Appl. Math. and Comp. Sci., 1996, vol.6, No.3, 415-429

THE ROLE OF VIRUS INFECTION IN
A VIRUS-EVOLUTIONARY GENETIC ALGORITHM

Naovukt KUBOTA*, Koyt SHIMOJIMA**
TosHiO FUKUDA*

This paper deals with a genetic algorithm based on virus theory of evolution
(VEGA). The VEGA realizes horizontal propagation and vertical inheritance of
genetic information in a population with virus infection operators and genetic
operators. The main operator of the VEGA is a reverse transcription one, which
plays the role of a crossover and a selection simultaneocusly. Therefore this virus
infection with reverse transcription is the key mechanism of the VEGA. The
convergence and genetic diversity of the VEGA depend on the frequency of the
virus infection. In this paper, we apply the VEGA to function optimization
problems and a knapsack problem, and discuss the effectiveness of the virus
infection through numerical simulation results.

1. Introduction

Living beings in nature evolve and adapt to their external environments. If it is pos-
sible to simulate evolution on a computer, then we can realize an adaptive system.
Evolutionary computation is a field of simulating evolution on a computer (Fogel,
1995b). In evolutionary computation, stochastic optimization methods simulating
the process of natural evolution are divided into three main categories: genetic al-
gorithms (GA) (Holland, 1992), evolutionary programming (EP) (Fogel, 1995b), and
evolution strategy (ES) (Rechenberg, 1994). These algorithms are fundamentally
iterative generation and alternation processes operating on a population of candi-
date solutions. Furthermore, these algorithms can be classified into two types from
the viewpoint of a representation method. The EP and the ES, which are called
evolutionary algorithms (EAs), mainly operate on phenotype directly. The main ope-
rator is a mutation using a Gaussian random variable with zero mean. On the other
hand, the GA mainly operates on genotype as strings or bits. The main operator is
a crossover between candidate solutions. A standard GA is composed of selection,
crossover, and mutation (Goldberg, 1989). The schemata theorem is well-known as a
fundamental theorem of the GA (Goldberg, 1989). The increase of effective schemata
enables the efficient search of the solution space and makes all the population evolve
toward optimal solutions.
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On the other hand, there are two main methods for generating new candidate
solutions to solve an optimization problem. One is based on a stochastic method
and the other is based on local information peculiar to the optimization problem. A
piece of local information is often useful for solving the optimization problem. For
example, in the case of a traveling salesman problem, an optimization method based
on local subtours is easier to solve than the one without consideration of subtours.
The GA fundamentally belongs to the former method, but the GA has a characteristic
termed ’implicit parallelism’ (Goldberg, 1989). Crossover and selection deal indirectly
with schemata, though they sometimes generate and increase effective schemata as
a result. The increase of a schema is equal to the increase of local information in a
population. The effectiveness of the GA has been demonstrated in various fields (Baba
and Kubota, 1994; Bramlette, 1991; Fogel, 1995a; Goldberg, 1989; Kubota et ol,
1994; Miihlenbein et al., 1991; Shimojima et al., 1994; Syswerda, 1991; Tamaki et al.,
1994; Whitley, 1989), but the GA has a problem of premature local convergence that
occurs when a genetic diversity lacks in a population. A proportional selection scheme
in the GA often causes the premature convergence because of selecting an individual
with high fitness value many times. Therefore, a selection must realize two different
aims: 1) to select effective solutions for increasing effective schemata in a population,
2) to maintain the genetic diversity for generating new candidate solutions. The
design of selection scheme is very important, since the selection scheme determines the
direction of evolution. Selection schemes such as a ranking selection scheme have been
proposed to realize these aims. However, the proportional selection scheme increases
not only effective schemata, but also ineffective schemata simultaneously. In order
to operate only on effective schemata, we have proposed a virus-evolutionary genetic
algorithm (VEGA) based on virus theory of evolution (Kubota et al, 1996). The
VEGA has two populations: a host population and a virus population. The virus
population performs two virus infection operators. One is a reverse transcription
overwriting a substring of a virus individual onto the string of a host individual as
horizontal propagation. The other is a transduction generating a new virus individual
by transducing from a host individual. The VEGA deals directly with schemata and
their characteristics are as follows:

¢ Reverse transcription increases directly effective schemata.
o Reverse transcription generates directionally new host individuals.

¢ Transduction changes virus individuals every generation.

The generation and the horizontal propagation of effective schemata are very impor-
tant, since the local information is often useful for solving the optimization problem.
Coevolution of the host population and the virus population permits quick solution
of the optimization problem. The performance of the VEGA depends on the virus
infection operators, since the number of reverse transcription of a virus individual to
host individuals determines the frequency of the horizontal propagation in the host
population. This paper discusses the effectiveness of the virus infection operators
through some numerical simulations of a knapsack problem and function optimiza-
tion problems.
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This paper is organized as follows. Section 2 presents the genetic algorithm
based on virus theory of evolution. The virus infection operators are defined and
incorporated into the GA. Section 3 presents applications to a knapsack problem and
function optimization problems together with simulation results.

2. Virus-Evolutionary Genetic Algorithm
2.1. Virus Theory of Evolution

How have living beings evolved in nature? Though the fact of evolution is certain,
it is difficult to explain the process of evolution well. With the recent progress in
molecular biology, various theories of evolution, such as Neo-Darwinism, neutral the-
ory of molecular evolution, Imanishi’s evolutionary theory, serial symbiosis theory,
and virus theory of evolution, have been proposed (Ridley, 1993). However, most of
evolutionary theories cannot explain all evolutionary evidences, though they explain
the process of evolution in a sense.

Virus theory of evolution is based on the idea that virus transduction is a key
mechanism for transporting segments of DNA across species (Anderson, 1970). Here
the transduction means the genetic modification of a bacterium by genes from another
bacterium carried by a bacteriophage (Primrose and Dimmock, 1980). Most of viruses
in nature can easily cross species barriers and are often transmitted directly from
individuals of one phylum to another by horizontal propagation. Furthermore, whole
virus genomes may be incorporated into germ cells and transmitted from generation
to generation as vertical inheritance.

2.2. Virus-Evolutionary Genetic Algorithm Architecture

A virus-evolutionary genetic algorithm (VEGA) simulates evolution with both hori-
zontal propagation and vertical inheritance (Fig. 1). The VEGA has two populations:
a host population and a virus population. Here they are defined as a set of candi-
date solutions and a substring set of the host individuals, respectively. As mentioned
before, a virus has a capability to transmit segments of DNA between species. There-
fore, the virus infection realizes the horizontal propagation in the host population. To
incorporate the virus infection mechanism, we adopt a steady-state genetic algorithm
(SSGA) (Syswerda, 1991). In general, the SSGA replaces a pair of individuals with
new individuals generated by the crossover every generation. The procedure of the
VEGA is as follows:

Initialization
repeat
Selection
Crossover
Mutation
Virus_infection
until Termination_condition = True
end.
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Fig. 1. Virus evolutionary genetic algorithm.

Initialization randomly generates an initial host population, and then a virus indivi-
dual is generated as a substring of a host individual. ‘Delete least fitness’ (Syswerda,
1991) is used as the selection scheme. Crossover and mutation are genetic operators
dependent on the optimization problem. The string length of the host individual is
basically predefined as a constant. The length of a virus individual, which is defined
as a variable, extends with evolution of the host population.

2.3. Virus Infection Operators

This section defines virus infection operators. There are many characteristics regard-
ing a virus infection. In this paper, we assume that the main process of a virus
infection is horizontal propagation of a substring among host individuals. Therefore
a virus transduces the genes from a host individual and transcribes to another host
individual. The VEGA has two virus infection operators as follows:

e Reverse transcription operator: The virus transcribes its substring on the string
of a host individual (Fig. 2(a)).

¢ Transduction operator: The virus transduces a substring from a host indivi-
dual. As its fundamental operation, the virus takes out a substring in addi-
tion/reduction to some genes on the host string (Fig. 2(b)).

The number of infection times of each virus is controlled under its virus infection
rate. Each virus has a parameter, fitvirus;, regarding the virus infection. We assume
that fithost; and fithost’; are the fitness value of host individual j before and after
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Fig. 2. Virus infection operators.

the infection, respectively. The fitvirus;; denotes the difference between fithost;
and fithostg, which is equal to the value obtained by infecting the host individual:

fitvirus;; = fithost; — fithost, (1)
fitvirus; = Zfitvimsij (2)
Jjes

where i is the virus number and S is a set of host individuals which are infected by
virus 1. Furthermore, each virus has the life force as follows:

life; 11 =r- life;s + a- fitvirus; (3)

where ¢, 7 and o mean the generation number, the life reduction rate and a coeffi-
cient, respectively.

The procedure of virus infection is shown in Fig. 3. First, a virus does the
reverse transcription to an individual selected randomly out of the host population.
Next, the VEGA evaluates the fitness of the infected host individual and calculates
life;s41. If li feir takes a negative value, the virus individual transduces a new
substring with the transduction from a randomly selected host individua). Otherwise,
the virus individual transduces a partially new substring from that of the infected host
individuals with the transduction.

If the virus infection rate is high, the times of the virus infection would increase,
i.e. the VEGA mainly performs the local search when the virus population has effective
schemata. Otherwise, the VEGA mainly performs the global search with genetic
operators. In this way, the VEGA can self-adaptively change the searching ratio
between the local search and the global search according to the state of the host and
virus populations.
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Fig. 3. Procedure of virus infection.

3. Numerical Simulation
3.1. Knapsack Problem

The knapsack problem is an integer programming problem with 0-1 variables (Ecker
and Kupferschmid, 1988). This problem is represented only by the values 0 or 1.
Suppose that n items are to be selected for carrying in a knapsack. Item ¢ has value
v; and weight w;. Our aim in the knapsack problem is to select items in order to
maximize their total value where their total weight is less than or equal to W. Thus
the objective function to be maximized is as follows:

n
Z ViT; (4)
=1
subject to

n
S wiz W, @=01, i=1,...,n
=1

The application of the GA to the knapsack problem is based on the following
idea. A string is represented by a binary code. For example, the string ‘01100’ means
that the second and third items are selected. The fitness value of a host individual is
defined as the total value of the selected items, when the weight condition is fulfilled.
As genetic operators, we use a uniform crossover (Goldberg, 1989) and a bit mutation.
The uniform crossover generates new individuals according to a randomly generated
mask pattern. As mentioned before, a virus individual can transmit a substring
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between host individuals. A substring of a virus individual consists of three characters
{0,1,*} and is the same length as that of the host individual. The character ‘*’ denotes
the ‘don’t care’ mark. A virus individual does not perform the reverse transcription
in the same position where there is a “*’. In this case, the length of the virus is
constant, but the order of the virus is variable. Figure 4 shows an example of the
reverse transcription. The reverse transcription overwrites the substring of the virus
individual on a randomly selected host individual. The transduction to evolve virus
individuals has two types of operators (Fig. 5). The first one is to copy genes from a
host individual according to a copy rate per gene. The other is to replace some genes
with character “*’ according to a cut rate per gene. If the virus improves the fitness
values of host individuals, the copy operator is performed with the transduction rate.
Otherwise, the replacement operator is performed. An initial virus population is
generated from the host population with the use of the transduction operator.

Host: 10011 — 11010
T Reverse transcription

Virus: *10*0

Fig. 4. Reverse transcription operator.

Virus: *10*0 — 110*0

T Copy Virus: *10%0 —s **0%
Host: 10011 Replacement
(a) Copy operator (b) Replacement operator

Fig. 5. Transduction operator.

In the knapsack problem, the number of items is 50. The maximal weight to
be selected, W, is 80% of total weight of all items. Table 1 shows the parameters
of the SSGA, VEGA and virus infection. The number of evaluations is used in the
numerical simulation so that the search time of VEGA be equal to that of SSGA. Here
the search time means the sum of the times of crossover and reverse transcription.
The infection rate means the rate that a virus transcribes to a host population. The
transduction rate means the rate at which a virus transduces after infection.
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Tab. 1. Parameters of SSGA, VEGA, and virus infection.

| | ssaa | vEGA || | Virus infection
Population size 100 100 || Virus population size 10
String length 50 50 || Life reduction (r) 0.9
Crossover rate 0.8 0.8 || Max infection rate 0.1
Mutation rate 0.001 0.001 || Imitial infection rate 0.05
Evaluations 10000 10000 || Transduction rate 0.6
Copy/Cut rate- 0.05
Fitness
90y

Pop. size

P

5000 10000
Evaluations
Fig. 6. Simulation results of the knapsack problem (SSGA).
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Fig. 7. Simulation results of the knapsack problem (VEGA), virus population
size= 10% of host population, maximal infection rate= 0.1.

Figures 6 and 7 show simulation results of the SSGA and VEGA, respective-
ly. The fitness value in each figure is the average of 50 trials. On the whole, the
convergence of the VEGA is faster than that of the SSGA. Furthermore, when the
population size is small in both the SSGA and VEGA, on the average the SSGA and
VEGA attain local maxima because the premature convergence often occurs. On the
contrary, the convergence of a large population size is slower, but the VEGA and
SSGA reach global maxima. Figure 8 shows the comparison of on-line performance
which is the average of the highest fitness value at each generation. The on-line per-
formance of the VEGA outperforms the SSGA in all population sizes. Table 2 shows
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the average of fitness values obtained after 10000 evaluations. The VEGA, whose
population size is 100, attains the highest average of fitness values.

On-line performance

900

870
Ossca
EIVEGA

840

810 NPENDINILILNILD
60 80 100 120 160 200
Population size

Fig. 8. On-line performance of the knapsack problem.

Tab. 2. Maximal fitness values obtained at the last generation.

Host pop.size| 20 | 40 | 60 | 80 | 100 | 120 160 | 200 |
SSGA 848.74 | 879.78 | 885.23 | 887.82 | 888.80 | 889.11 | 888.66 | 887.15
VEGA 857.12 | 885.72 | 888.94 | 889.10 | 889.43 | 889.02 | 888.48 | 887.20

Figure 9 shows simulation results concerning virus population sizes, where the
host population size and the maximal infection rate are 100 and 0.1, respectively. The
larger virus population size, the slower the convergence is. Next, we consider the case
of a large virus population size. Figure 10 shows simulation results concerning high
infection rates, where the host and virus population sizes are 100 and 200, respectively.
When the infection rate is high, the virus infects almost all host individuals. As a
result, a premature convergence is easy to occur.

Fitness
900 4
850
Virus pop. size
800, —= 5000 - 10000

Evaluations

Fig. 9. Comparison of simulation results concerning the virus population size,
host population size=100, maximal infection rate=0.1.
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Fig. 16. Comparison of simulation results concerning the virus population size,
host population size=100, virus population size=200.

Next, in order to discuss optimal parameters of the virus infection, we carry
out some simulations concerning a small virus population size. Figure 11 shows the
comparison of simulation results in the case of 60 host individuals. The VEGA attains
the best fitness value when the virus population size and the maximal infection rate
are 6 and 0.1, respectively.

Fitness

890

Max infection rate

#0.20
0.13

[0.13
[10.07
E0.03

Virus population size

Fig. 11. Comparison of simulation results concerning the small virus population
size, host population size=60.

3.2. Function Optimization Problem

Function optimization problems have frequently been applied as benchmark tests for
GAs (Bramlette, 1991; Goldberg, 1989; Miihlenbein et al., 1991). In this section, we
apply the VEGA to two types of function optimization problems. Case 1 is as follows:

f(z,y) = z* + 2y* — 0.3 cos(3mz) — 0.4 cos(4my) + 0.7 (5)

where —1.0 < z,y < 1.0. This function is highly multimodal. The aim of this problem
is to minimize the objective function. The global minimum is at = 0, y = 0, which
produces f(z,y) = 0. Figure 12 shows the shape of this objective function.
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Fig. 12. 3D-space characterized by objective function f(z,y) (the negative of
f(z,y) is depicted).

We use the binary code as the representation of genotype. A string includes
two variables in this objective function. Decoding the string, we obtain two integer
numbers, and substituting these numbers into X in eqn. (6), we obtain two variables:

X-Z
Z=—0 (6)

Here Z denotes half the value of the maximal integer of X represented by the binary
code. A uniform crossover and a bit mutation are also used as genetic operators.

Figures 13 and 14 show the simulation results of Case 1 of the SSGA and VEGA,
respectively. The fitness value in each figure is the average of 50 trials. We obtain the
same result as in the knapsack problem. The convergence of the VEGA is faster than
that the SSGA, on the whole. Table 3 shows the average of fitness values obtained
after 10000 evaluations. Since Case 1 is easy to solve, we apply a more difficult
function as Case 2:

5
g(z) =54+ Z (A:ci - Acos(27rmi)) (N

i=1

Table 4 shows the average of fitness values after 20000 evaluations of 50 trials. When
the host population size is 100, the VEGA attains the best value in these simulation
results. Figure 15 shows the comparison of simulation results concerning the virus
population size. When the virus population size and the maximal infection rate are
10 and 0.1, respectively, the VEGA attains the best fitness value.
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1.00e-4

1.00e-6

1.00¢-8 o>
i 5000 10000

Evaluations

Fig. 13. Simulation results of Case 1 (SSGA).

Fitness
1.00e+

I Host population size
1.00e-2 m 160

1.00e-8 >

1 5000 10000
Evaluations

Fig. 14. Simulation results of Case 1 (VEGA).

Tab. 3. Average of fitness value after 10000 evaluations in Case 1.

Hostpop.size | 20 | 60 | 80 | 100 | 120 [ 160 |
SSGA 1.00e-4 | 3.06e-7 | 3.42e-7 | 3.59¢-7 | 4.0de-7 | 3.42e-7
VEGA 8.12e-5 | 4.2de-7 | 2.44e-T | 2.12e-7 | 2.28e-7 | 3.23e-7

Tab. 4. Average of fitness value after 20000 evaluations in Case 2.

Host pop.size | 20 | 60 | 8 | 100 | 120 | 160 |

SSGA 3.7T1e-5 | 3.7Tde-5 | 4.46e-5 | 3.89e-5 | 3.72e-5 | 4.99e-5

VEGA 4.38e-5 | 3.70e-5 | 3.41e-5 | 2.65e-5 | 3.65e-5 | 1.5le-4
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5.00e-5} ‘
4.00e-5 8| Max infection rate
' El0.18
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1.00e-5 10.02
0.00e+0 8

8 14 10 6 2

Virus population size

Fig. 15. Comparison of simulation results concerning the virus population size
in Case 2.

The above simulation results of the knapsack and function optimization problems
indicate that the VEGA attains the best solution when the host population size and
the maximal infection rate are about 10% of host population size and about 0.1,
respectively. The reason would be as follows. When the maximal infection rate is
high, a virus individual infects almost all host individuals. As a result, a genetic
diversity lacks in the host population. In contrast, when the maximal infection rate
is very low, a virus individual cannot quickly propagate effective schemata in the host
population.

Furthermore, the virus individuals can effectively propagate their substring, but
the virus individuals are easy to change by the transduction and evolve by the trans-
duction from the host individuals. The coevolution of the host and virus populations
makes it possible to solve the optimization problem with good solution quickly.

4. Summary

This paper discusses the role of virus infection in a virus-evolutionary genetic algo-
rithm (VEGA). The VEGA has two main features. The first one is horizontal propa-
gation of genetic information, the other is vertical inheritance of genetic information.
The horizontal propagation is performed by virus infection operators. The essential of
the VEGA is a symbolic operation with reverse transcription and transduction as the
virus infection operators. The reverse transcription plays the role of a crossover and
selection simultaneously. The VEGA mainly searches the solution space with reverse
transcription operator by generating new candidate solutions with overwriting host
individuals partially. The virus infection is similar to a proportional selection scheme,
since the virus individual performs the reverse transcription according to the virus
infection rate. However, the VEGA differs from the GA in the generation of new
individuals. The reverse transcription generates directly a candidate solution with
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overwriting its substring in host individuals, though a crossover generates new candi-
date solutions with randomly combining substrings in a standard GA. Therefore, the
VEGA can generate new candidate solutions with the directionality in the search.

The VEGA simulates coevolution of a virus population and a host population. A
virus individual evolves by transducing from the infected host population. Therefore
the best parameters concerning virus infection operators exist and the convergence
of the host population depends on the virus infection rate. The VEGA can self-
adaptively change the searching ratio between local and global searches according to
the virus infection rate.

As future subjects, we intend to extend the schema theorem under virus infection
and to carry out a detailed mathematical analysis of the virus infection mechanism.
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