
trol actions in response to the environment characteristics. The control system
develops emergent, adaptive behaviour from the interactions between the ve-
hicle, environment, and learning strategies. Simulation results show that the
control system is able to learn efficiently navigation strategies, to re-adapt in
different environments and to perform better than alternative schemes.

1. Introduction

The aim of this work is to develop a self-organizing, neuro-fuzzy control approach to
complex systems, with emphasis on the autonomous-vehicle navigation in unknown
environments.

Autonomous navigation is essentially a trajectory control problem. In general
terms, the control system must execute a given task, such as reaching a target, while
avoiding obstacles. The main difficulties lie in the multiplicity of distinct relative
positions of the vehicle. To establish appropriate decisions in any situation, the
control system must either recognize each distinct position, which may rapidly lead
to memory exhaustion, or be able to generalize.

The intrinsic difficulties of the autonomous navigation problem have captiva-
ted many artificial-intelligence researchers who have found it to be of considerable
challenge. Navigation control of autonomous mobile vehicles is a research area that
can be roughly divided into two main approaches: path planning, and sensor-based
navigation.

Path planning is based on environment knowledge, and many approaches, ranging
from mathematical analysis and path calculations (Lozan-pérez and Wesley, 1979), to

* Unicamp/Fee/Dca C.P. 6101, CEP 13.083-970 Campinas — SP, Brazil,
e-mail: gomide@dca.fee.unicamp.br



582 J.A. Fabro and F. Gomide

symbol manipulation on a knowledge base about the environment (Fikes et al., 1972),
are available. These methods can solve the path planning problems for completely
known environments, and with off-line simulations. When facing real-time situations
and unknown environments, or dynamically changing environments, these methods
cannot be used. To overcome these difficulties, methods considering real-time envi-
ronment information from sensors must be considered. Based on sensor readings, the
mobile vehicle should be able to perform local path planning and to take appropri-
ate control actions. Borenstein and Koern (1989) introduced the virtual force field
method to solve this problem. However, their method has problems in finding force
coefficients in cluttered environments which cannot be described by a mathematical
model (Borenstein and Koren, 1991). Brooks (1986) presented a behaviour-based ap-
proach, called the subsumption architecture, which is based on pre-specified behaviour
encoded in task-achieving modules. This architecture has succeeded in navigating in
unknown environments, but it depends highly on the pre-defined knowledge struc-
tures implemented by each module. The success of this approach depends on how
completely the behaviour can be described beforehand.

Many other approaches have recently been developed, mainly by using fuzzy sets
and neural networks. The fuzzy set approach has the advantage of treating uncertain-
ty and imprecision through simple rule bases (Ishikawa, 1991). The knowledge must
also be provided in the form of fuzzy if-then rules. However, even after rule definition
and refinement, it is generally difficult to treat all possible cases with specific rules.
To overcome these difficulties, neural networks have been used. The main advantage
of the neural network approach is that there is no need for knowledge programming.
For instance, by using error back-propagation neural networks and a set of training
patterns (Kozakiewicz and Ejiri, 1991), it is possible to train a vehicle to navigate in
several environments (Sekiguchi et al., 1990). However, when there are contradictory
situations, training is difficult. The system is not well-prepared for certain changes
in the environment conditions.

In an attempt to unify the best of path planning, sensor based navigation, fuzzy
logic and neural networks, Beom and Cho (1995) have recently introduced a control
system based on a reinforcement learning scheme to tune a fuzzy rule base, and
to obtain adaptive behaviour during interaction with the environment. There is no
knowledge pre-programming of actions in this approach, and reinforcement training
should be performed to tune the control system properly.

A method based on neural models, developed by Verschure et al. (1992) and
called distributed adaptive control (DAC), introduces new capabilities to adapt in
unknown environments. The DAC control architecture can learn to navigate in an
environment through interaction, with no need for pre-programming or definition.
This architecture is based on a learning-by-interaction scheme, and produces emergent
behaviour during the learning process. The main DAC problems are related to its
performance in cluttered environments and in difficult situations found in real-life
navigation problems.

In this paper, a self-organizing, neuro-fuzzy control architecture for complex sys-
tems, based on the DAC model introduced by Verschure et al. (1992), is proposed. The
concept of neuro-fuzzy sensors (Gomide and Rocha, 1992) and a set of basic motor ac-
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tions (Edelman, 1987) are used here to assemble a control architecture which is able to
learn control strategies on a learning-by-interaction basis (Fabro, 1996). Neuro-fuzzy
sensor information builds up adaptive fields whose intensity triggers fuzzy control
actions derived from basic motor behaviour and environment characteristics. Simula-
tion experiments have shown that the control system performs better when compared
with alternative schemes, see e.g. (Oliveira et al., 1995; Verschure et al., 1992). Here
the results provided by the proposed architecture are compared with the DAC scheme
presented in (Verschure et al., 1992).

The paper is organized as follows. After this brief introduction, the next sec-
tion states the autonomous navigation problem and the characteristics of the vehicle.
Section 3 describes the details of the system architecture including the learning proce-
dure, fuzzy sensors, and fuzzy control rules which are assigned to the basic behaviours.
In Section 4, computational results are presented and a comparison is made between
the proposed system behaviour and the DAC approach presented by Verschure et al.
Finally, the conclusions and future work to be pursued are addressed.

2. Navigation Control for Mobile Vehicles

Typically, in control problems of autonomous vehicles in unknown environments, the
goal is to reach specified environment (target) positions, without colliding with ob-
stacles or walls.

The vehicle model addressed below is similar to that presented in (Verschure
et al., 1992), except for the positioning of the target sensors. It interacts with the
environment through three kinds of sensors: collision, target position and distance-to-
obstacles ones. The sensors are distributed on the vehicle in the following manner: the
collision and the distance sensors cover the region between —90° and +90° from its
centre. Sensors positioned from 0° (in front of the vehicle) to 33° are placed every 3°.
This spacing is increased proportionally to the vision angle of the sensor, as can be
seen in Fig. 1. There are collision and distance sensors at each of 39 positions; the
distance sensors provide readings proportional to the distance from the sensor to the
nearest obstacle or wall; there are two target sensors, positioned at —90° and +90°
respectively. Each of these sensors furnishes readings proportional to its distance to
the target. Based on these readings, the control system can estimate the position of
the target, either on the left or on the right side.

The basic control actions are: move a determined number of steps ahead; turn
a determined angle to the right or left; stop and move back a determined number of
steps. Combining the basic control actions, the vehicle must be able to find target
positions while avoiding any obstacle in its path.

3. System Architecture

The distributed adaptive control (DAC) structure is based on the theory of adaptive
fields and has been introduced by Verschure et al. (1991). This theory assumes that
an organism is capable of perceiving a set of stimuli from the environment, and to
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Fig. 1. Collision and distance sensor positioning.

modify its own behaviour to adjust to the environment characteristics. In this case,
the system objective is to learn how to find the target positions without colliding
with any obstacle. In the beginning, the control system has no information about the
environment. The only information that can be used by the control system is that
provided by the collision and target sensors. Therefore, initially there is no way to
avoid a collision with the obstacle unless the collision possibility is detected in advance
and the vehicle moves a step back and turns. During this process of interaction with
the environment, the system acquires information and uses it to learn when to turn
and avoid a collision, or when to turn and reach a target. This learning process is
based on neural group interaction.

3.1. Neural Groups

There are three neural groups (Edelman, 1987) that enter into the structure of the
control system. Each neural group is a set of independent neurons, each connected
to a sensor. The three groups are respectively called the Distance Detection Group,
Collision Detection Group and Target Detection Group. Connections are established
between each output of the distance group and each input of the collision group.
This provides a fully-connected two-layer neural network, whose connection weights
can be modified. In the same manner, connections are set between the target and
the distance group. The interaction between the target and the collision groups is
managed by an Inhibitor Group. This group receives its input from both the target
and collision group, and performs a composition of the corresponding activation levels
to evaluate the action to be taken.

The DAC system (Verschure et al., 1992) has the advantages of learning and
adapting to any environment with which it interacts. However, in complex interac-
tions with the environment, and with random positioned target positions, the DAC
does not present high accuracy in avoiding obstacles and has learning difficulties. On
the other hand, when new collision and target sensors, or fuzzy sensors in brief, and a
new set of basic control actions using fuzzy set theory techniques are introduced, the
advantages of learning and adaptation to any environment are retained with higher
accuracy and better learning capabilities. The schematic diagram of the proposed
control system architecture is illustrated in Fig. 2.
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Fig. 2. Control system architecture.

The interaction between the neural groups, the control blocks, and the environ-
ment induces the emergent, adaptive behaviour of the mobile vehicle. By continuously
changing the inter-group connection weights, the system evolves and adapts to the
situations found in the environment.

3.2. Learning Mechanisms

At each vehicle/environment interaction step, all sensors’ readings are updated, and
a learning step takes place. Each learning step consists in changing the connection
weights between the neural groups.

For the collision and target neural groups, the output h; of each neuron is given
in the following form:

N
n=c+ Y Kjs; (1)
7=1

where X denotes the neural group, which can be C for the collision group or T for
the target group. The quantity ¢} denotes the sensor input to which the neuron is
directly connected and N is the number on neurons of the neural group. Moreover,
K{\j denotes the connection weight between the output of neuron j of the distance
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group (s;) and the input of the neuron ¢ of the neural group A. The weights are
updated according to the rule

1 _
AK;\j = [n’\sf‘sj — €8 AK}J-] (2)

where 7 denotes the learning rate, ¢ is the decay rate, and s~ stands for the
average activation of the group A. This parameter introduces an active decay that
takes place just when there is something to learn, i.e. the neural group is active.
The active decay provides the continuous learning when interacting with the environ-
ment. Learning takes place only when interaction reveals relevant information, e.g. the
vehicle collides or a collision is predicted. Without this decay mechanism, the system

- would not be able to adapt in the case of changes in the environment (Verschure et al.,
1992).

3.3. Distance Detection Sensors

The distance sensors must provide, on each move of the vehicle, distance measures
to the obstacle in the direction of the sensor reading. These measures are inputs to
the distance detection neural group. The output (s;) of each neuron in this group
is given by the inverse of the corresponding distance sensor (rj). Therefore, these
neuron outputs code a measure for the time to contact (Lee, 1976). The transduction
function is

8 = 1/e7(rimdn ®

where dpax is the distance at which the sensor will give a maximal response, and z
is a scaling factor.

3.4. Fuzzy Collision Sensors

Usually, the collision sensors are bumpers. This type of sensor can produce only
binary outputs which are active when collided, and inactive otherwise. To improve
the system performance in avoiding collisions, we introduce a new kind of sensor,
using the fuzzy set theory (Gomide and Rocha, 1992). The fuzzy collision sensor
substitutes the on/off output of the usual collision sensors to provide a fuzzy value
which represents a measure of time to collide. These sensors can be implemented
using the fuzzy sets shown in Fig. 3.

Therefore, each fuzzy collision sensor provides a collision degree, according to
the obstacle proximity. The obstacle proximity measure is provided by the distance
sensors. The collision sensor outputs are used by the control system to update the
weights between the collision and distance-to-obstacles neural groups, and by the rule
base to trigger control actions concerning the situation.
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Fig. 3. Fuzzy sets for collision sensors.

3.5. Fuzzy Target Sensors

There are just two target sensors placed at —90° and +90° from the vehicle centre.
The sensor output gives an estimate of the distance to a target. From the two mea-
surements, the control system can infer the side to turn and reach the target. Fuzzy
target sensors are used to provide information about the target proximity. Therefore,
if the target is on the left, but is far, then the vehicle turns just a little in that di-
rection. On the other hand, if the target is near, then the control action must be
stronger, and the vehicle must turn quickly to reach it. Target information is also
used by the fuzzy control rules. The fuzzy sets are as shown in Fig. 4.
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Fig. 4. Fuzzy sets for target sensors.
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3.6. Proportional Behaviour Selection

To ensure the global performance of the system in finding target positions without
colliding, even if targets are very close to the obstacles, a proportional behaviour
selector or a proportional cross-inhibition is proposed. This selector takes its decisions
based on measurements of activation of the target and collision neural groups as
follows: when the collision group is more active, and the target detection group is
inactive, the system must avoid obstacles, independently of target position. This
situation occurs when the vehicle is near to the obstacles, but far from the target.
When the target detection group is more active, and the collision group is not active,
the system must go towards the target, independently of obstacles. This situation
occurs when the vehicle is closer to the target than to any obstacle; but when both
the target and collision groups are active, the system must find a compromise solution
between the actions to be taken, based on the activation levels of each neural group.
This situation occurs, e.g., when the target position is very close to an obstacle or a
wall.

The formulae to compute the activation levels of each group are as follows:

¢ The collision group activation level (a.):
c = — n 4
e = — 5 | 4

where m, is the number of neurons of the collision detection group, and s,
are the activation (output) levels of each neuron.

e The target detection group activation level (a):

oy :'u/zt dist,, (5)
n=1 )

where dist,, is a function that evaluates the distance between each target sensor
and the target, and m; is the number of neurons of the target detection group.
The factor u is used to scale the activation levels between collision and target
groups. In the simulation experiment p was set to 10, m. to 39 and m, to 2.

3.7. Fuzzy Control Rules

The original DAC formulation uses a pre-wired neural network to relate output pat-
terns from the collision and target detection groups, with very simple crisp control
actions. These actions are: go ahead (the default action), go back, and turn to the
left or to the right by a constant angle (typically 9°).

In the approach proposed here, the basic control actions are specified by a set of
fuzzy control rules (Pedrycz, 1993). The fuzzy rules are based on information given
by the fuzzy sensors, and on information provided by the neural groups outputs.
The fuzzy collision and target sensors furnish the information about the environment.
From the collision neural group, the system gets the position of the obstacle. This
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information is obtained by finding the most active neuron. The neurons are associated
with obstacle positions, and are characterized by the fuzzy sets shown in Fig. 5.
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Fig. 5. Fuzzy sets for obstacle positioning.

With this information, the control rules for obstacle avoidance become very sim-
ple, e.g.

e If the obstacle is almost on the front left, then turn right a lot.

e If the obstacle is much to the right, then turn left a little.
Additional fuzzy control rules are used for collision avoidance, as illustrated by the
following examples, where collision sensor and obstacle are fuzzy variables:

o If the collision sensor is collided and the obstacle is on the right, then move back
and make a left turn.

e If the collision sensor is collided and the obstacle is on the left, then move back
and make a right turn.

o If the collision sensor is very near and the obstacle is on the right, then turn
left a lot.

Target reaching rules are as shown by the following examples, where target and dis-
tance to target are fuzzy variables:

» If the target is right and the distance to the target is near, then turn right a lot.
e If the target is left and the distance to the target is near, then turn left a lot.

Note that the target seeking and obstacle avoidance rules may be in conflict,
and that is why the proportional behaviour selection scheme is necessary. The fuzzy
controller uses the sup-mim compositional rule of inference, with centre of area def-
fuzification (Driankov et al., 1993).

Let u. and u; be the deffuzified control actions derived from the fuzzy control
rules for collision avoidance and target reaching, respectively. Thus the actual control
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action u to be adopted depends on the collision group and target detection group
activation levels as found in Section 3.6. It is determined by

(s P O

U= c+ Ut (6)

= u
Qo + 0 Qc + oy

4. Computational Results

In this section, simulation results.are presented to illustrate the performance of the
proposed control architecture. It was assumed that the sensors could ideally detect
the nearest obstacles within their ranges, and the target distances in any direction.

To run the experiments on, obstacles were positioned in the environment. Target
positions were randomly generated. The vehicle had a prescribed number of steps to
reach the target (300 steps), otherwise, the target was re-positioned. This random
target positioning introduces a higher level of complexity during interactions because
the system is always faced with various situations.

In the simulation experiments, the learning rate 7* was set to 0.2, the decay
rate £ to 0.8, dmax to 15, and z to 0.1.

Figure 6 shows the original DAC system performance (a) and the proposed neuro-
fuzzy control performance (b). Each simulation took 10000 steps, and the trajectories
shown were taken after an initial learning period (5000 steps). In Fig. 6(a) one
can see the points (indicated by arrows) where the DAC system was not able to
avoid a collision. The DAC system cannot generalize what was learned to all the
situations found during the movement. In Fig. 6(b) a typical trajectory generated by
the proposed system is shown. No collision occurred at all. The fuzzy techniques used
in sensors and control actions provide higher accuracy and better learning capabilities.

(a) (b)

Fig. 6. Simulation results for the DAC (a) and neuro-fuzzy (b) control systems.
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Figure 7 presents a typical performance of the DAC scheme during one complete
simulation run. Observe the collisions that occur while the control system adapts to
the environment. In Fig. 8, a complete simulation run of the proposed control system
is presented. There are no collisions, even at the beginning of the iteration.
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Fig. 7. Performance of the DAC system.
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Fig. 8. Performance of the proposed neuro-fuzzy system.

After a number of additional simulations (with 10000 steps in each of them), the
DAC got an average number of 30 targets, but was colliding 50 times on average. For
the neuro-fuzzy approach, the target-reaching average was also 30, but the system
did not collide at all. At the beginning of each experiment, the fuzzy sensors provide
information rich enough to avoid collisions. As the neural groups learn through their
interaction with the environment, the performance of the system in avoiding obstacles
and finding targets increases further.

Immediately after the simulation experiments described above were performed,
the vehicles were put into a completely different environment, as shown in Fig. 9. The
behaviour of the DAC (a) and of the proposed neuro-fuzzy (b) control systems are
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Fig. 9. Simulation results.

also shown. Both systems performed well when re-adapting to the new environment,
but the DAC system (see Fig. 10) did allow new collisions to occur to keep its adaptive
behaviour during this process. As shown in Fig. 11, the proposed system still avoids
collision during the re-adaptation. Therefore it becomes clear that the generalizing
capabilities of the system developed herein are much better than those provided by
the DAC approach.

5. Conclusions

Autonomous system control possesses considerable challenges for control system de-
signers because its behaviour, in contrast to traditional set-point or disturbance rejec-
tion control, cannot be fully specified in advance. Autonomous systems must be able
to adapt continuously to new, unpredictable situations to achieve their tasks. This
requirement creates a need for a class of control systems whose behaviour, given the
objectives to be fulfilled, emerges from its interaction with the environment.

In this work, a self-organizing, neuro-fuzzy control architecture was developed,
aiming at solving autonomous control problems, with the focus of attention on navi-
gation of autonomous vehicles in unknown environments. The task of the control
system was to reach randomly generated target positions while avoiding obstacles.
The main paradigms behind the proposed architecture are the adaptive-field con-
cept of the theory of neuronal group selection, coupled with the theory of fuzzy
sets. By introducing fuzzy sensors and basic fuzzy-control actions, the navigation
problem was solved efficiently. In addition, the architecture developed allows the
adaptive behaviour to emerge. An instance of emergent behaviour relates to the case
of avoiding collisions with obstacles, even if the vehicle is put in different environments.
In this case, the system was able to make collision avoidance decisions, as a result of
training. Clearly, target seeking behaviour was also developed through adaptation.
Simulation results show that the control architecture proposed herein performs better
when compared with the DAC architecture. Due to its structure and adaptation
characteristics, it is quite reasonable to expect that the proposed approach may also
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Fig. 10. DAC performance after changing the environment.
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Fig. 11. Proposed system performance after changing the environment.

have a competing performance when compared with alternative control architectures
(see e.g. Beom and Cho, 1995; Brooks, 1986; Figueiredo and Gomide, 1995; Oliveira
et al., 1995). Further work concentrates on actual implementation of the architecture
to verify its robustness in real situations.
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