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A NEW APPROACH TO NEUROCONTROL
BASED ON FOURIER ANALYSIS AND NONUNIFORM
MULTI-DIMENSIONAL SAMPLING

ANDRzEJ DZIELINSKI*, RAFAL ZBIKOWSKI*

This paper presents a new approach to neurocontrol of deterministic, discrete-
time non-linear (NARMA) dynamic systems, given only input-output data of
finite length. The demanding setting of scarce knowledge about the plant is
motivated by practice of data acquisition and the complexity of discretised dy-
namics.

The essence of the method is a novel modelling technique based on nonuni-
form multi-dimensional (N-D) sampling and Fourier Analysis. The right-hand
side (RHS) of the NARMA model is reconstructed from nonuniformly spaced
N-D samples. This is done by approximating the Fourier transform of the RHS.
To this end a feedforward neural network is applied as an implementation of a
multi-dimensional interpolating filter in the N-D frequency domain. The neural
model obtained in this way is smooth and suitable for the purposes of non-linear
control. In order to deal with the modelling error, a new technique of BIBO
redesign of the closed-loop system is introduced.

The modelling method is inspired by the ideas of Sanner and Slotine (1992),
but it goes far beyond them, resulting in a novel approach. The main advan-
tages of the new algorithm are: the realistic engineering setting, computational
simplicity, applicability (mild assumptions), flexible neural implementation and
relevance for control.

1. Introduction

Throughout the paper we denote by N, Z, R, C natural, integer, real and complex
numbers, respectively. Also, Z4+, R, denote the set of non-negative integers and
reals, respectively.

In this paper, we introduce and analyse a new neurocontrol strategy for the deter-
ministic, non-linear, single-input single-output (SISO) system given by the discrete-
time, t € Z4, input-output NARMA (Chen and Billings, 1989) model

y(t+1) = f(y(t),...,y(t—-n+ 1),u(t),...,u(t—m+1)) (1)
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with ¥ € [a,0) CR, v € [¢,d] CR and f: D — [a,b] with the domain of definition
D = [a,b]" x [¢,d]™. It is physically natural that output y and input » assume only
finite values on a connected set and can attain their bounds. In fact, D is a compact,
connected and convex subset of R**+™.

We assume that all we know about (1) are measurements of current and past
values of y and u with very little a priori knowledge of f. The demanding setting
is motivated by the engineering problems in which we are given raw input-output
data only, acquired at discrete-time instants. Also, the a priori knowledge of the
underlying continuous-time dynamics is usually lost in the process of discretisation
leading to the NARMA representation (1).

As mentioned above, model (1) is obtained by discretisation (Kalkkuhl and
Hunt,1996) of a deterministic non-linear (Lipschitz) continuous-time, ¢ € Ry, SISO
control system

%= fi(z,u)
y = h(z) (2)

with z € X C R™ and y € [a,b] C R, u € [¢,d] C R and an initial con-
dition z(ty) = xo. This, in general, is an approximation process (Kalkkuhl and
Hunt, 1996), and we cannot expect any mathematically nice properties of f, even if
the underlying continuous-time model possesses them. Moreover, the input-output
model (1), obtained from the discrete-time state-space description (Chen and Billings,
1989; Leontaritis and Billings, 1985), is valid only locally and therefore it is not the
‘ultimate black-box’.

This paper proposes a new neurocontrol framework for modelling of systems (1).
It is based on the application of multi-dimensional (N-D) Digital Signal Processing
and Sampling Theory. The method. substantially expands and improves the basic
idea introduced by Sanner and Slotine (1992) and goes beyond it, resulting in a novel
approach.

The paper is organised as follows. The new algorithm is described in Section 4.2
and the preceding sections explain the motivation and necessary background material.
Thus, Section 2 presents the fundamental underlying problems arising in realistic
modelling of (1) from real-world data. Particular attention is paid to engineering
and computational considerations and their mathematical consequences. Section 3
deals with one of the central themes (and novelty) of the paper: nonuniform multi-
dimensional sampling. Sections 2 and 3 set the stage for Section 4, where the new
neural method is put in the context and its features explained. The use of the novel
modelling approach for stable control is described in Section 5. The paper ends with
conclusions.

2. Underlying Problems

In this section we explain the interplay between real-world engineering and compu-
tational constraints and mathematical techniques involved in modelling of (1). We
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discuss fundamental problems which arise when Fourier Analysis is applied in this
context. We identify function extension as the central issue and conclude that the
space-limited extension seems to be the most natural solution.

2.1. Extension Problem

As we argue in Section 3.1, a natural approach to modelling unknown f in (1)
is via multi-dimensional sampling and thus a relevant mathematical tool is N-D
Fourier analysis. This involves f defined on the whole of R™+", N = m 4 n, while
the engineering problem (described in Section 1) defines f on the bounded domain
D = [a,b]™ x [¢,d]™ only. Thus, before proceeding to analyse the process of multi-
dimensional sampling (Section 3), we have to address the eztension problem. That is:
how should f: D — [a,b] be extended to R™*™ or what values should be assigned
to f for its arguments beyond D?

Because of the multi-dimensional sampling involved, the extension should be
Fourier transformable and therefore the minimal requirement is that it belongs to
LY (R™") N L2(R™*") (Stein and Weiss, 1971), i.e., is absolutely and square inte-
grable. Thus the minimal assumption for f in (1) is f € L(D)NL%(D), a very mild
condition, especially in the view of boundedness of f,ie., f(D) C la,b] C R

In what follows, we discuss three approaches: band-limited extension, Fourier
series extension and space-limited extension. We conclude that the best method,
both from theoretical and practical viewpoint, is the space-limited extension (see also
(Dzieliniski and Zbikowski, 1995a; 1995b).

Band-Limited Extension. The most obvious approach (Sanner and Slotine, 1992)
is to extend f as a multi-dimensional band-limited function, i.e., having Fourier
transform non-zero only on a bounded set. This, however, implies that the exten-
ded f, say f, would be an entire function,! so, in particular, analytic in the whole
of C™+", Thus f(z) = Zkez$+" arz® everywhere with k = (ki1,...,km4n) € Z7T"

* N ko tn : s )
and z* =2 ezt where € R™™. Tt is also true that f(2) = Y- cpmen apz?
+

everywhere, where z € C™*". In particular, f would have to be complex analytic
on D.

This strong requirement of smoothness of f considerably limits the class of mo-
dels (1) which could be analysed, themselves already locally valid only (see Section 1).

It cannot be guaranteed (Havin and Joricke, 1994) that small changes in the
Fourier transform result in small changes in its inverse, f. This is an example of an
ill-posed problem and as such requires regularisation (Tikhonov and Arsenin, 1977).

Fourier Series Extension. Since f is naturally defined on a (multi-dimensional)
rectangle, an immediate thought is to expand it into multiple Fourier series (Ash,
1976; Stein and Weiss, 1971). However, the N-D Fourier series do not possess many
useful features of the one-dimensional counterpart (Ash, 1976). First of all, there are

! In fact, it would be a Paley-Wiener function; see (Zbikowski and Dzielinski, 1996a).
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various ways of forming partial sums (summation on rectangles, circles etc. of the
lattice Z™*"). They profoundly affect convergence and different summing schemes
are useful for different functions, with no simple rules.

Unless f is constant on the boundary of D, the extension f will be discontinuous
on the boundary. This results in the multi-dimensional Gibbs phenomenon on the
boundary 0D, i.e., oscillation of the partial sums independent of the number of terms
in the sums. The value of the Fourier series on 8D will not necessarily (Pinsky et al.,
1993) tend to the average of the function values (f(8D~) + f(8D%))/2, as is in the
1-D case.

One of the useful features of one-dimensional Fourier series is the localisation
property. This means that convergence of the series at a point depends only on
the behaviour of the expanded function in a neighbourhood of the point. This is
not necessarily true in N-D (Pinsky et al, 1993) and even for innocently looking
functions their values on the boundary may profoundly affect convergence in the
interior. Smoothness helps (at least for the radially symmetric f), but again limits
the class of functions f in (1).

Space-Limited Extension. The band-limited approach requires a strong smooth-
ness of f. However, the ideas can be exploited due to dualism of Fourier Analysis. If
we reverse the roles of the function and its Fourier transform, then we naturally come
to the idea of a space-limited function, whose transform is complex analytic. Then
the sampling is done in the (multi-dimensional) frequency domain and the Fourier
transform is reconstructed. The only (very mild) requirement for the space-limited
function is that it has a unique and invertible Fourier transform.

Let us make these ideas precise. A function f: R™"™ — [a,d] is called space-
limited if it is non-zero only in a bounded subset D of R™*". Thus, the extension
is simply

f(:z:):{f(z) if zeD 3)
0 otherwise

It follows from the Plancherel-Pélya theorem (Ronkin, 1974) that the Fourier trans-
form F of f is entire (Zbikowski and Dzieliniski, 1996a). Because of duality of Fourier
analysis, we may as well say that F is band- llmlted its Fourier transform being f
of (3) and the bandwidth being D. However, to avoid the confusion with the usual
meaning of the term ‘band-limited’, we prefer calling F' harmonically-limited (Kim
and Bose, 1990).

Thus, the strong smoothness is a feature of the harmonically-limited Fourier
transform F of f, not f itself. It is important that the only requirement on f in (1)
is that f € L'(D) N L%(D). This, of course, ensures f € L(R™t") N L2(R™").

Hence the problem of reconstruction of f is reduced to the reconstruction of the
harmonically-limited Fourier transform F of the space-limited extension (3). This
is aided by analyticity of F (Fiddy, 1987), but primarily by the availability of N-D
efficient Fourier transform approximations (see Section 2.2) generating samples of F
from the samples of f. Note that the samples of f will contain only the values of f
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on D, which would not necessarily be the case for the methods of Sections 2.1 and 2.2
(there f may be non-zero outside D).

Finally, it should be noted that this approach has been successfully applied in
reconstruction of (2-D) images and there exists a wealth of practical, numerically
sound and tested algorithms. The main emphasis in image reconstruction is, however,
on uniform sampling, but there have emerged nonuniform methods very recently
(Feichtinger and Grochenig, 1993).

The space-limited extension, dual to the band-limited one, seems to possess some
desirable features of which the mild assumptions on f are of paramount importance.
Therefore further developments are devoted to this approach.

2.2. Fourier Transform Approximation

In this section we briefly summarise the simplifications resulting from using a compu-
tationally acceptable version of the Fourier transform, i.e., Discrete Fourier Transform
(or rather Fast Fourier Transform) instead of the transform itself.

The Fourier transform is defined as an integral of a function of continuously
varying arguments as follows

Flw)= [ f(z)e7 = da (4)
RN
where w, = (We1,...,wen) € RY and = (x1,...,25) € RV and - denotes the
: . N
Euclidean inner product we -z =) ,_; WerTx-

Let us note that in the multi-dimensional case we deal with variables of different
nature and neither the original domain has anything to do with time, nor its trans-
formed counterpart is an analogue of frequency. This is a purely formal application
of the Fourier integral to multi-dimensional functions. The variables of the NARMA
mode! (1), which in our approach play the role of z in (4), are the values of system
inputs and outputs in consecutive time instants. Their nature may be diverse and
interpretation of the variables of the transform is not as clear as for the time sig-
nals. Therefore we shall refer to (4) as the Continuous Fourier Transform (CFT) to
emphasise that both the original and transformed variables vary continuously.

The consecutive steps (Zbikowski and Dzielifiski, 1996a) of necessary simplifica-
tions and the resulting approximations are as follows. Starting from CFT we pass
to the Discrete Continuous Fourier Transform (DCFT) which is CFT applied to the
function f taken at discrete values of z. Then, as the data are of finite length in
any practical application, we introduce the Truncated DCFT, i.e., DCFT defined for
the function of arguments restricted to a finite set only. Note that both DCFT and
the Truncated DCFT, while defined for a discrete function, are themselves functions
of continuous arguments w.. If the Truncated DCFT is to be of any practical value,
a systematic procedure of its numerical evaluation must be developed. The Discrete
Fourier Transform (DFT) provides such a mechanism, whereby sampled values of the
Truncated DCFT are computed on a prescribed finite set of discrete values of trans-
formed arguments. The values of DFT on the set are found through a finite number of
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(possibly complex) additions and multiplications and making the algorithm amenable
to digital implementation. Furthermore, the Fast Fourier Transform algorithm can
be used to obtain a computationally effective means for obtaining the sampled values.

In the sequel, we call the arguments of f in (4) the space variables and the
arguments of F' the frequencies. As mentioned before, even in the one-dimensional
case the analogy with the terminology of time signals is false, but we nevertheless use
the names in order to avoid excessive wording.

3. Multi-Dimensional Sampling

This section describes the fundamental questions of multi-dimensional sampling and
their relevance for the reconstruction of the space-limited extension f of f from (1)
for the purposes of neurocontrol. As noted in Section 2.1, this amounts to the recon-
struction of the harmonically-limited Fourier transform F of f. Section 3.1 describes
how nonuniform sampling naturally arises for models (1). Section 3.2 gives a brief
background for the N-D sampling theory and its nonuniform aspects. The results
serve a starting point for Section 4 on practical algorithms for the N-D functions
reconstruction.

3.1. Motivation and Background

If f in (1) is unknown, then modelling can be based on the knowledge of the pairs
of multi-dimensional samples ((y¢, ..., Yt—nt1,Ut,-- - Ut—mt1), Y2+1), Where we put
ye = y(t) etc. for brevity (¢t € Z..).

Modelling of fi in (2) based on the pairs ((z,u),Z) is not feasible (even if we
could measure z), due to the need of inherently noisy estimate of £. Note, however,
that y is lowpass filtered before discretisation to make it band-limited and thus avoid
aliasing (Astrom and Wittenmark, 1990). Filtering of y and its observation at discrete
time instants free model (1) from this problem.

Put N =m + n. Given the samples

)\k = (’\Lkl?' . -;)‘N,kN) = (yt, ey Yt—n1, Uty . ..,ut_m_H) and f(Ak)

the issue is to reconstruct the multivariable function f, a problem from the multi-
dimensional (N-D) Signal Processing (note that it is completely separate from the
question of band-limiting of y). The approach was introduced by Sanner and
Slotine (1992), but they assumed that the multi-dimensional samples are uniform,
i.e., regularly distributed in the domain D of f. This seems to be a simplifi-
cation, as the dynamics of (1) manifest themselves through irregular samples (see
(Zbikowski and Dzieliiski, 1996a). The notation used there may be not entirely
consistent with that used throughout this paper). For example, if f is linear, i.e.,
Y1 = oYt + ...+ 8n1Yt—nt1 + bous + ... + bm—1Ut—m+1, then even for a constant
input the output will not take values in constant increments, but according to the
slope of the hyperplane determined by f. Thus even uniformity of » cannot, in
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X3 =flxy %)

Y1 =F0% )

Fig. 1. Iterative map f:[0,1] x[0,1] — [0,1] defined by yi+1 = f(yt,ye-1).

general, ensure a regular distribution of values of 4, because the irregularity of the
distribution represents f.

We now examine in detail the nature of this process in low dimensions (as this
can be illustrated graphically).

We look at the way nonuniform samples, i.e., Az in the pairs (Mg, f(Ar)), are
generated when f is the right-hand side (RHS) of a dynamic system. For simplicity,
instead of dealing with a controlled system of type (1), we concentrate on the low-
order autonomous case:

Yer1 = f(ye,ye-1) (5)

with y € [0,1]. Thus for (5) A = Ay k) = (AiksA2ks) = (¥, 9e-1). We also
assume, for illustration purposes only, that f is continuous. Its domain D = [0, 1]?
is compact (and connected). The sample points Ax = Ak, k) = (A1, A2k,) =
(y¢,¥:—1) appear in the z;z5 plane, according to the iterative process (5); see Fig. 1.
Since system (5) is causal, the samples ) arrive in a definite order, i.e., (ky, ko) =
(t,t — 1) with ¢t € Z4. In an off-line setting the numbering scheme for X\, can be
arbitrary.

If we start with Ay o) = (A1,1,A2,0) = (¥1,%0), where ¥, € Ozy and yo € Oz,
then we can read out y» from the surface representing f. Then ¥, is reflected
through z3 = z; on the z2x3 plane, becoming a point on the Oz, axis. In the same
time ¥, is reflected through zo = z; on the z;z, plane, becoming a point on the
Oz; axis. This results in the point (yi,y2) in the zyz2 plane, corresponding to the
sample A(31) = (y2,%1). We can now read out y; from the surface representing f
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and repeat the process for ¢ = 3. Now y; ‘migrates’ from Ozz to Ozy and y» from
Oz, to Oz, generating the point (y2,y3) on the zjzy plane corresponding to the
sample A(32) = (y3,¥2) etc.

The essential observation is that y;, i.e., Ay of the pairs (Ag, f(Ax)) appear on
Oz, and Oz, in a nonuniform (irregular) way. They will be, in general, unevenly
spaced and their pattern of appearance will depend on the dynamics of (5), or the
shape of f.

3.2. Nonuniform Sampling in N Dimensions

The main result of multi-dimensional uniform sampling theory is a generalisation of
the Shannon Sampling Theorem (Shannon, 1949) to many variables. This may be
summarised as follows (Petersen and Middleton, 1962).

Theorem 1 (N-Dimensional Sampling Theorem). Let h : R¥Y — R be such
that both its N-dimensional direct, H, and inverse Fourier transforms are well-
defined. If the spectrum H(wy,...,wn) vanishes outside a bounded subset of N-
dimensional space, then h can be everywhere reconstructed from its samples h(zy) =
R(Z1kys---> TNk ), Laken over a lattice of points {kivi+kova+.. +knun} ki € Z,i=
1,...,N, provided that the vectors {vi,va,...,vn}, where {v;} € RV i =1,...,N,

are small enough to ensure non-overlapping of the spectrum H(wr,...,wy) with
its periodic images on the lattice defined by the vectors {wi,wa,...,wn}, where
{w;}eRY,j=1,...,N, with

VirwWy; = 2‘7l'(5ij (6)

where 6;; is Kronecker’s symbol and - the inner product.

Condition (6) is a multi-dimensional generalisation of the Shannon condition
(Shannon, 1949).

Theorem (1) allows finding an N-D interpolation ‘filter’ with the multi-dimen-
sional impulse response g such that we may reconstruct h from its samples, i.e.,

h(z) = E h(zk)g(z — zx), zeRY (7)
keZ¥N

If we try to apply the multi-dimensional sampling theorem to the modelling of non-
linear systems, we have to address the issue of nonuniform sampling. This is because
the samples of © and y do not appear in (1) in a regular manner (see Section 3.1).

This problem has been attacked recently (Feichtinger and Grdchenig, 1993;
Marvasti, 1993; Sandberg, 1994), but still remains to be solved satisfactorily in gene-
ral case. Especially in the N-D case there is a need of results similar to 1-D case.
However, it is possible to provide at least the existence conditions for function reco-
very with any degree of accuracy from a sufficiently large finite number of irregular
samples making in this way the application of neural networks plausible.

Our problem is how to reconstruct the multi-dimensional function f()\) from its
nonuniformly spread samples {f(Xz)}. A basic difference from the uniform sampling
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is that there is no guarantee of the uniqueness of a band-limited signal reconstruction
from arbitrary nonuniform samples, even if the average sampling rate is equal to the
Nyquist rate. Therefore, there arises an issue of choosing the set {A\;} in such a way
that the existence of a unique solution is guaranteed. A set of sampling instances
that assures unique reconstruction is called a sampling set. The conditions for a
set of samples to be a sampling set usually depend on the method used. In our
method (Section 4.2) it is possible to establish appropriate conditions which are closely
related to the persistency of excitation issue (see (Dzieliniski et al., 1996) for detailed
explanation).

If {A:} is asampling set, we may now come to the problem of the actual function
reconstruction. There are a few methods for the nonuniformly sampled N-D function
reconstruction; however, most of them are tailored to specific tasks for which they
had been designed. The common methodology for many of them is the Lagrange
Interpolation Theory.

4. Practical Methods of N-D Function Reconstruction

The Lagrange interpolation provides a general interpolation framework for any samp-
ling scheme. General as it is, the Lagrange formula does not, however, equip us with
practical tools for the reconstruction of nonuniformly sampled N-D functions. In
this section, we shall present two more practically orientated approaches. First, we
shall discuss a method due to Kim and Bose (Kim and Bose, 1990), which provi-
ded us with the preliminary idea of transformation between the space and frequency
domains. Then we present a sketch of our new algorithm.

4.1. Kim and Bose Method

The method introduced by Kim and Bose (Kim and Bose, 1990) allows us to in-
terpolate over uniformly-spaced DFT points given nonuniformly sampled values of
the function. Exploiting the aliasing relationship in the DFT (sampled frequen-
cy) domain rather than in the continuous Fourier transform domain, we can ex-
actly reconstruct the discrete function subject to a band-limited discrete spectrum
(harmonically-limited function). The essence of the approach is interpolation over
the uniformiy-spaced Discrete Fourier Transform (DFT) points given nonuniformly
sampled values of the function.

The relation between the K;K,-point 2-D inverse DFT of uniform samples
of F and the nonuniform samples values F‘(wl,kl,wg‘kz), ki =1,2,...,Kq, kg =
1,2,..., K, is given below

- K.
F f(_'Kzl1——2)
(w1,1,w2,1) K 21(
F(wl,27w2,l) _ 1 & f('71+1,___2_%) (8)
: - K1[(2 .
F(wl,K17w2,K2) f(& 1. E?_ 1)
2 i)

where @ is the transformation matrix given in (Kim and Bose, 1990).
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This approach is especially attractive in the N-D case, as it gives a closed-form
interpolation formula. It allows us first to find the matrix which relates the uniformly-
spaced frequency samples to the original nonuniformly-spaced sample values of the
function itself. The required uniformly-spaced interpolation is then obtained by per-
forming the inverse DFT. However, we must notice that the matrix may not always
be invertible in the N-D case, even when all the sample points are distinct. Kim and
Bose (1990) give some necessary conditions for invertibility in the 2-D case together
with a computational algorithm. The conditions restrict to some extent the possible
irregular spread patterns of samples, as might be expected.

Having transformed the nonuniformly-spaced samples in one domain into uni-
formly spaced samples in the other domain, we can reconstruct the obtained function
by the methods based on the Shannon Theorem and its generalisations. For the prob-

lem of uniformly spaced interpolation we may use a neural network as discussed in
(Zbikowski and Dzieliniski, 1995).

4.2. New Method

The problem we are solving is stated as follows. We are given a finite num-

ber K - K2 - ... Ky of nonuniformly spread samples f(/\k), where A =
(AL,kys -y AN,k ), Of the non-linear function f = f(z), where z = (z1,...,2n5) =
(YtsYtm1s -+ s Ytmomt 15 Uty U1y - - s Ut—mt1), 1.6, N = m 4+ n. We want to find the

function f. From the statement of our problem we know that_ f is of bounded sup-
port (space-limited). We assume that all the sampled values f();) are given, which
means that we deal with an off-line problem.

The main idea of our method is based on the transformation of the nonuniform
sampling problem in the space domain to a uniform problem in the Fourier Transform
domain, similarly to the Kim and Bose method. However, taking advantage of the
specific features of the problem of reconstruction of f in (1), we propose a simpler
approach. Since f is of bounded support, in order to reconstruct it properly we
need its Continuous Fourier Transform (CFT) F. Therefore, our solution consists of
two basic steps. First, we find an approximation of the CFT on the basis of given
nonuniformly sampled values of f,i.e., f(Ax). Then we find the Fourier inverse of the
approximation of F 1o get an approximation of f. Both steps involve approximations
and we will point out the sources of them in the sequel.

Let us note that the CFT for the space-limited function f is given by the fol-
lowing pair of relations

~ ~ . B ~ .
Fw)= f(x)e ™ *dz = /A f(z)e™“ " dz 9)

RN
.1 .
f(z) = (2_7r) . F(w)ed® dw (10)

where f_f denotes the multiple definite integral fab e fab fcd e fcd. Integration limits
a, b correspond to the y components and ¢, d to the » components of vector =z,
respectively.
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In the first step of our algorithm we approximate (9) by a finite Riemann sum of
the form:

K-1 ‘
Fr(w) = 3 Fwe M, (11)
k=0

Here Zf:_ol stands for the multiple summation ZkKl ‘:"01 Z,‘Z(;;Ol e ZkKN”:Bl with k=
(k1,...,ky) and K = (Ky,...,Kn) € NV; the K7 are related to the observation
horizon time of system (1). Also, Ax = (A1,ky,..., AN,ky) IS the vector of the k-th
sample from D C RN (see (1) and Section 3.1) and Ag = [[X, Aik = Aryg, -
AQ’kz RN AN,kN, where Ai,k; = Ai»ki+1 - /\i,k,-- Also ’\i,ki+1 > ’\i,ki for all k; =
0,1,...,K;—1and ¢:=1,2,...,n,n+1...,N, where

{b for i=1,...,n
WK = .
d for t=n+1,...,N

Furthermore w = (wy,...,wy) € RV and finally, w-); is the Euclidean inner product
Zf\il wiAi ;. Let us note that (11) bears a close resemblance to the DCFT of f. In

the case of a space-limited f such a DCFT is naturally truncated, i.e. it equals the
Truncated DCFT.

The core issue of the proposed algorithm is how to use (11) to get the best
approximation of f. There seems to be several natural moves possible. However,
some of them do not yield a satisfactory answer to our problem. We cannot invert (11)
directly, because in this way we get the sampled values f(A;) and not the function of
continuous arguments we are looking for. Another problem is how to define such an
inverse transform in this case. Yet another possibility is to convolve (11) with some
other function of w, say G = G(w) and then perform an inverse transform. In this
case we also face the same problem of inverse transform definition. Moreover, since
f is not band-limited, this inverse would not result in the reconstruction of f. This
problem would remain even if we knew how to construct G for a band-limited f.

Therefore, we propose to sample Fx of (11) and use these sampled values as a
basis for further approximation of f. The crucial observation is that we may choose
the sample locations arbitrarily. The simplest choice is to sample Fi uniformly. The
sampling intervals on all N axes are provided by the N-D Sampling Theorem (see
Section 3.2). Given the specific shape of the support D of f we are able to calculate
the appropriate sampling intervals for F from (6), where the w,’s represent the
space extent of f and the v;’s give the required sampling intervals of F. Choosing
the hyperrectangular sampling geometry for F, we obtain unigue values for sampling
intervals assuming the same geometry for the locations of repetitive parts of D.

Let us discuss this issue in detail for a simple 2-D example.
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Example 1. In this case, m=n =1, N=m+n = 2 and the NARMA model has
the form

Yer1 = f(ye, ue)
where y € [a,b] and u € [¢,d]. Set = = (z1,72) = (3, us).
For the rectangular sampling geometry we obtain from (6)
vy -w =27 and Vg Wy = 27

where v = [ws,, 01T, v2 = [Qws]T, w1 = [max{|a|,|y|},0]" and w, =
[0, max{|c|,|d|}]7. In this way, we get the desired sampling intervals ws, and wg, in
the form

= 2m and wg, = 2m
wa = %2 = max{d, |d}

max{]al, |b|}
This is not the case for any sampling geometry. If either of the geometries is not

hyperrectangular, then our result would not be unique. B

The result for the 2-D case may be generalised to N = m + n dimensions
2

————— for i=1,...,n
max{lal, b}
ws = 5 (12)
s
—————, for i=n+1,...,N
max{lc|, |d|}
Sampling the DCFT gives us the following representation of F:
Z Fre(wh)sine(w — wk) (13)
lez™
where w = (w1,ws,...,wn), wg = (hws,, laws,,...,Inwsy), | = (l1,...,ln) and
in(w; — lws,
sinc(w — wk) = [T, sinc(wi — Lws,) = v, sin(w wsi)'
’ w; — lini

Let us note that the sampled version of (11) is equivalent to the following genera-
lised Discrete Fourier Transform:

S K-1
Fr(ws) = Y FOw)e 752, (14)

The inverse Fourier Transform of (13) would give us the sought f in the form of
an infinite linear combination of rectangular windowing functions. The theoretical
background for such a reconstruction is provided by Theorem 1. However, from the
practical point of view we are not able to use the infinite number of samples. More-
over, this approximation is useless for control applications, as rectangular windowing
functions result in an awkward representation. Qur problem is to reconstruct Fx
in its entirety out of a given finite number of values of FK(wS) and obtain a useful
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representation of the dynamic system, i.e., f. Therefore, we have to introduce further
approximation steps. Firstly, we will approximate sinc functions in (13) by some oth-
er functions of similar (but smooth) Fourier inverses. Gaussian functions seem to be
suitable in this context. Secondly, we use only a finite number of terms in the approx-
imation of (13). The adequacy of acting this way is ensured by the so-called “2X)
Theorem” (see (Dzielifiski and Zbikowski, 1996; Slepian, 1976) for details). This re-
sult allows us to use a finite linear combination of non-linear functions in order to
approximate the given function with a desired accuracy

X/2 K-1 2
/_X/2 [f(fv) - ,; alﬁbl(m)] dz <e (15)

where the number of terms in (15) K depends on the accuracy €. The functions
used in (15) have to be Fourier transformable, i.e., belong to L'(R™*") N L2(R™+").
Taking this into account we end up with the following approximate representation of
Fy of (11):

K/2-1 ||w—wls—-c1|!2
~ d - 2
Fiw)= Y Fx(whe i (16)
I=—K/2
valid for K even, where lo—wizal® _ leizhes—egl® | len=—lvwsy ey

9 "121 o %in
For K odd the summation indices in (16) need a straightforward reformulation.
Taking the inverse Fourier Transform of (16), we obtain the following approximate

representation of f

N
foz) = (%) /RN Fg (w)e® dw

1 )N K/2-1 —Iw—w'%—cl[lz

1
N TN S
[\
5

Z Fr(wh)e 7 e dw
27 RN I=—K/2

N Kj2-1 lwo—wh—cil? .
1 = - p] +Iw-zx
_) > FK(w's)/Ne ( % 7 )dw
R

I=—K/2
N K/2-1 2,2
1 - . 1 __.’E 0(
~\2/m E FK(wfg)UeJ(ws +a)e™ 3 (17)
T
l:—-K/Q
where o1 = (01,,01,,...,01y), 0 = 01, - 01 ... 01y, 0} = zio], +...+ayof, and

w’s-i—cl =hws, +c, +-+ilywsy +ciy-

Combining this with the existence results from Neural Approximation Theory
(see (Zbikowski and Dzielinski, 1995) and references therein), we may note that (17)
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gives a neural network architecture with Gaussian RBF's as network nodes. However,
the function reconstructed from (17) may take complex values. This means that
we have to implement an additional step of ‘phase discrimination’ in our procedure.
When the phase value of the complex number (reconstructed function value) lies in
the interval (—m/2,7/2), we assume the phase to be equal to 0 (i.e., the value of the
complex number is equal to its modulus); when it lies in the interval (7/2,3/27), we
assume the phase to be equal to 7 (the value of the complex number is equal to its
modulus with negative sign).

4.2.1. Algorithm of the Method

The summary of the algorithm is as follows:

1. From nonuniform samples A, f(Ax), 0< k; < K; -1, K; €N, :=1,...,N
compute the approximate Fourier Transform representation: formula (11).

2. Sample Fi(w) uniformly with the Nyquist frequency: formula (12).

3. Reconstruct an approximation of F, 'k (w) out of a given finite number of values
of Fg(wk) using (16) (to replace sinc functions used in (13) use RBFs or other
functions of similar spectral properties).

4. Invert (16) according to (17) and discriminate the phase.

4.2.2. Advantages of the Method

The main advantage of this algorithm is its relative simplicity. By an appropriate
choice of basis functions in the reconstruction formula (16) we may obtain a neural
network approximation of the NARMA model (1). This serves as a basis to further
control applications of this method (Section 5).

Let us now recap the advantages of the proposed algorithm:

1. Tailored to the real-world data from input-output discrete-time models. The
data entering the algorithm are exactly the same data we measure as inputs
and outputs of the plant;

2. Computationally simple. In comparison with many function approximation and
reconstruction algorithms it requires only simple transformations and compu-
tations. As opposed to other approaches, this algorithm neither involves ma-
trix inversion (like the Kim and Bose method), nor iterations (the Sandberg
method);

3. Wide applicability—mild assumptions. The only assumption on the given func-
tion is that both its direct and inverse Fourier transform exist;

4. Flexible neural implementation. In order to approximate the interpolation filter
of (13), we may use several neural architectures. The use of Gaussian RBFs
is justified by their ‘nice’ properties. However, other basis functions may be
considered;
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5. Usefulness for control purposes. Appropriate choice of basis functions in (13)
ensures the control applicability of the reconstructed function and especially its
smoothness and accuracy.

4.2.3. Comparison with the Sanner and Slotine Approach

We now focus on the basic differences between our and the Sanner and Slotine ap-
proach (Sanner and Slotine, 1992) which was a primary inspiration for our research.

e Our approach is based on the assumption of the availability of the sampled va-
lues of the function f spread nonuniformly, while Sanner and Slotine adopted
the simplified view of uniform samples locations;

e We consider a discrete-time input-output models, while they dealt with a
continuous-time setting;

e In our approach the function to be reconstructed is assumed to be space-limited,
which results in very mild assumptions on f. Sanner and Slotine required f to
be band-limited, which means very high smoothness;

e In our method the reconstruction is done in the frequency domain, while in
theirs in the spatial domain.

4.2.4. Extensions and Further Research

The method presented seems to be a promising tool in the area of non-linear dynamic
systems modelling. The version discussed in this paper is based on the assumption of
the availability of all samples of the function f. This means it is off-line in character.
This assumption has a direct influence on the definition of the Riemann sum in (11).
To define the intervals A;;, we need all the X;,’s. Let us note that the order in
which these values appear in the model does not correspond to the order in which they
are summed up. This means we re-number the data in comparison to their natural
indexing. While this is not a problem in the off-line approach, it may cause some
difficulties when trying to construct an on-line version of the method.

However, it is possible to reformulate this method in a recursive manner, i.e.,
adapt it to account for incoming data on-line. The core issue is to decide how to
define the summation pattern similar to the one given by (11). The most natural
way is to subdivide the region in which f is non-zero into an increasing number of
intervals along with incoming data. Thus, we start with 2N subregions obtained from
the initial values Ao = (ytu,yto_]_,‘..,yto-n+1,Ut0,Ut0:l,...,Uto_m+1), then after
the arrival of the first measured value of the function f the number of subdivisions
increases to 3V etc. At each step we are able to evaluate the approximate value
of (11) in the form

E(w) =Zf(Ak)e_jw.,\kAka 1‘20717)K_1 (18)
k=0
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where A;g’s in Ay are computed on-line. In the first instance these
are only two subintervals along each axis obtained from JAg. They are of
the form {[avyto]’[yto’b]}v {[aayto—l],[yto—lab]}i ey {[a’yto—n-%l]’[yto*n*-hb]}7

{[Ca uto]a [utnad]}’ {[C’ “to—l]’ ['u‘to—h d]}’ cee {[C, uto-—m+1]1 [uto—m+1a d]} NGXt’ in each
of these pairs of subintervals one of them (it depends on whether the value of the in-
coming sample lies in the first or second subinterval of the pair) is further subdivided
giving the triple of subintervals along each axis and so on. This proceeds so long as
new measurements arrive. Finally, after all K; - K> -... - Ky samples have arrived,
we obtain the same Fk(w) as with (11). The on-line method based on the above
approach is the subject of research in progress.

Some other interesting details of the method are also being investigated. The
problem of determining a function of compact support from the values of its Fourier
transform on a finite segment is linked to the problems of analytic continuation which
is an ill-posed problem in the sense of Hadamard. The solution to such a problem is
not unique. However, it is possible to find an approximate solution with a small error
by the universal methods of regularisation (see Tikhonov and Arsenin, 1977).

5. Relevance for Neurocontrol

The neural model of a dynamic system obtained by the nonuniform N-D sampling
approach was devised with control purposes in mind. It is, however, approximate and
it is not straightforward to quantify precisely its accuracy.

In this section we assess the existing feedback linear based control from the point
of view of applicability of our neural model. Next, we present an overview of a novel
approach to nonlinear control design—BIBO redesign—which is aimed at designing
a stable control system based on scarce knowledge about the plant model. This is
especially relevant to neural models which are not known accurately, as is inevitable
if we only have raw input-output data and no a priori knowledge of the NARMA
model, as in our demanding problem setting.

5.1. Feedback Linearisation Based Control

Usual approaches to control of non-linear systems need precise knowledge of system
non-linearities. This is especially the case when feedback linearisation is used (Isidori,
1989). The essence of this idea is twofold. First, we transform a state-space model
of the plant into new coordinates and then we cancel the non-linearities (fully or
partially) by non-linear feedback. This procedure is obviously impossible without the
exact knowledge of the plant non-linearities. One way is to represent the plant non-
linearities by neural network’s models discussed in previous sections. The method
presented here is simply a neural implementation of the Chen-Khalil approach (Chen
and Khalil, 1992), using our neural models in (20) below.

Let us consider an adaptive control problem for a SISO system given in the form:

Yerr =F(Yer ooy Ytont 1, U1, Utem) + (Yt - ooy Yemnd 1, Y1y« -, Utmm)Us (19)
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Note that we have us—,, in (19), absent in (1). This is immaterial to the generality
of considerations and is done to generate a convenient form of the formulae below.

By an appropriate choice (Isidori, 1989) of state variables for (19) we may obtain
the state-space model

Teg1 = f(2:) + §(ze)us (20)

Now, applying the linearising feedback control law wu; = 1/§(z¢)[—f(z¢)+7:] we may
obtain a linearised version of the plant. This may be achieved under the following
assumptions on the system under consideration: f and g are smooth (differentiable
a sufficient number of times); f vanishes at the origin and g is bounded away from
zero over a compact subset of R**™; the system is minimum phase, i.e., its zero
dynamics has a globally exponentially stable equilibrium point at the origin; the non-
linear functions f and g can be exactly represented by the neural networks f and §
on a compact subset of R®*™ in the way discussed in previous sections.

Provided that our neural models represent plant non-linearities precisely, the
control law (20) can exactly cancel the model non-linear dynamics giving this way
the desired output signal r,. This approach requires the exact knowledge of the
plant dynamics, which is particularly difficult in the nonlinear, discrete-time context.
Therefore it is not well-suited to neural networks based models which are approxi-
mations of the real plant. The modelling error that always exists may destroy the
stability properties of the system. The disadvantages can be avoided when applying
the BIBO redesign techniques.

5.2. BIBO Redesign

Trying to apply the presented method of nonlinear systems modelling with neural
networks to control, we have to face one critical issue. The neural networks modelling
of the NARMA systems gives only an approximate model. The accuracy of the right-
hand side of such a model may be described by the following lower and upper bounds

Filye, oy Yknt1) < FWkse o Ybmnt1s Uks - Ukemt1) < fo(Uks - o s Yhent1) (21)

The question is how to design a controller for this inaccurate model so that the
closed-loop system would remain stable.

In this section we sketch the BIBO stable design of neural control systems. This
methodology is described in detail in (Zbikowski and Dzieliniski, 1996b). Applying the
results from the qualitative theory of difference equations (Agarwal, 1989) we intro-
duced a novel design methodology of BIBO stable control systems based on the neural
approximation of the NARMA model of nonlinear plant (Zbikowski and Dzielinski,
1996b). This has been achieved by difference inequalities methods (Agarwal, 1989).

The first issue is the adequacy of an approzimate (due to modelling errors)
NARMA model of (1) for control purposes. In other words, we would like to know if
the neural NARMA representation of the real system (1) would behave in the same
way as the system itself, when influenced by the control signal.
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From the mathematical point of view this question is formulated as follows. Con-
sider the true NARMA model and a function constituting an upper bound on the norm
of the modelling error, i.e., the difference between the approximate NARMA model
and real system (1). This function should bound the norm uniformly in u (for all
admissible control signals «). Is the norm of the difference between the solutions of
the approximate NARMA model and the real system (1) also bounded uniformly with
respect to the control signal «? A positive answer to this question is very important
from the control design viewpoint. It means that applying a specific control signal
to the approximate model would cause similar (in the sense of the norm) behaviour
of the real system. This applies to the stability analysis as well, because if we are
able to prove stability of the control system with the model, we will prove in this
way stability of the control system with the real plant. We can solve this problem
using the differential inequalities given in (Pachpatte, 1970); we have described the
technical details of the approach in (Zbikowski and Dzieliriski, 1996b).

Let us note very important consequences of this result for the purposes of model-
ling and control of dynamic systems. If we are able to find a plant model being
close enough to the real plant uniformly on the set of admissible control signals i/,
then the discrepancy between the solutions of the model and the plant is bounded.
This is exactly the case in the neural modelling of the NARMA systems described in
Section 4.2, where we obtain a neural approximation of the real plant. This means,
in particular, that a control signal stabilising such a model would also stabilise the
real plant. However, for some classes of nonlinearities the set of admissible controls
U may be restricted and we may be able to establish stability for a subset of I/ only.
On the other hand, if we were able to prove the boundedness of the output for any
u, we would obtain global results. This is not easy in general.

Using this approach it is possible (but non-trivial) to prove BIBO stability for the
NARMA model (1) with its right-hand side not exactly known. This result reflects
the case of neural network identification of the model, where the obtained right-hand
side is known approximately.

The proposed methodology allows proving BIBO stability of the closed-loop sys-
tem provided its approximate NARMA model and its error bounds are known (non-
linear) functions. The approximate NARMA model is obtained by the N-D sampling
neural network approach. Our design aim is to find such control signals (design such
a controller) for which we are able to prove boundedness of solutions of difference
equations corresponding to the bounds of the NARMA model.

The main result of this methodology may be summarised by the following theo-
rem.

Theorem 2 (BIBO redesign). Consider an approzimate NARMA model f* of
nonlinear control system (1). If there ezist two functions fi(y(t),...,y(t — n + 1))
and fo(y(t),...,y(t —n +1)) forming uniformly in u (for all uw € U) a lower and
upper bound of f*(y(t),...,y(t —n + 1);u(t),...,u(t — m + 1)), and such that the
solutions of difference equations with fi and fi as their right-hand sides are bounded
for bounded initial conditions, then the NARMA model and (1) are BIBO stable.

The proof of this theorem may be found in (Zbikowski and Drzielifiski, 1996b).
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6. Conclusions

A synergy of Fourier Analysis and nonuniform multi-dimensional sampling resulting in
a novel approach to the NARMA model identification was considered for neurocontrol
with feedforward networks. The engineering formulation of the problem, allowing only
discrete-time input-output data and little a priori knowledge about the discrete-time
model, has made the setting particularly demanding.

The paper concentrated on theoretical and practical control aspects of the multi-
dimensional nonuniform sampling approach, which was shown to be a natural setting
for modelling of NARMA systems in the context of neurocontrol. A proper tool for this
methodology involves multi-dimensional Fourier Analysis. The arising fundamental
problems of: function extension, approximation errors, nonuniformity of samples were
addressed. The space-limited solution was shown to be the most promising. This led
to a harmonically-limited N-D Fourier transform, which enabled its reconstruction
in the multi-dimensional frequency domain via feedforward neural networks.

A novel method for the non-linear function approximate interpolation from a
finite set of its irregular samples was proposed. It was analysed in some detail and its
advantages: computational simplicity, wide applicability, flexible neural implementa-
tion and usefulness for control purposes were pointed out. A comparison with other
reconstruction methods for retrieving non-linear N-D functions was given and the
relevance to neurocontrol was also discussed. '

Function interpolation with the proposed method allows theoretically the use of
linearising control for affine NARMA systems. This strategy requires smoothness,
which is not necessary for the neural reconstruction where only absolute and square
integrability are needed. However, the exact knowledge of plant nonlinearities is
crucial. Otherwise the modelling error influence on the system’s behaviour must
be taken into consideration. This concern is central to the neural BIBO redesign
technique proposed.
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