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CLASSIFIER-APPROXIMATOR MODULAR NEURAL

NETWORK FOR ACCURATE ESTIMATION
OF DYNAMIC SYSTEM PARAMETERS

ANDRZE] MATERKA*

Principles of employing feedforward artificial neural networks for fast and robust
estimation of dynamic system parameters are reviewed briefly. In this approach,
the neural network approximates the mapping from the system observation
space into the parameter space. It is pointed out that for the conventional
neural network architectures the network size and time needed for its training
increase quickly with the estimated parameter range and with the approxima-
tion accuracy level required. Moreover, due to the local minima effect, the
training process is likely to become prematurely terminated. To overcome these
difficulties, a modular neural network architecture is proposed which comprises
classifier and approximator modules, both driven by the system under test ob-
servations. With this architecture, the domain of the mapping is partitioned into
a number of nonoverlapping regions. The classifier makes a decision as to which
predefined region the given observation vector belongs to. This information is
then used to select an appropriate weight vector (and possibly the structure)
of the approximator module, so as to minimise the parameter estimation error
locally, within the region identified. A numerical example is presented to show
that the proposed approach offers higher estimation accuracy and huge savings
in time required for the training.

1. Introduction

Parametric modelling of dynamic systems is a standard technique in almost every
area of engineering and science where physical systems of interest are described by
respective parameterised mathematical equations. Such equations form the system
model and their parameters often have physical significance. Actual parameter values
describe the system for diagnostic purposes. Searching for methods and techniques
for fast and reliable parameter estimation based on system observation is a crucial
problem in many applications comprising e.g. signal and image processing for medical
diagnosis support, electronic circuit fault diagnosis, and plant identification in control
engineering. It has recently been postulated (Materka, 1992; 1994; 1995a) that ar-
tificial neural networks (ANNs) can be employed for the dynamic system parameter
estimation. In this approach, samples of the system-under-test (SUT) response to
a predetermined stimulus are applied to the input of a feedforward ANN. The sam-
ples form an observation vector of the SUT. The observation vector depends on the
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unknown system parameters. The estimated parameter values are produced at the
ANN outputs. Thus the ANN approximates the mapping from the SUT observation
space into the SUT parameter space. This inverse mapping is usually unknown. The
neural network learns the mapping during the training process. Once the training
has been completed, the mapping, encoded in the ANN weights, can be recalled with
no need for any iterative calculations. Thus the proposed technique is highly suitable
for real-time SUT parameter tracking. It is an attractive alternative to traditional
methods of system parameter estimations, e.g. by least-square-error (LSE) model tun-
ing (Cadzow, 1990). The technique has a big potential for many applications, e.g. for
mixed-signal VLSI circuit testing (Materka, 1995b).

To the author’s knowledge, the usefulness of using ANNs for the dynamic sys-
tem parameter estimation was first postulated and proven in (Materka, 1992). In
this approach, the neural network performs the function of a nonlinear associative
memory (NAM), in principle. A relative high accuracy of parameter estimates was
demonstrated with this approach (Materka, 1992; 1994; 1995a). Independently, a
linear associative memory (LAM) was proposed in (Kalaba et al., 1992) as a means
to obtain preliminary parameter estimates for nonlinear systems. Obviously, the
LAM-estimated parameter values are of limited accuracy (Kalaba et al., 1992; Tawfik
and Durrand, 1994). Using second-order polynomials resulted in the accuracy im-
provement over the LAM (Kalaba et al., 1992). Both the LAM and NAM offer higher
speed when compared to standard techniques for parameter estimation.

On top of its high speed, the new technique offers higher noise immunity when
compared with LSE modelling. Namely, it has been proven analytically and veri-
fied numerically that by using ANNs the observation-noise-induced rms estimation
error can be reduced, provided that noisy SUT observations are used for the ANN
training (Materka, 1995¢; Materka and Mizushina, 1996). On the other hand, the
two techniques are fully equivalent if the ANN is trained in noiseless conditions.
Having established the main advantages of the ANN-based approach over the tra-
ditional techniques of parameter estimation, the present research is focused on
optimising the ANN architecture for fast and accurate approximation of the map-
ping of interest. This paper proposes a combination of classifier and approximator
networks that allow intelligent, high-accuracy parameter estimation. The training of
the proposed network architecture is shorter in time and controllable, as opposed to
the standard backpropagation approach.

2. System Parameter Estimation Using Neural Networks

Consider a system under the test response y(t) to a stimulus z(t), where t denotes
the independent variable. Figure 1 shows a system excited by a constant-amplitude
step stimulus, where the independent variable is time. The response depends on
system parameters 8y, k = 1,2,...,p. The parameters remain constant within an
observation interval [t;,t,]. The objective is to find 8 = [0;,02,...,0,)7,0 € © C
RP, given a set of observations

Yi =y(t,-) =f(t5,0)+€i, 1=1,2,...,n (1)
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where © is the parameter space, © = {6 : 6 <60, <6}, k=1,2,...,p}, f(:) isa
deterministic SUT function and i stands for observation noise. Noiseless observations
will be assumed in this paper, i.e. the variance of the zero-mean random variables e;
will be zero, 62 = 0. Further work is planned to investigate in detail the noise
influence on the proposed modular ANN architecture performance.

The most popular, perhaps, technique of dynamic system parameter estimation
employs the least-square error principle to tune the system model by means of mini-
mising a norm of the error between the system and its model responses to the stimulus
z(t). This is illustrated by Fig. 2. The norm of the error is a nonlinear function
of model parameters and therefore time-consuming iterative calculations have to be
carried out each time a new observation vector is acquired. This method is of limited
use for fast parameter identification.
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Fig. 1. System under test excited by a stimulus z(t).
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Fig. 2. Principle of system parameter estimation using the LSE technique.
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Fig. 3. Neural-network-based estimation of dynamic system parameters:

z(t) - stimulus, § = (61,...,0,)7 - unknown parameters,
y = (y1,...,yn)T — measured observations, w = (w1,...,wg)T —
neural network weights, § = (81,...,8,)T — estimated parameters.
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Fig. 4. Principle of ANN training for system parameter estimataion.

Figure 3 illustrates the idea of using neural networks for the system parameter
identification (Materka, 1992; 1994; 1995a). The observation vector y forms the
input to a feedforward ANN which produces estimates § = §(w, y) of the unknown
parameters at its output, where w € R? is a weight vector (Haykin, 1994). Thus the
ANN approximates a mapping from the observation space into the parameter space.
It is assumed that this mapping exists, which can be ensured by a proper selection
of stimulus and observation moments (Materka, 1994; 1995a). The ANN learns the
mapping during training. The aim of the ANN training process is to minimise the
mean-square approximation error over a set of examples 8() € ©,1=1,2,...,N, by
adjusting the weights w. This is illustrated in Fig. 4. For each given vector (), the
model response f(t,8(!)) is calculated, sampled and applied at the input of the ANN.
The neural network produces parameter estimates at its output. These estimates
depend on the weight vector w. The weights w are adjusted to minimise the norm
of the error between the actual and estimated parameters, over a set of examples
covering the parameter space. The training itself is a nonlinear minimisation process
and may consume a lot of computer time. However, the training has to be performed
only once for a given SUT and its parameter space ©. After training, the ANN weights
are frozen. This corresponds to the recall mode of the ANN operation, leading to the
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arrangement shown in Fig. 3. Thus the actual system response forms the input to the
neural network in this mode. The network of feedforward type produces parameter
estimates at its output in a relatively short time. This time is equal to the time-
delay related to signal propagation from the ANN input to the output and can be
made very short by employing a hardware-implemented ANN. Thus high speed is an
advantageous feature of the technique. No iterative calculations are performed in the
recall mode.

Another useful property of the proposed approach originates from the definition
of the error function that is minimised in the training mode. Namely, the error is
defined based on the difference between the actual and estimated parameters. On
the contrary, in the LSE approach shown in Fig. 2, the error is based on differences
between the actual and modelled circuit responses. This distinction leads to different
properties of the two estimators in the presence of noise. It has been shown (Materka,
1995¢; Materka and Mizushina, 1996) that if the ANN is trained on noisy observations,
the noise-induced identification error can be significantly lower in the recall mode,
compared with the error of LSE model tuning.

The properties of the proposed technique have been investigated by means of
computer simulations (Materka, 1995d; Materka and Strzelecki, 1995) and measure-
ments (Materka, 1995a; 1995b) to confirm the analytically predicted performance.
Linear (Materka, 1995a; 1995b; 1995d) and nonlinear (Materka and Mizushina, 1996;
Materka and Strzelecki, 1995; Materka, 1995e) system parameters have been suc-
cessfully identified by employing a popular multilayer perceptron ANN architecture
(Haykin, 1994). In particular, the CUT response time delay can be an identified
parameter (Materka, 1995a; 1995b; 1995¢) which is normally not easy to identify us-
ing traditional methods (Unbehaunen and Rao, 1987). An interesting application of
ANN approximators to finding parameters of CMOS circuits by processing transients
in the power supply current has been described in (Materka and Strzelecki, 1995) This
approach can reduce the number of circuit pins required for internal parameter iden-
tification. The speedup of the technique compared with the LSE model fitting, with
ANNSs simulated by a PC (i.e. serial) computer, ranged from 500 to 40000, depending
on the complexity of CUT equations (Materka, 1995a; 1995¢; 1995¢). One can say
that basic properties of the technique, which itself has a big potential for a number
of applications, have been understood. Present research is focused on searching for
efficient means of its practical implementation. Some of the related topics are pointed
out in the following section.

3. Classifier-Aproximator ANN Architecture

It has been observed that for popular ANN architectures, e.g. for a multilayer percep-
tron (Haykin, 1994), the number of neurones required to maintain a given level of error
increases with the number of unknown system parameters and with the parameter
range (Materka, 1992; 1994; 1995a). Similarly, system parameters that depend on the
observations in a highly nonlinear manner require larger-size ANNs when compared
with the parameters that are linear functions of the SUT response. with the ANN
complexity increased, the size of the weight vector increases, too. As a result, the
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convergence of the training process, which is basically a numerical minimisation of a
multivariable error function, becomes slower. Moreover, with the increased number
of optimised variables (weights) there appear new local minima of the error function.
Their presence increases chances for premature termination of the training process.
Due to these effects, the concept illustrated in Fig. 3 is of limited practical use for
systems with a large parameter number p and for cases where the parameter space is
of high volume (i.e. where each parameter range is wide). (Similar effects take place
in situations where a Taylor series expansion is used to find approximate values of a
continuous function of a single variable « over a given interval of o (Fortuna at al.,
1982). As the length of the interval increases, more Taylor-series terms are needed
to maintain a given level of the approximation error.) Another factor that has to be
taken into account at the increased number of ANN weights (ANN degrees of free-
dom) relates to the necessity of increasing the number of training examples (Materka,
1993); otherwise the new degrees of freedom would not be under control. This factor
also contributes to the increased demand for the training time.

In this paper, a modular ANN architecture is proposed to overcome the difficulties
experienced, without loosing the high speed and high noise immunity of the ANN-
based technique. The architecture is illustrated in Fig. 5 where the ANN is split
into two parts: the classifier module and the approximator module. Both modules
take system observations as their input signals. The domain of the mapping, in the
observation space, is interpreted as a union of m non-overlapping n-dimensional

regions S;, 4 = 1,2,...,m. The approximator network is optimised to provide high
approximation accuracy separately for each region, resulting in m weight vectors
w', i = 1,2,...,m. Any parameter range corresponding to any of the regions is

narrower than the corresponding parameter range for the whole observation domain.
Thus the mapping of interest becomes less complex within each region — in a sense
it is a smoother function there (locally). It requires a smaller number of neurons,
smaller number of adjustable weights and smaller number of training examples to
achieve a given level of approximation error. The task of the approximator training
becomes decomposed into m separate tasks of training simpler neural networks. This
approach gives savings in total time required for the training and makes the whole
training process controllable.
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Fig. 5. Proposed modular ANN architecture for system parameter estimation.
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Fig. 6. A single-hidden layer MLP ANN architecture.

In the recall mode, any observation vector measured is first assigned (by the
classifier network) to one of the predefined regions. Next, the corresponding weight
vector is loaded to the weight memory of the approximator module. This module is
then used to estimate system parameters given the observation vector at its input.

4. Computer Simulat ion

As an example, consider a two-parameter multi-exponential system

£(t,6) = 25 [exp (—%) —exp (-é)] 2)

over the parameter space © : 6.0 < 6; < 14.0, 0.2 < 6, < 1.0. This system was
discussed for the three-parameter case in (Materka, 1994; Materka, 1995a). The ob-
servations were taken at t; = 0.558 and ¢, = 2.613. Without any loss of generality,
the assumption of p = 2 facilitates graphical presentation of the results. The MLP
architecture (Haykin, 1994) shown in Fig. 6, was first used with linear neurons in the
output layer for global parameter estimation by means of ANNs (Fig. 3). Each pa-
rameter requires one network of the type presented in Fig. 6. Hence, in this numerical
experiment, the k-th parameter of system (2) was estimated as

h n=2
Oc(wi, y) = uro + _ ug;é ('Ukjo + Z’Ukjiyi) ()

i=1 i=1
where w = (wy,...,w,)T = (uko,ukl,...,ukh,vkm,vku,...,’ukhn)T is the weight
vector, k = 1,2 whereas £(-) denotes the sigmoidal function of the MLP neurons
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and h is their number. For the ANN training and testing 32 and 100 example values
of each parameter were respectively selected to cover the parameter space, uniformly
over each parameter range. Thus the training and testing set sizes were N = 1024 and
N’ = 10000, respectively. A two-stage training procedure was employed composed of
the standard back-propagation algorithm (Haykin, 1994) followed by the multivaria-
ble function minimisation (Materka, 1992; 1994; 1995a). All the calculations were
performed using a PC 486/66 computer.

The estimation accuracy increased with the number of neurons h, at the expense
of an increased training time, as demonstrated in Fig. 7. The maximum absolute
testing error less than an arbitrarily selected small value of 1.0% of the parameter
nominal value (f; = 10.0) was obtained using ANNs with h =7 (i.e. with ¢ = 29
weights). A further increase in h did not produce any significant error reduction.
Instead, the training time increased to about 3 hours of calculations and the results
of the training process became somewhat unpredictable. These effects were attributed
to the more pronounced local minima problem and to the fact that (3) did not describe
any orthogonal basis for function approximation.

10000 —+
1000 + /'/./Bf./l\.i/l—u

1 " —®&8-—— train. time
10 //

—{—— rms error
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—0— # weights, gq
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—

number of neurons, h

Fig. 7. Results of global estimation of the parameter ¢; using an MLP
with sigmoidal neurons.

To investigate the potential performance of the proposed architecture of Fig. 5, a
Kohonen-type classifier ANN was used as a Learning Vector Quantiser (LVQ) (Haykin,
1994). In the case of the example system (2), the classifier had two input nodes, each
corresponding to a respective element of the two-dimensional observation vector. The
number of output nodes was equal to m = 9, which was the number of regions (cells)
the whole observation domain was partitioned into. Each output node was allocated

ik * * T .
to a code book vector y; = (y5,¥5k) »1=1,2,...,m.

For the training of the classifier network, the system parameter vectors 6 were
repeatedly taken at random from the parameter space ©. The corresponding obser-
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vation vectors y(6) = (y1,y2)7 were then calculated using (2). For each random
value of 8, the Euclidean distance

dG) =/ —92)? + (42 — y3)? (4)

between the corresponding observation vector and each of the code book vectors
y;, 1 =1,2,...,m was computed. Let

c= argiem[li’ril] {d(z)} (5)

be the index of a codebook vector which is the closest one to the observation vector
y. This codebook vector y* was modified to train the classifer, as follows (Haykin,
1994):

v =y 4 (v -y (6)
where # > 0 is a small constant. The other codebook vectors, ¥y, i =
1,2,...,m, ¢ # ¢ were not changed for a given observation vector. Figure 8 illus-
trates an initial distribution of m =9 codebook vectors that correspond to m = 9
points (61,62) which form a uniform rectangular lattice over the parameter space ©.
The distribution of the codebook vectors obtained after 500,000 training iterations
for n = 0.005 is shown in Fig. 9.

In the recall mode of the classifier, the distance (4) was calculated for each
observation vector acquired. The vector y was classified as belonging to an observa-
tion region S., where ¢ denotes the index of an observation vector of lowest distance
to y. The mapping § = 6(y) was approximated locally within the region S. by
the approximator in Fig. 5. In the case of Fig. 3, as discussed earlier and illustrated
in Fig. 7, the approximation was performed globally, over the whole domain of the
mapping in the observation space.

To compare the complexity of the approximation task for the two architectures
(shown in Fig. 3 and Fig. 5, respectively), consider the higher-order residuals of the
mapping for the parameter 6; of system (2):

i I A Bcict Y ™)
n v 63/2 v

The residual A; is the difference between the actual parameter value and its value
approximated by a truncated Taylor series expansion of the mapping around the
appropriate codebook vector. If the mapping were linear, the residual (7) would be
zero, A; = 0. In such a case, a linear combiner ANN would perfectly perform the
approximation task. Figures 10 and 11 compare the values of A; calculated for the
global approximator (Fig. 3) and for the proposed architecture (Fig. 5) employing a
Kohonen net LVQ classifier, respectively. One can see that employing the classifier
makes the mapping closer to a linear relationship and reduces the demand for higher-
order approximation capabilities.
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Tig. 8. Code bock vectors and the tessellation of the observation plane corres-
ponding to a lattice of uniformly distributed points in the parameter

space.

Fig. 9. Code book vectors and the tessellation of the observation plane corres-
ponding to the Kohonen net learning vector quantizer solution.
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Fig. 11. Residuals (7) for global estimation of parameter 61, by ANN of Fig. 5.
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Two ANN types for function approximation in the arrangement of Fig. 5 were
compared, an MLP with A = 2 neurons and an architecture based on rational function
(RF) approximation (Leung and Haykin, 1993). The k-th parameter, k¥ = 1,2 at the
output of the RF network was estimated in the i-th observation region as

hi(wi, y) = Wiy + Wip¥1 + Wigye + Wig¥3 + wisY1Y2 + Wisy3
b 1+ wi,y1 + wigye

(8)

A comparison of the performance of the two approximators applied to the parameter
estimation task can be made referring to Figs. 12 and 13, as well as to Table 1. The
MLP architecture is clearly less efficient than the RF network, both in terms of the
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Fig. 12. Results of §; parameter estimation using the architecture of Fig. 5
with an MLP approximator.

10000 I
1000 +

100

+ — . ;
10 train. time
1 —{— rms error

0.1

0.01

—®—— max abs err
/0—4 ‘/. : /
0.001 M
0.0001 + ; + ; + t t ¢ |

— ~N ™ s tn =] ~ [ee] o

codebook vector index, i

Fig. 13. Results of #; parameter estimation using the architecture of Fig. 5
with an RF-ANN approximator.
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Tab. 1. Computer-simulated estimation of 6; by the ANN of Fig. 5
using a Kohonen net classifier with m = 9 classes.

Mean values over all classes

training max

Approximator time rms absolute
architecture [s] error error
MLP (¢ =9) 25.0 0.0190 0.075
RF (g =8) 0.05 0.0034 0.014

Maximum values
{worst-case results over the whole parameter space)

training max
Approximator time rms absolute
architecture [s] error error

MLP (m=9) | 40.0 | 0.0480 | 0.166
RF (¢ =8) 0.05 | 0.0065 | 0.029

accuracy level achieved and the time required for the training, in the example of
system (2) under consideration. (As in the case of Fig. 3, the performance of the
proposed architecture was tested at N' = 10000 points uniformly covering the pa-
rameter space.) Similar results were obtained for a classifier using codebook vectors
of Fig. 8, instead of those shown in Fig. 9. This indicates that in some cases the
observation space can be appropriately tessellated based simply on a lattice of points
uniformly covering the parameter space.

The results presented in Fig. 7, compared with those shown in Fig. 13 and in
Table 1, demonstrate advantages of the modular classifier-approximator architecture
as a means for accurate, real-time estimation of dynamic system parameters. Namely,
by employing the proposed modular arrangement, the parameter estimation error was
reduced by a factor of 5, approximately, with a simultaneous reduction of the time
needed for the ANN training. Similar advantages are expected in the case of parameter
estimation of other types of dynamic systems. Applying the proposed technique to
systems whose number of unknown parameters is larger than p = 2 is one of the
current research topics.

5. Conclusion

A modular ANN architecture has been proposed for parameter estimation of dynamic
systems. By using this architecture, the duration of the training process can be re-
duced significantly while maintaining high estimation accuracy. A numerical example
of a multi-exponential system model was presented to confirm the usefulness of the
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architecture. Two ANN types were compared through a multivariable function ap-
proximation. It was found that for a given number of adjustable weights, the popular
multilayer perceptron (MLP) network gives less accurate parameter estimation and
requires much longer training times as compared to networks based on the concept of
rational function (RF) approximation. Interestingly, the RF networks can be trained
by solving a set of linear equations, which takes much less time than nonlinear pro-
gramming does and helps to avoid the problem of local minima. Thus the architecture
of choice is a classifier module using e.g. a Kohonen network and an RF-type ANN as
an approximation module. Further work will focus on the analysis of noise immuni-
ty of the modular architecture, on issues related to its hardware implementation, as
well as on the application of the technique to parameter estimation of more complex
systems.
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