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IMAGE COMPRESSION BY COMPETITIVE
LEARNING NEURAL NETWORKS AND
PREDICTIVE VECTOR QUANTIZATION

Leszek RUTKOWSKI*, RoBerT CIERNIAK*

This paper presents a combination of the vector quantization (VQ) technique
with traditional (scalar) differential pulse code modulation (DPCM). A new
algorithm for image compression, called predictive vector quantization (PVQ),
is developed based on competitive neural networks and optimal linear predictors.
The experimental results are presented and the performance of the algorithm is
discussed.

1. Introduction

Image compression is an essential part of many applications such as high-definition
television, video conferencing, facsimile transmission, image database, etc. A funda-
mental goal of image compression is to reduce the amount of data used to represent
an image. Numerous compression techniques have been proposed. Most of them fall
into two categories: predictive coders (see e.g. Hang and Woods, 1985) and transform
coders (see e.g. Li, 1991). Recently, neural networks have emerged as a powerful tool
for image compression (Ahalt et al., 1990; Abbas and Fahmy, 1993; Fang et al., 1992;
Fowler et al., 1993; Lu and Shin, 1992). In this paper, we combine the vector quantiza-
tion (VQ) technique (Gray, 1984; Nasrabadi and King,1988) with traditional (scalar)
differential pulse code modulation (DPCM). A new algorithm for image compression,
named predictive vector quantization (PVQ), is developed based on competitive neu-
ral networks and optimal linear predictors. The experimental results show that our
algorithm overperforms previous approaches to image compression.

2. Preliminaries

We assume that an image is represented by an N, x N, array of pixels y;;, i =
L,2,...,N1, j=12,...,Ny (see Fig. 1). The image is partioned into contiguous
small blocks of dimension n; x ny (see Fig. 2).

yra(m,n) ... yin,(m,n)

ynl,l(msn) ym,nz(m’n)
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Fig. 1. Pixel representation of an image.
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Fig. 2. Block representation of an image.
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where m = 1,2,...,N1/n; and n = 1,2,...,Ny/ny. Obviously it is assumed that

(—JYi> mod1l =0 and (&) mod1l =20
n No

In the sequel, the arrays (1) will be represented by the corresponding vectors

T
V(m,n) = [vl(m, n),ve(m,n),... ,vq(m,n)] (2)
where we identify

V1 (m: n) = yl,l(ma n))”?(mv n) = yl,?(m; n)a L ,vq(m, n) = yn]_,ng (m’n) (3)

and g = nyny. This means that the original image is represented by N1 N, /q vectors
V(m,n).

3. General Architecture of the PVQ Algorithm

The general architecture of the predictive vector quantization algorithm (PVQ) is
depicted in Fig. 3. This architecture is a straightforward vector extension of the
traditional (scalar) differential pulse code modulation (DPCM) scheme (Gonzales and
Woods, 1992; Jain, 1989).

The block diagram of the PVQ algorithm consists of an encoder and decoder,
each containing an identical predictor, codebook and vector quantizer. The successive
input vectors V(m,n) are introduced to the encoder and the difference E(m,n) =

[el(m7 n)i eZ(ma n)v LR eq(mv n)]T given by
E(m,n) = V(m,n) — V(m,n) (4)
is formed, where V(m,n) = [ﬁl(m,n),ﬁz(m,n),...,ﬁq(m,n)}T is the predictor of

V(m,n). As in the scalar DPCM, the difference E(m, n) requires fewer quantization
bits than the original subimage V(m,n). The next step is vector quantization of
E(m,n). Mathematically, the vector quantization can be viewed as a mapping VQ
from the g-dimensional Euclidean space R? into a finite subset G of R?

VQ: R — G (5)
where

G:[go,gl,...,gJ] (6)

is the set of reproduction vectors (codewords or codevectors)

T
9; = [glmgz,j’ e ,gq,j] (7)
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Fig. 3. Block diagram of the VQ DPCM image compression system.

The subset G C R? is commonly called the codebook. For every g-dimensional
difference vector E(m,n), the distortion (usually the mean-squared error) between
E(m,n) and every codeword g, J = 0,1,...,J is computed. The codeword
g;0(m,n) is selected as the representation vector for E(m,n) if

djo = Ogljng d; (8)
where
J 2
dj = Z [ei(mvn) - gij] 9)
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The index 7°(m,n) is broadcast via the transmission channel to the decoder. Mathe-
matically, encoding is the mapping

RI —s 50 (10)

In Section 5, we apply the competitive learning neural networks for construction
of the vector quantizer. Observe that by adding the prediction vector V(m,n) to
the quantized difference vector g;(m,n) we get the reconstructed approximation of

the original input vector V(m, n), i.e.
V(m,n) = V(m,n) +g,o(m,n) (11)

The fundamental theorem of the predictive vector quantization (Gersho and Gray,
1992) says that the overall reproduction error is equal to the error in quantizing the
difference signal presented to the vector quantizer. The theorem follows from the
simple fact that

V(m,n)=V(m,n)= (V(m, n)-V(m, n))—-(f/(m, n)—V(m, n))
= E(m,n) - g;(m,n) (12)

As a measure of error between the original and reconstructed images one can
take the mean-squared error

l 2 2
MSE = N:N S5 (vs—) (13)

=1 j=1

or a signal-to-noise ratio (in decibel units)

(max(y;})’

(14)

where ¥;5, i = 1,2,...,N1, j = 1,2,...,Ns, stand for pixels of the reconstructed
image.

The prediction vector V(m,n) of the input vector V(m,n) is made from past
observations of reconstructed vectors V(m — k,n ~1), k = 1,2,...,K, and | =
1,2,..., L. The predictor has the form

ZZAHVm k,n —1) (15)

k=1 I=1

where each Ay is a g xq matrix, K and L are horizontal and vertical prediction
orders, respectively. In the decoder, the index j%(m,n) transmitted by the channel
is inverse vector-quantized

vet:j' — R (16)
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and the reconstructed vector V' (m,n) is formed in the same manner as in the encoder
(see formula (11)).

The design of a predictive vector quantization scheme requires both a predic-
tor (15) and a codebook (6) design. The simplest method to solve this problem is to
use the open-loop design methodology suggested by Gersho and Gray (1992). This
approach consists of two steps:

a) Design of the predictor based on the statistics of V(m,n), see Section 4.

b) Design of the codebook based on the ideal prediction residuals

K L
E(m,n)=V(m,n)-ZZAk1V(m-—k,n—1) (17)
k=1 I=1

where (k,1) # (0,0), see Section 5.

4. Vector Linear Prediction

Since the horizontal-vertical direction vector linear prediction seems to be rather
complicated, we start with a simpler unidirectional problem. Let {X(t)} be a
stationary random sequence of g-dimensional vectors with finite second moment, i.e.
E(|X()||I?) < co. The k-order predictor X (t) of the current vector X (t) is given
by

X(t) = i A X(t - k) (18)
k=1
where Ay is a g x g prediction matrix. The prediction residual vector is defined as
e(t) = X () = X(t) (19)
A vector predictor is said to be optimal if it minimizes the mean-squared error
D(t) = E|X(t) - X(®)| (20)

The optimal coefficient matrices minimizing the error measure (20) satisfy the
normal equation

Ry Ry, - Rix || A] Ry
Ry Ry -+ Rox A7 R
i : ) = (21)
Riy Rka -+ Rk A% Rko
or in the compact form ’
RA=v (22)

where

Ru = E[X(t ~B)XT(t - 1)] (23)
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are the K x K correlation matrices, k,! = 1,2,..., K. The matrix R is a square
gK xgK “supermatrix”. The “supermatrix” R is a block-Toeplitz matrix. In the
literature, eqn. (21) is called the multichannel normal equation (Kay, 1988; Marple,
1987) and can be solved recursively by making use of a generalized version of the
Levinson-Durbin algorithm.

In practice, correlation matrices (23) are not known, but we have empirical data
X(1),X(2),...,X(N). The matrices Ay are estimated by minimizing the estimate
of the mean-squared error (20)

b= |x) - ’X‘(t)”2 =3 |xw - f AX(t - k)“2 (24)
teT teT k=1

The estimates Ax of the matrices A Kk satisfy the equation

- - - ~T ~
R, Ry, -+ Rig A, Ry
~ ~ N ~T -
Ry Ry -+ Rox A, Ry,
. . ) = . (25)
Riy Rix - Rix || A% Rxo
where
Ru=Y[X(t-KXT(t~ ] (26)
teT

According to the choice of the set T used in the empirical error measure (24),
one can get different computational methods for estimation of correlation matrices.
We consider two of such methods.

A. Autocorrelation Method

In this method, we use a rectangular window on the observed process and replace
the true value of X(t) by zero for all values of ¢ outside the observation interval
1<t<N,ie.

X(t)=0 for t¢{1,2,...,N}

It is easily seen that the autocorrelation method leads to the following matrix equa-
tion:

= - AT -
R, R, -+ Rg_, A, Ry
~ = - ~T ~

R1 Ro s RK_2 A2 R2

=1 . (27)
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where
R N—k
Ri=) X@)X"(t+k) (28)
t=1

B. Covariance Method

In this method, we make no assumption about the data outside the interval
{1,2,...,N}. Now the range of values used for the error measure is t € T =
{K,K +1,...,N}. Consequently, the matrices Ry, in eqn. (25) take the form

N .
Ry=> X(t-kXT(t-1 (29)
i=K

The above methods can be extended to horizontal-vertical direction vector linear
prediction. The normal equation takes the form

K L

Z Z ARy ;= Rooj (30)

k=0 =0
for i=0,1,....K, j=0,1,...,L, (I,k)# (0,0), (i,)# (0,0), where

Ry = E[X(m —kn—0XT(m—i,n— j)] (31)

Rooij = E| X (m,m)XT(m — i,n - )| (32)
If K=1 and L =1, then one gets

A1o0Ri0,00 + Ao1 Roy,10 + A11Ry1,10 = Roo,10
A1oR10,01 + Ao1 Ro1,01 + A11Ri1,01 = Roo,01 (33)
AjoRi0,11 + A Ro1,11 + AnnRir11 = Roo,1n

In this case, the autocorrelation and covariance methods are also applicable with an
obvious modification.

5. Neural Networks Techniques for Vector Quantization

In this section, we present competitive learning neural networks applied to vector
quantization. Our goal is to find the codebook G = [g4,9,,...,9;] in order to
minimize the performance measure

N1/TL1 N2/’n.2

p=3% Z dz[E(m,n),gjo] (34)

m=1

where

d[E(m,n),gjo] = min {d[E(m,n),gj]} (35)

0<4<J
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and d is the distortion (usually chosen as the mean-squared error) between the vector
E(m,n) and the codevector g;. The codevector g0 with minimum distortion is
called the “winner”. Figure 4 shows the competitive learning neural network.

e (m,n) e, (m,n) € (m,n)

Fig. 4. Competitive learning neural network.

The elements of the input vector E(m,n) = [e1(m,n),ez(m,n),...,e,(m,n)]T are
connected to every neural unit having the weight W; = [wy ;,wa;,...,w,;]7 and
the output 2;, j = 0,1,...,J. The weights W are considered to be the codevectors,
ie.

G:[go,gl,...,g,}=[W0,W1,...,WJ] (36)
and the number of neural units J + 1 is the size of the codebook.

We describe three alternative competitive learning neural networks:
a) The competitive learning (CL) networks;

b) The Kohonen self organizing feature map (KSFM);

¢) The frequency-sensitive competitive learning (FSCL) networks.

A. CL Network
The distortion measure takes the form (Kohonen, 1988; Lu and Shin, 1992)

q

d[E(m,n),Wj]=UE(m,n)—Wj =Y leilm,m) —wg2 (37)

=1

The index ;° is selected such that
d[E(m,n),Wjo] = min, {d[E(m,n),Wj]} (38)

The output z; of each unit is computed as follows:

1 for j=j°
zj = L, (39)
0 for j#3j
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The new weight vector is computed as
Wit +1) = W;(t) +a[Em,n) - W;(0)] (40)

where « is a learning parameter decreasing to zero as learning progresses. It should
be emphasized that some of the CL neural units may be underutilized. This limitation
sometimes leads to a rather high distortion rate.

B. KSFM Network

In the KSFM structure (Kohonen, 1988), each neural unit has an associated topd-
logical neighbourhood of other neural units. During the training process, the neural
unit indexed by j°, as well neural units within a specified neighbourhood R(j%) of
4% are updated:

W,t+1)=W,(t) + a[E(m,n) - Wj(t)], j e R(G) (41)

The KSFM network overcomes the problem of underutilized nodes of the CL network.
On the other hand, it requires additional computation to calculate the neighbourhood
of the unit j° and to update corresponding units.

C. FSCL Network

In the FSCL network (Ahalt et al., 1990; Fowler et al., 1993), the winning neural unit
30 is selected based on the modified distortion measure

d[B(m,n), W;| = F(£;)| B(m,n) - W,

= F(f;) Z[ei(m,n) — w;;]? (42)
1=1

where F is a suitably chosen function of the counter f;. The counter f; counts how
frequently the neural unit j is the “winner”. The recursive procedure takes the form

Wt +1) = W;(t) + H(f)[Blm,n) - W;(0)] 2 (43)

where H is another function of the counter f;.

6. Experimental Results

The original tomographic image was scanned as shown in Fig. 5. The scanning as-
sumed the frame of size N; x Ny = 256 x 256 and 256 grey levels for each pixel.
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Fig. 8. The tested 256 x 256 pixels image.

The first experiment compares three competitive learning vector quantization
techniques (CL, FSCL and KSFM) described in Section 5, under the following as-
sumptions:

i) The first-order horizontal predictor (K = 1, L = 0);

ii) The codebook size J + 1 = 128;

iii) The block subimage size n; x ny = 2 x 2.

Table 1 shows the SNR and MSE for three competitive learning neural networks.

Tab. 1. The SNR and MSE for three competitive learning neural networks.

| Algorithm | SNR | MSE |

CL 31.77 | 43.3
FSCL | 35.02 | 20.47
KSFM | 29.66 | 70.29

The reconstructed image and the difference between the original and reconstructed
images are depicted in Fig. 6.

The experiments indicate that the FSCL method gives the best results. The
following functions were selected in the FSCL algorithm:

F(f)=1-e5/™0 H(f)=0.1¢ f0/1000

The next experiment shows the SNR and MSE for varying codebook sizes and
the following functions F and H:

F(f;) = efile, H(fj)=0.1e"fi0/e

The results are summarized in Table 2 for 3 epochs.
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KSFM

Fig. 6. Reconstructed image and difference between the original and
reconstructed images.
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Tab. 2. The SNR and MSE for a varying codebook size and parameter c.

|7+1 | ¢ | SNR | MSE |
64 | 100 | 3103 | 513
64 | 500 |31.25 | 4838
64 | 700 | 32.83 | 339
64 | 1000 | 31.34 | 4738
64 | 3000 | 33.30 | 30.4
128 | 100 | 32.83 | 33.9
128 | 700 | 34.65 | 22.3
128 | 1000 | 34.85 | 21.3

In Table 3 we present the SNR and MSE for a varying subimage size nq x ns
and different types of function F.

Tab. 3. The SNR and MSE for a varying subimage size n; x nz and
different types of functions F.

n1 x na F(fy | H(p) [SNR] MSE |
2x2 | 1—e fi/T00 | 0,179:0/1000 | 3549 | 90.47
2x2 ef3/1000 0.1e770/1000 | 3485 | 21.98
4x4 | 1—efi/T0 | 0.1770/100 | 9853 1 91,26
4x4 efi/1000 0.1e7770/10% | 9679 | 136.03
2x2 £ 0.1e7750/10%0 | 998 | 6527.14

Finally, we compare our method with previous approaches to “Lena” image com-
pression. The results are presented in Table 4.

Tab. 4. Comparison of image compression techniques.

L Method l Parameters I SNR [ MSE I Compresion ratio
This article nyxny =4x4 29.40 | 74.28 18.28:1
J+1=128
Fowler et al. (1993) nyxng =4x4 24.42 | 234.99 18.28:1
J+1=128
Manikopoulous (1992) | non-linear predictor | 29.5 72.62 15.6:1

It is easily seen that our method overperforms the previous PVQ approach
(Fowler et al., 1993) to image compression and is comparable to the nonlinear predic-

tor approach (Manikopoulous, 1992). The performance of our method is depicted in
Fig. 7.
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a)

b)

)

Fig. 7. (a) “Lena” original image.
b) “Lena” reconstructed image.
c) Difference between the reconstructed
and original images.
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7. Final Remarks

We investigated the predictive vector quantization algorithm for image compression.
The codebook was design based on the competitive learning neural networks including
the FSCL method giving the best result. Contrary to the previous similar approach
(Fowler et al., 1993) our predictor is chosen in an optimal way, which results in a
better compression quality.
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