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FUZZY NEURAL HYBRID POSITION/FORCE CONTROL
FOR ROBOT MANIPULATORS

Kazuo KIGUCHI*, Tosnio FUKUDA**

Hybrid position/force control is one of the most important and fundamental
control methods of robot manipulators. However, there are some problems in
providing a hybrid position/force controller for practical use since conventional
controllers are not able to adapt to an unknown environment. Recently, a lot of
research has been carried out on fuzzy neural control, the combination of neural
networks control and fuzzy control, in order to make the controllers intelligent.
The fuzzy neural controller is expected to perform more sophisticated control
than a conventional one in an unknown environment owing to its adaptation
ability. In this paper, we propose a fuzzy neural hybrid position /force control
for robot manipulators in an unknown environment using fuzzy logic, neural
network, and fuzzy neural network. Simulations have been done with the use of
a 3DOF planar robot manipulator to confirm the effectiveness of the proposed
method.

1. Introduction

Recently, many researchers have applied both fuzzy logic and neural networks to
control (Fukuda and Shibata, 1991; Kiguchi and Necsulescu, 1993; Mamdani, 1974;
Popovic et al., 1995; Shibata et al., 1992; Yabuta and Yamada, 1990). It is known
that fuzzy control (Mamdani, 1974; Popovic et al., 1995) is capable of dealing with
human knowledge. Therefore, the precise mathematical models of the plant and the
environment are not required for designing the controller. There are some difficul-
ties, however, to design the fuzzy controller systematically. Furthermore, once fuzzy
control rules and membership functions are decided, usually they cannot be modified
on-line even if the controller is not perfect. On the other hand, it is known that neural
networks control (Fukuda and Shibata, 1991; Kiguchi and Necsulescu, 1993; Shibata
et al., 1992; Yabuta and Yamada, 1990) has an ability to learn from its experiments
and adapt to a new environment on-line. Because of these abilities, this controller is
especially effective in the case when the robot manipulators have to work in an un-
known environment. It is difficult, however, to design a good neural network controller
without learning. A robot manipulator might cause some damage to the environment
before the controller adapts to the unknown environment. Furthermore, the meaning
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of each weight value of neural networks is not understandable for us. Therefore, using
fuzzy neural control, a combination of fuzzy control and neural network control, seems
to be one of the best ways to solve these problems (Kiguchi and Fukuda, 1995). Fuzzy
neural networks have been applied in many fields of robotics (Kiguchi and Fukuda,
1995; Sarkodie-Gyan and Willumeit, 1995; Suh and Kim, 1994) in order to make the
robots intelligent.

Robot manipulators are expected to control the force and position precisely. In
order to control both the force and position simultaneously, a great deal of work has
been carried out to elaborate the effective position/force control algorithms. One of
the most important and fundamental control algorithms for robot manipulators is
the hybrid position/force control (Raibert and Craig, 1981; Yoshikawa, 1987). The
basic idea is separating the directions for the force control, which is normal to the
constraint surface of the environment, and for the position control, which moves along
the constraint surface in the Cartesian coordinate system. The hybrid position/force
control, however, has not been applied in practice because of some difficulties. For
example, the dynamics of the unknown environment affects the stability of the whole
system while the robot manipulator is in contact with the environment. Furthermore,
friction between the end-effector of the robot manipulator and the environment occurs
since the robot manipulator is in contact with the environment. This problem does
not exist if the robot manipulator controls the position only. The friction between the
end-effector of the robot manipulator and the environment has to be compensated
when the position of the end-effector is controlled along the surface of the environment
as the force is applied simultaneously to the environment. Moreover, the friction force
varies according to the applied force to the environment. Therefore, in the experiments
of position/force control carried out by some researchers, something like a wheel is
attached to the end-effector to be able to slide along the surface of the environment
without friction (Lu and Goldberg, 1995). In this paper, we propose an intelligent
hybrid position/force controller in order to solve these problems using fuzzy logic,
neural networks, and fuzzy neural networks.

For the problem of the force control law of the hybrid control described above, a,
fuzzy neural force controller is applied in order to avoid unexpected overshooting at
the beginning, compensate external disturbance, and make the controller adapt to the
unknown environment using its adaptive ability. However, if the environment is much
harder than the estimated environment, unexpected overshooting might happen. In
this paper, a neural network is applied for adjusting the input information to the fuzzy
neural force controller in order to adjust the controller to the environment instantly
when the environment is much harder or softer than the estimated one. Furthermore,
a fuzzy-controlled evaluation function is proposed for the effective learning algorithm
of the fuzzy neural force controller.

For the problem of the position control law of the hybrid control described above,
a fuzzy neural position controller is applied in order to compensate the external dis-
turbance, modeling error, etc. In this paper, a specialized neuron for friction com-
pensation, which is attached to the fuzzy neural network for the position control, is
proposed to compensate the friction between the end-effector of the robot manipulator
and the environment.
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The effectiveness of the proposed method is verified by computer simulation with
a 3DOF planar robot manipulator which is shown in Fig. 1.
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Fig. 1. 3DOF planar robot manipulator.

2. Hybrid Position/Force Control

In order to control the force applied to the environment with the robot manipulator
shown in Fig. 1, and to control the position in the y-direction and the angle of the
end-effector with respect to the environment simultaneously, a hybrid position/force
controller seems to be appropriate (Raibert and Craig, 1981; Yoshikawa, 1987). The
basic idea of the hybrid control is to separate the directions for the force control that
is orthogonal to the constraint surface of the environment, and for the position control
that moves along the constraint surface in the Cartesian coordinate system.

The dynamics equation of the planar robot is as follows:
M (q)d + h(g,4) + Fiesgn(q) =7~ JTf (1)

where M is the inertia matrix, A denotes the Coriolis and centrifugal components,
F;. is the Coulomb friction of the robot manipulator joint, 7 is the output torque,
J stands for the Jacobian, f denotes the force applied to the environment, and q is
an angular position vector.

From eqn. (1), we obtain the required motor torque equation
7= M(q)§ + h(q,§) + Fjesgn(g) + I f (2)

The acceleration of the end-effector of the robot manipulator in the Cartesian
coordinate system is written as

i=Jj+ Jg (3)
where z is a position vector in the Cartesian coordinate system.

From eqns. (2) and (3) with the selection matrix S, which selects the directions
for the force control that is normal to the constraint surface of the environment and
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for the position control that moves along the constraint surface in the Cartesian
coordinate system, the following equation can be written for the hybrid control:

v = M(g)J ™! (I - S)up — 4| + h(a,4) + Fye sgn(d)

+JTf + JTSuy (4)

where u, is a command vector for position control and us is a command vector for
force control. In this paper, u, = u(zq,z, f) is generated by the fuzzy neural position
controller in order to reduce the error between the desired position (trajectory) and
the measured position (trajectory), where z4 is the desired manipulator position,
z is the measured manipulator position, and f is the measured force. Here u £ =
u(f4, f, Mo, z) is generated by the fuzzy neural force controller in order to reduce the
error between the desired force and the measured force, where f; is the desired force,
f is the measured force, My is the manipulator momentum in the direction of the
force control in the Cartesian coordinate, and z is the manipulator position.

The block diagram of the hybrid controller is shown in Fig. 2. This controller
controls the force applied to the environment, the position in the y-direction, and
the angle of the end-effector (see Fig. 1).

V
{id% Position | u, Inverse
Xg—= Control I-§ a

Kinematics

Xg—=> Law

Force
fa Control =
Law

i

Fig. 2. Block diagram of hybrid control.

In this paper, the resolved acceleration control method (Luh et al., 1980), in
which the acceleration is specified and all the feedback control is carried out in the
Cartesian coordinate system, is applied for the control of the angle of the end-effector
since any adaptation is not required for the end-effector angle control. The force
command for the end-effector angle in the Cartesian coordinate system Upq , ONE of
the components of the command vector for position control u, in eqn. (4), is written
as

Upa = jda + Kv(i:da - ia) + Kp(wda - xa) (5)

where 4, is the desired angle of the end-effector, z, is the measured angle of the
end-effector (a component of the position vector z). Moreover, K, and K, are the
velocity and position gain matrices, respectively.

Obtaining the desired position/force with the hybrid controller using conven-
tional control methods is usually difficult because of the following reasons. First, it is
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very difficult to make perfect mathematical models of the robot manipulator and the
environment. Second, a high feedback gain for the force control should not be used,
since the dynamics of the environment affects the stability of the whole system while
the robot manipulator is in contact with the environment. Third, friction in the robot
manipulator joints and friction between the robot manipulator and the environment
cannot be compensated completely. Especially, in the case when the force applied to
the environment varies, the amount of the Coulomb friction also changes over time.
The equation of the Coulomb friction between the robot manipulator and the en-
vironment F,,, which acts in the direction of the position control in the Cartesian
coordinates, is written as follows:

For = ﬂkf (6)

where i1, is the coefficient of kinematic friction, f is the force applied perpendicularly
to the environment. Since it is difficult to obtain u; when a property of the envi-
ronment is unknown, it is difficult to compensate the Coulomb friction between the
robot manipulator and the environment with conventional control methods. Fourth,
external disturbance cannot be avoided. Furthermore, if the environment is made of
rubber, plastics, wood, etc., the property changes over time since it is affected by the
temperature and humidity of the air. Consequently, adaptation abilities are required
for the hybrid controller to overcome these problems. In this paper, adaptation abili-
ties are realized in the hybrid controller by applying fuzzy logic, a neural network, and
fuzzy neural networks in order to generate the adaptive control output u, and uy
in eqn. (4) to solve these problems.

Practically, most modelling errors or uncertainties are included in the definition
of the amount of mass and friction in eqn. (4). These modelling errors or uncertainties,
and unmodelled external disturbances are compensated by adjusting u, and uy.

The details of the proposed controller are explained in Sections 3 and 4.

3. Force Control Law of the Hybrid Control

In order to apply the desired force to an environment whose dynamic property is
unknown, the adaptive control, such as the adaptive-type neural network control, has
to be applied. The adaptive-type neural network controller, however, cannot adapt
to the unknown object immediately (Kiguchi and Necsulescu, 1993). Consequently,
overshooting which gives too much force to the object might happen. The authors
have proposed the fuzzy neural force controller (Kiguchi and Fukuda, 1995) for robot
manipulators to solve this problem. In order to make the fuzzy neural force controller,
the fuzzy force controller which is able to avoid unexpected overshooting has to be
designed first using our knowledge. Then it is converted to a neural network which is
able to adapt to an unknown environment using the back-propagation learning algo-
rithm. However, if the environment is much harder than the estimated environment,
overshooting cannot be avoided even with the fuzzy neural network force control. In
this paper, we propose to use a neural network which learns off-line to adjust the input
information to the fuzzy neural network force controller. By adjusting the input in-
formation, the controller becomes capable of dealing instantly with a harder or softer
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environment than estimated. We call this neural network the Input Adjustment Neu-
ral Network (IANN). The architecture of the fuzzy neural force controller is depicted
in Fig. 3. Here ¥ means the sum of the inputs, and II means the multiplication of
the inputs. The fuzzifier layer, in which each neuron represents a membership func-
tion for the input, consists of 10 neurons, the rule layer consists of 17 neurons, and
the defuzzifier layer consists of 2 neurons.

- b
L o — = — — VALK
K

Input
Layer Layer

Fig. 3. Architecture of the fuzzy neural force controller.

3.1. Fuzzy Neural Force Control

Usually fuzzy control uses the error and its change rate for the input to the controller.
In the case of force control, it is not easy to use the error change rate since the signals
from a force sensor are noisy. In this case, the manipulator’s pushing velocity against
the environment might be used instead of the force error change rate. As far as
robot manipulators are concerned, however, the sense of the velocity depends on the
amount of their inertia. This means that the sense of velocity might be different even
with the same robot manipulator if its configuration is different. Therefore, the same
membership functions of the velocity should not be used if the configuration of the
robot manipulator is different. In order to avoid this kind of problems, the authors
proposed to use the momentum of the robot manipulator instead of the velocity of
the robot manipulator (Kiguchi and Fukuda, 1995). It is also a good method to use
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the kinetic energy of the robot manipulator instead of the velocity. However, dealing
with the squared velocity for the input to the controller is difficult. Therefore the
momentum of the robot manipulator, whose equation is written down below, is used
in this paper. Namely, we have

Mo = M(q)v (7)

where My represents the momentum of the manipulator in the direction of the force
control, v denotes the velocity of the robot manipulator in the direction of the force
control, M;(q) stands for the inertia matrix in the Cartesian coordinates when the
angular position vector of the robot manipulator is g. The inertia matrix in the
Cartesian coordinates M;(q) is written as the following equation with the use of the
inertia matrix in the manipulator angular coordinates M(q) and the Jacobian J:

M.(g) = I ()M ()T () (8)

There are five kinds of fuzzy numbers (PB, PS, ZO, NS, and NB) for each input
variable (the error and manipulator momentum). The membership functions are
obtained through the fuzzifier layer of the neural network using the Gaussian function,
which is written down as eqn. (9), and the sigmoidal function, which is written down
as eqn. (11). The simple fuzzifier layer is realized by using these two kinds of functions:

1

folus) = 70— (9)
us(z) = wo + wiz (10)
folug) = e (11)
ug(z) = 22 (12)

where wyp is a threshold value and w; is a weight. In the Gaussian function, wq is
the mean value and w; is a deviation of the membership function.

The calculated membership functions from the fuzzifier layer are sent to the rule
layer and multiplied in the neuron in the rule layer according to fuzzy IF-THEN rules.
There are two outputs from each neuron in the rule layer. One of them is multiplied
by the weight and summed up in the next layer. The other is just summed and
then inverted in the defuzzifier layer. The multiplied values of these outputs will be
the output of the fuzzy-neural network. Note that the output of the controller is a
real value, not fuzzy. The output from the controller is the force command in the
Cartesian coordinates.

3.2. Input Adjustment Neural Network (IANN)

It is possible through the fuzzy neural force control method described in Section 3.1,
to apply the desired force trajectory to almost every environment without unexpected
overshooting, assuming the property of the environment is hard when we design the
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fuzzy force control law. However, if the environment is much harder than the esti-
mated one, unexpected overshooting might happen even with the fuzzy neural force
control. If it is possible to estimate the property of the environment in the early stage
of the force control from the relation between the deformation of the environment
and the reaction force. The definition of the membership function of the fuzzy neural
force controller can be adjusted immediately according to the property of the envi-
ronment in order to avoid unexpected overshooting. In this paper, we propose the
Input Adjustment Neural Network (IANN) for the purpose of adjusting two input-
information to the controller, the error between the desired and measured force E and
the manipulator momentum My, from the relation between the deformation of the
environment and the reaction force in order to make the controller adapt immediately
to the environment.

Adjusting the membership function of the input variables, which is defined when
the fuzzy force control law is designed, means multiplying the membership function
of the input variables by adjustment coefficients (the output from the JANN). It
produces the same effect as making the shape of the membership function wider or
narrower (see Fig. 4). This means that the IANN is able to change the definition of the
membership function immediately. In other words, the antecedent of the fuzzy force
control law is adjusted immediately according to the property of the environment
by the IANN. For example, if the environment is harder than estimated, the error
between the desired force and measured force is converted by the IANN to be smaller,
and the manipulator momentum is converted to be larger before they are used as input
information of the controller. This operation makes the controller control precisely if
the error is close to zero even though the actual error is still large, and respond to
the larger manipulator momentum than the actual amount.

For input variables to the IANN, the deformed (pushed) distance, deforming
velocity, deforming acceleration of the environment, and reaction force from the en-
vironment are used since the environment can be modelled as the following equation
assuming it is a mass-spring damper system:

f =Mci. + BeZe + Keze (13)

where f is the reaction force from the environment, and z, is the surface displace-
ment of the environment. The outputs from the IANN are the adjustment coefficient
Kg for the error information and the adjustment coefficient K M, for the manipula-
tor momentum. These adjustment coefficients of the input variables to the controller
vary between 0 and 2. If the property of the environment is the same as that of the
estimated one, the adjustment coefficients become 1.

The TANN learns off-line using the back-propagation learning algorithm. Several
properties of the information regarding the environment, which represent the variety
of materials, are prepared for the training data of the IANN. The IANN is trained to
make Kg smaller than 1 and K larger than 1 in accordance with the environment
property, if the environment is harder than the estimated one. If the environment is
softer than the estimated one, the JANN is trained to make Kr larger than 1 and
Ko smaller than 1 in accordance with the environment property.
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Fig. 5. Architecture of the Input Adjustment Neural Network (IANN).
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3.3. Learning Algorithm of the Force Controller

Every weight of the fuzzy neural force controller is adjusted at every sampling time
moment by the back-propagation learning algorithm to minimize the evaluation func-
tion. The squared error is usually used for the evaluation function:

Y(k) = 3 [1ak) — 1R)] (14)

where f; represents the desired force, and f the measured force.

When the desired force is the combination of periodic step signals, however, a
little overshooting might occur after some period of time if only the force error is
evaluated for learning of the fuzzy neural force controller. It takes a few milliseconds
to catch up with the suddenly changed desired force since no desired force trajectory
exists, while the controller keeps learning to output a larger force command to the
robot manipulator in order to catch up with the desired force as quickly as possible.
In this paper, a fuzzy controlled evaluation function is introduced in order to avoid
this problem. The proposed evaluation function is written as

() = 3{[falh) - FR)

+E[(falk) = 1)) = (fal = 1) = £(6 = 1))} (15)

where K, is the fuzzy controlled variable of a number which is large enough to make
the velocity term dominate the evaluation function when the error is zero and become
0 when the error is far from zero. This means the expression inside the second brackets
in eqn. (15), which is the squared error difference between the error at present and
previous time step, is evaluated only when the error is almost zero. Therefore this
part works to prevent an overshooting as the error approaches zero, since it tries to
constrain the robot manipulator movement when the desired force does not change.
The input variables of this evaluation function fuzzy controller are the same as those
of the fuzzy neural force controller. The output of this fuzzy controller is K, .

The equation of individual weight adjustment in the defuzzifier layer is

Aw, = n(fa ~ iy (16)

where 7 is the learning rate of the fuzzy neural controller.
The equation of individual weight adjustment in the fuzzifier layer is

Be,- 1
Aw; =7 Z Wj F(u)u' (17)
J

where y;; is the output from the fuzzifier layer, e;; is the output error in the fuzzifier
layer, f'(u) and u' are the derivatives of the activation function and input to the
function (see eqns. (9)-(12)), respectively. Different learning rates are used for two
input variables and rules, since the adjustment rates of the weights are different.

Even if an initially designed fuzzy force control law is not perfect, the com-
pensation of the friction of the robot manipulator joints is not perfect, an external
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disturbance exists, or a property of the environment changes, the proposed force con-
troller is capable of applying the desired force to an unknown environment with this
learning algorithm.

4. Position Control Law of the Hybrid Control

In order to control the position of the robot manipulator which applies simultaneously
the force to the environment, the Coulomb friction between the robot manipulator
and the environment has to be compensated. The Coulomb friction varies according
to the amount of the force applied to the environment. If the value of the friction
coefficient is known previously, it might not be very difficult to compensate the friction
even though it changes. However, it is difficult to obtain the coefficient of the friction
between the robot manipulator and the unknown environment. The equation of the
Coulomb friction F., is written down as eqn. (6).

In this section, the details of the proposed fuzzy neural position control, which
compensates the friction between the robot manipulator and the environment, are
described. The architecture of the proposed fuzzy neural position controller is shown
in Fig. 6. Here ¥ denotes the sum of the inputs and II stands for multiplication of
the inputs. The fuzzy neural position controller consists of a fuzzy neural network
division for trajectory control and a specialized neuron division for friction compen-
sation. Here, the friction means the one between the robot manipulator and the
environment. In this controller, these two divisions do not learn (adjust each weight
value) simultaneously. In other words, learning is switched between the fuzzy neural
network division for trajectory control and the specialized neuron division for friction
compensation depending on the situation. The output from the proposed fuzzy neu-
ral position controller, the combination of the output from the fuzzy neural network
division for trajectory control and from the specialized neuron division for friction
compensation, is the force command for the robot manipulator in the Cartesian co-
ordinate system.

4.1, Fuzzy Neural Position Control

The trajectory (movement) of the robot manipulator is controlled by a fuzzy neural
network division for trajectory control (see Fig. 6) once it begins to move. Since
the effect of the Coulomb friction is supposed to be canceled out by the specialized
neuron division for friction compensation, this fuzzy neural network is in charge of
the control of the robot manipulator trajectory only.

The first step to construct the fuzzy neural network for trajectory control is to
design a fuzzy position controller using the knowledge of experts. The next step is
to convert the designed fuzzy position controller to a neural network. Gaussian and
sigmoidal functions are used as membership functions in the fuzzifier layer, similarly
as in the fuzzy neural force controller. The fuzzy neural network for trajectory control
consists of 10 neurons in the fuzzifier layer, 17 neurons in the rule layer, and 2 neurons
in the defuzzifier layer.
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Fig. 6. Architecture of the fuzzy neurall position controller.

The principle of this fuzzy neural network is the same as that of the fuzzy neural
force controller. Therefore we omit to explain how this fuzzy neural network works
since we have already done this for the fuzzy neural force controller in the previous
chapter. The outputs from the fuzzy neural network division for trajectory control
and from the friction neuron division are summed up to make the force command for
the robot manipulator in the Cartesian coordinate system.

4.2. Friction Neuron

In this subsection, we discuss a specialized neuron for friction compensation (we call
this neuron a friction neuron) in an unknown environment. The force applied to the
environment f and the direction (1 or —1) in which the friction compensation is
needed are used as the input information to the friction neuron (see Fig. 6). They
are multiplied in the friction neuron and then multiplied by the weight wy. This
becomes the output from the friction neuron. This output is the force command
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5. Simulation

Computer simulations have been carried out in order to confirm the effectiveness of the
proposed fuzzy neural hybrid position/force controller for an unknown environment
with a 3DOF planar robot manipulator (Fig. 1). The angle of the robot manipulators
end-effector has been controlled to be always perpendicular to the environment with
the use of the resolved acceleration control method. In the simulation, the sampling
time has been set to 1 m per second.

5.1. Simulation for the Force Controller

In order to evaluate the proposed force control method, some simulations are per-
formed against several properties of the environment. The environment model ex-
pressed by eqn. (13) is used for the simulation. The modelling error is included, while
assuming a practical modelling error and unexpected external disturbance. The de-
sired contact force applied to the environment is a combination of step signals changed
between 20N and 10N every 2s. First of all, some simulations were carried out with
and without the TANN in order to see its effect. The simulation results against the
environment model whose property is the same as that of the estimated one are shown
in Fig. 8. One can see that the desired force can be obtained without unexpected
overshooting with fuzzy control rules, and the error is reduced over time by the learn-
ing and adaptation abilities of the neural network in the proposed force controller. If
the controller does not have learning and adaptation abilities, the error caused by the
errors of the fuzzy control rules and the unexpected external disturbance will not be
eliminated. In this simulation, the effect of the IANN is not seen in the results, since
the property of the environment is the same as that of the estimated one.

Next, we changed all the coefficients of the environment model defined by
eqn. (13) to be ten times smaller than the estimated property of the environment
in order to verify whether the proposed controller is effective in a soft environment.
The corresponding results are shown in Fig. 9. They show that the desired force can
be realized with the proposed controller, even though the environment is much softer
than the estimated environment although the JANN affects little the results for the
soft environment.

For the next simulation, all the coefficients in eqn. (13) are changed to be ten
times larger than the estimated property of the environment in order to verify whether
the proposed controller is effective in a hard environment. The simulation results with-
out the effect of the IANN are shown in Fig. 10. One can observe a large overshooting
and oscillations. However, they can be avoided if the IANN is applied to the controller
as shown in Fig. 11. This result shows that the IANN affects a lot the controller by
adjusting the input information immediately in the case where the environment is
harder than the estimated one.

In order to illustrate the effectiveness of the proposed fuzzy controlled evaluation
function in learning of the force controller, another simulation was performed with
and without the proposed evaluation function. If the controller learns for a long time
to minimize the evaluation function of eqn. (13), a small overshooting might happen
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Fig. 8. Results of the force control simulation.
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Fig. 9. Results of the force control simulation for a soft environment.
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used for friction compensation. The friction neuron keeps learning until the robot
manipulator begins to move. In other words, the weight of the friction neuron keeps
increasing until the robot manipulator begins to move. Therefore the weight value
will be almost the same as the value of the friction coefficient between the robot
manipulator and the environment after some adaptation cycles. The output from
this neuron becomes the output from the controller by adding the output from the
fuzzy neural network for trajectory control which is explained in the previous section.

4.3. Learning Algorithm of the Position Controller

In order to adjust the value of each weight in the fuzzy neural network for trajectory
control and the friction neuron, the back-propagation algorithm is adopted. Each
weight is adjusted at every sampling time. We introduce a switch-learning algorithm
in this section. The basic idea is switching the learning division between the fuzzy
neural network division for trajectory control and the friction neuron division. The
friction neuron division is able to learn only when the robot manipulator cannot move
in the environment in spite of the driving force applied. Once the robot manipulator
begins to move in the environment, the friction neuron division stops learning and the
fuzzy neural network division for trajectory control begins to learn in turn. On the
contrary, if the robot manipulator gets stuck in the environment though the controller
is still applying the driving force, the fuzzy neural network division for trajectory
control stops learning and the friction neuron division begins to learn again. This
means that the weights of the fuzzy neural network division for trajectory control
are not adjusted when the weight of the friction neuron division is adjusted, and the
weight of the friction neuron division is not adjusted when the weights of the fuzzy
neural network division for trajectory control are adjusted. This algorithm is shown in
Fig. 7. While the robot manipulator is moving, the friction neuron keeps outputting

Learning Division

' _ . _'Not Learning Division

g

* Fuzzy Neural Network

. for Trajectory Control

Neuron for

' '

. Friction Compensation .

when the robot. manipulator . .
can not move in spite of when the robot manipulator is

applied force command moving in the environment
because of Coulomb friction

Fig. 7. Switch-learning algorithm.
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the force for friction compensation according to the value of the friction coefficient
that has been learned. If the direction of the robot manipulator movement is changed,
the direction of the force for friction compensation is also changed since the values
+1/ — 1 of the input to the friction neuron change according to the direction of the
robot manipulator movement.

The squared error between the desired and measured (calculated) positions is
adopted for the output error function. The objective of the backpropagation algorithm
is to minimize this function whose equation is

Y = %(xd —ar (18)

where z4 is the desired position and z is the measured (calculated) position.

The equation of weight adjustment of the friction neuron in the case, where the
direction in which the friction compensation is needed when it learns is 1, takes the
form

Awf = 7](1?[1 - IZI)f (19)

where 7 is the learning rate of the friction neuron. If the direction is —1, the equation
is changed to

Awy = —n(zg — z)f (20)

When the fuzzy neural network for trajectory control learns, the equation of
individual weight adjustment in the defuzzifier layer of the fuzzy neural network for
trajectory control is

Aw, = n(zq — 2)y1Yk (21)

where 7 is the learning rate of the fuzzy neural network.

The equation of individual weight adjustment in the fuzzifier layer is

oe;;
i= nz 3 j (22)

where y;; is the output from the fuzzifier layer, e;; is the output error in the fuzzifier
layer, f'(u) and u' are the derivatives of the activation function and input to the
function, respectively.

Different learning rates are used for two input variables, rules of the fuzzy neural
network division for trajectory control, and the weights of the friction neuron divi-
sion, since the adjustment rates of the weights are different. Therefore four different
learning rates are used in the controller.
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as shown in Fig. 12. In order to recognize this small overshooting, a magnified range
of reaction force between 19.8 N and 20.2 N is used in Fig. 12. One can see that a small
overshooting occurred after the controller has been learned for a long time (Fig. 12).
This problem can be avoided using the proposed fuzzy controlled evaluation function
in eqn. (15). The corresponding simulation results are shown in Fig. 13. They show
that the overshooting can be avoided by using the proposed fuzzy controlled evaluation
function.

These simulation results show that the desired force can be realized during the
position /force control using the proposed force control method.

5.2. Simulation for the Position Controller

The robot manipulator applies the force to an unknown flat environment by pushing
perpendicularly with the end-effector. The position of the end-effector of the robot
manipulator is controlled along the environment surface horizontally (the y-direction
in Fig. 1). The force and position are controlled simultaneously. There are four
inputs to the proposed controller, namely the error between the desired and measured
(calculated) positions, its changing rate, the direction (1 or —1) in which the friction
compensation is needed, and the amount of the force applied to the environment.
The output from the controller is the force command to the robot manipulator in the
Cartesian coordinate system. The weights which belong to the learning division of
the controller are adjusted at every sampling time.

The desired contact force applied to the environment during the position/force
control is a combination of step signals changed between 20N and 10N every 2s
as shown in Fig. 8. The desired trajectory (position) in the y-direction along the
surface of the environment during the hybrid position/force control is chosen as
0.05sin(0.57t) m.

In order to see the effect of the friction neuron, some simulations for trajecto-
ry control were performed with and without it. The simulation without the friction
neuron means that the force command for the robot manipulator motion in the Carte-
sian coordinate system depends on the output from the fuzzy neural network division
for trajectory control of the proposed controller only. In this case, the fuzzy neu-
ral network division for trajectory control keeps learning from the beginning of the
control without switch-learning. The simulation results of the measured (calculated)
trajectory which follows the desired trajectory during the position/force control with
the 3DOF robot manipulator, in the case where the coefficient of kinematic friction
is equal to 2.0, are shown in Fig. 14. One can observe that the measured trajectory
with the effect of the friction neuron begins to follow the desired trajectory accurately
in a short time. On the other hand, the measured trajectory without the effect of
the friction neuron cannot follow the desired trajectory accurately even in the third
period (one period is 4 seconds).

Another simulation has been performed to show that the proposed method is
applicable with any amount of friction force. In this simulation, the coefficient of
kinematic friction is increased to 4.0. The corresponding results are shown in Fig. 15.
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They reveal that the change in the coefficient of kinematic friction does not affect
the proposed position controller very much. The results without friction neuron,
however, become much worse than the previous ones, since the friction force is larger
than before.

We can also see that the results without the friction neuron are affected by the
change of the force applied to the environment ranging from 10N to 20N every 2s.
The results of the proposed position controller are not affected by the change of the
applied force, since the friction force is compensated by learning the coefficient of
kinematic friction.

6. Conclusions

A hybrid position/force control method for an unknown environment, which makes use
of neural networks, fuzzy logic, and fuzzy neural networks, is introduced in the paper.
The Input Adjustment Neural Network is proposed to adjust the input information
to the fuzzy neural force controller according to the property of the environment in
order to make the controller adapt to the environment immediately. Furthermore,
an effective learning algorithm is proposed which uses a fuzzy controlled evaluation
function.

In order to control the position of the robot manipulator which applies simultane-
ously the force to the environment, the effective position control method is proposed
which uses a specialized neuron for friction compensation and a fuzzy neural network
for trajectory control. A switch-learning algorithm is introduced for this position
controller.

The effectiveness of the proposed hybrid controller is verified by computer sim-
ulations with the use of a 3DOF planar robot manipulator model. The results show
the significant adaptation ability of the proposed controller against an unknown en-
vironment.
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