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AN INTRODUCTION TO FUZZY SYSTEMS

Dipier DUBOIS* , HENRI PRADE*

This short paper introduces the notion of fuzzy sets as a tool for modelling sets
with ill-defined boundaries. Fuzzy sets naturally appear when describing the
meaning of natural language words pertaining to quantitative scales, or when
modelling the notion of typicality. Three main semantics for fuzzy sets are
respectively recalled: similarity, preference and uncertainty. Each semantics
underlies a particular class of applications. Similarity notions are exploited in
clustering analysis and fuzzy controllers. Uncertainty is captured by fuzzy sets
in the framework of possibility theory. The membership function of a fuzzy set
is sometimes also a kind of utility function that represents flexible constraints
in decision problems.

1. Introduction

The last thirty years have witnessed the growing importance of computer science in the
scientific arena, especially engineering, including medical engineering. Nowadays, the
computer is not only viewed as an efficient machine for numerical computations, but
also as a device potentially capable of storing knowledge in a human-like way, and dis-
playing human-like intelligent behaviour in reasoning and decision tasks. This trend
is embodied in recently emerged disciplines such as Artificial Intelligence, Pattern
Recognition, Knowledge Engineering in which representation issues are of primary
concern.

Among problems faced by knowledge representation is that of mechanizing in-
ference and decision. One reason why this problem is difficult is the existence of
several facets to uncertainty, and the discovery that traditional tools for representing
uncertainty, such as the error interval analysis and probability theory, are not able to
grasp separately all facets of uncertainty. The idea of interval analysis (see e.g. Moore,
1966) is to represent poorly known values by sets, and to engage in computations with
functions that have set-valued arguments. However, pieces of subjective knowledge
often refer to sets with ill-defined boundaries due to the vagueness pervading terms
in natural languages. This state of facts has motivated the introduction of fuzzy sets
(Zadeh, 1965).

More particularly, the concept of a fuzzy set deals with the representation of
classes whose boundaries are ill-defined, or flexible, by means of characteristic func-
tions taking values in the interval [0,1]. In a fuzzy class, some elements that are
considered as “marginal” or “less acceptable”, are given a degree of membership that
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is intermediary between 0 and 1. Such fuzzy sets naturally arise in two situations:
first, when a finite-term set has to be mapped to a linguistic scale. For instance,
if the scale of human sizes is chosen to be the real interval [0,230] in centimeters,
and the term set is {short, medium-sized, tall}, then it is difficult to find unques-
tionable thresholds a and b, such that, e.g. short = [0,a), medium-sized = [a, ],
and tall = (b,200]. The predicates short, medium-sized, tall are gradual rather than
clear-cut. The second situation deals with the representation of typicality, when not
all elements of a class are good representatives of that class.

Fuzzy sets (Zadeh, 1965) and possibility theory (Zadeh, 1978; 1987) offer a unified
framework for taking into account the gradual or flexible nature of specifications, and
the representation of incomplete information. General introductions to fuzzy sets and
possibility theory can be found in (Dubois and Prade, 1980; 1988; Dubois et al., 1993;
Klir and Folger, 1988; Kruse et al., 1994).

2. Fuzzy Sets

Among early motivations of fuzzy set theory there is a question of representing human-
like taxonomies in pattern classification (Bellman et al., 1966). It is sometimes difficult
to classify a set of objects into a set of disjoint classes, because the adequacy of an
object to the prototypical features that define a class may be a matter of degree. Color
is a good example of an attribute that cannot be described by referring to a single
class such as blue, red, yellow, black, or white. Usually colored objects participate
to some extent in several of these classes. Hence the boundaries of these classes are
gradual rather than clear-cut. Moreover, introducing new intermediate categories
like orange, purple or green, may be useful but does not fix the lack of boundaries;
only more gradual transitions between categories are thus built. It also leads to a
more complex classification structure, hence more difficult to grasp. Fuzzy sets are
concerned with flexible data summarization.

Closely related is the question of lexical imprecision in the natural language.
When expressing knowledge, individuals would rather use words than numbers, and
numbers they might use often refer to orders of magnitude and must not be taken
for granted. Understanding a vague term in a natural language assumes that one
identifies the universe of concerned objects and the subclass it refers to. Very often,
this class has no definite boundaries, and its representation by means of a well-defined
set is but a crude, arbitrary approximation. The reason is that predicates that define
the class involve gradedness. For instance, “old people” is such a class; there is no age
beyond which a person is suddenly old (even in a given context); he or she becomes old.
Entering the class is a continuous process. The simplest way of modelling gradedness
in set-membership, as proposed by Zadeh (1965), is to use a numerical scale, the unit
interval as it turned out. So, “0ld” can be roughly captured by a (usually continuous)
membership function p.q that assigns a “degree of oldness” to each age in the human
age scale, in a given context. This representation, although somewhat arbitrary and
leading to new problems (how to measure the “oldness”), is far better than a simple
set because, regardless of the precise membership values, it restores the intrinsic
continuity of the boundary of the class of “old ages”. In some applications, such
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as process control using fuzzy logic (Sugeno, 1985) or classification (Bezdek, 1981),
preserving continuity is crucial and explains the success of the model. Of course,
not all categories in natural languages can be represented as simply as old. There
are vague categories for which the universe of concerned objects is itself ambiguous,
and the attributes they refer to are ill-defined or controversial (e.g. beautiful). The
range of applicability of fuzzy set theory excludes these categories but is restricted to
cases where the universe is well-defined and can be modelled by means of a numerical
scale (age, temperature ...) or an indisputable combination thereof. One may also
consider fuzzy subsets of finite universes. In that case, the notion of a membership
function may capture the idea of typicality. For instance, bird is a fuzzy class because
some animal species are more bird-like than others (robins are better than penguins).
Hence the class bird is naturally equipped with an ordering of typicality that can be
encoded in a membership function, although not necessarily a numerical one.

3. The Semantics of Fuzzy Sets

Fuzzy sets seem to be relevant in three classes of applications: classification and data
analysis, reasoning under uncertainty, and decision-making problems. These three
directions that have been investigated by many researchers actually correspond to
and/or exploit three semantics of the membership grades, respectively in terms of
similarity, uncertainty and preference. Indeed, considering the degree of membership
pr(u) of an element % in a fuzzy set F, defined on a referential U, one can find in
the literature three interpretations of this degree:

e Degree of similarity: ur(u) is the degree of proximity of u to prototype
elements of F. Historically, this is the oldest semantics of membership grades
(Bellman et al., 1966). This view is particularly suitable in classification, clus-
tering, regression analysis and the like, where the problem is that of abstraction
from a set of data. For instance, one might be interested in classifying a car
of known dimensions in the category of “big cars”. It is clear that this is a
matter of degree. To compute this degree one may choose a prototype of a big
car like a Mercedes, and construct a measure of distance between our car under
consideration and this Mercedes. One may consider that the membership grade
of our car to the fuzzy set of big cars is a decreasing function of this distance.

e Degree of preference: F' represents a set of more or less preferred objects (or
values of a decision variable z) and up(u) represents an intensity of preference
in favour of the object u, or the feasibility of selecting u as a value of z. This
view is the one later put forward by Bellman and Zadeh (1970); it has given
birth to an abundant literature on fuzzy optimization and decision analysis.
Applications pertain to design and planning problems. For instance, one may be
interested in buying a big car. Then the membership grade of a given tentative
car to the class of big cars reflects our degree of satisfaction with this particular
car. Note that here the choice of a car is ours. In other words, the variable
whose value is the name of the chosen car is controllable.
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e Degree of uncertainty: this interpretation was proposed by Zadeh (1978)
when he introduced possibility theory. The quantity pp(u) is then the degree
of possibility that a parameter z has value wu, given that all that is known
about it is that “z is F”. The possibility can convey an epistemic meaning
(F then describes the more or less plausible values of z) or a physical meaning
(ur(u) being the degree of ease of having z = u). Viewing pr(u) as a degree
of uncertainty only refers to the epistemic interpretation. The physical meaning
of possibility has more to do with preference and feasibility. For instance, some-
body says has just seen a big car. In this situation, the membership grade of a
given tentative car to the class of big cars reflects our degree of plausibility that
this kind of car is the same as the one seen by the person. When this degree is
high, our confidence may still be low that we know which car it is, especially if
there are several alternatives. However, if this degree is low, then the car can
be rejected as a very implausible candidate. In this case, the choice of the car
is not ours: a big car passed by and it is what it is. In other words, the variable
whose value is the name of the big car is now uncontrollable.

Note that some semantics are in some sense more basic than others when they can
be operationally measured: similarity is evaluated via distance indices, and feasibility
may be measured by costs (as in toll sets, Dubois and Prade, 1993a). Preference and
plausibibility are derived notions, mainly because of their epistemic nature. Preference
may be a function of cost; but it may also reflect similarity with respect to an ideal
object and this view is often found in the literature on optimization. Plausibility may
also be viewed as similarity with respect to a maximally plausible situation. However,
it can also be construed as an upper bound on a frequency or a likelihood function.
This is how probability and possibility get connected (Dubois and Prade, 1993b).

Another point is that although fuzzy sets have been introduced with a numerical
flavour, a membership function is not necessarily mapped on a set of numbers, but
an ordered set such as a complete lattice is enough. A membership function can even
be construed as an ordering relation >, attached to a predicate F, where u > u'
means that « is more F' than u'. A fuzzy relation R on U x U can also be viewed as
a ternary relation (on U3), i.e. a collection {>,, u € U} of binary relations that are
complete preorderings. Then pgr(u,uw') > pgr(u,u”) can represent a situation where
u' >, u"”, which reads ' is closer to u than w”. These structures are common in
conditional logics of counterfactuals (Lewis, 1973).

However, reducing a fuzzy set to a mere ordering relation between elements pre-
vents one from directly defining fuzzy set-theoretic aggregations. It has been well-
known for a long time that there is no simple way of aggregating ordering relations
(due to Arrow’s impossibility theorem). These difficulties are by-passed by assum-
ing that degrees of membership to fuzzy sets pertaining to unrelated concepts are
commensurate. This is done by resorting to a common membership scale (that need
not be numerical). This commensurability assumption is often taken for granted and
never emphasized in the literature. Yet, it is better to state it clearly in the face of
newcomers to the theory, as it sheds light on potential limitations of the fuzzy ap-
proach and helps locating it within alternative settings such as measurement theory
and multiple-criteria decision analysis.
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4. Fuzzy Sets and Similarity

The notion of a set and the notion of identity are indissolubly linked together. A
set is defined via conformity with a given clear-cut property, and defines a binary
partition of the underlying universe: those elements in the set and those elements out
of the set. More generally, a family {A4;, A,...,A,} of subsets of a set U generates
a partition of U where each class in the partition gathers elements which share the
same properties. There is a unique associated equivalence relation R that expresses
this partitioning: wRv iff for all ¢, u € A; implies and is implied by v € A;. Such
elements are considered identical since indistinguishable using the family of sets. This
scheme has been developed by Pawlak (1991) under the name “rough-set theory”. The
relation R plays the role of a distance function on U : if uRwv, then u and v are
close and they are far from each other otherwise.

Analogously, fuzzy sets and similarity are tightly linked together. The above pro-
gram can be carried out for fuzzy sets as well. This has been done by Valverde (1985)
and more recently by Klawonn and Kruse (1993a; 1993b). A family {F, F, ..., F,}
of fuzzy subsets of a set U generates a similarity relation S. The degree of similarity
fits(u, v) reflects the extent to which u and v belong to all fuzzy sets F; to the same
extent:

/,Ls(u,'l)) = mlln min (ILF; (u) *— ,U'Fi(v)a/‘F.' (’U) *— UF; (u))

i=1,n

where * — denotes a multiple-valued implication related to a fuzzy conjunction
operation * by residuation, i.e.

a*ab:sup{ze [O,l][a*mﬁb}

Noticeable choices of operation * are min, product and the “linear” conjunction
max(0,a + b —1). Note that ax— b=1 assoon as a < b, and 1x— b =b. Such
an implication is in accordance with fuzzy set inclusion: F contains G if and only
if pr < pe. The fuzzy relation S verifies properties that make it a generalization of
an equivalence relation:

(i) VueU, ps(u,u)=1 (reflexivity)
(ii) YueU YveU, ps(u,v) = ps(v,u) (symmetry)
(i) YueU, Yv e U, Yw e U, ps(u,v) * ps(v,w) < ps(u,w) (max- * transitivity)

The similarity class [u]s of an element u is the fuzzy set of elements close to it:

Bugs (V) = ps(u,v), Yo €U

A similarity class F' should be extensional, in the sense that “the more u belongs to
a fuzzy set F, and the more similar u to v with respect to S, the more v belongs
to F”, which writes

Vue U: Vv e U) [.LF('U)*[,LS(’LL,'U) S/_LF('U)
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Similarity relations are closely related to the idea of distance. In particular, if
is linear, 1— g is a pseudometric, and max-* transitivity is equivalent to the triangle
inequality; max-min transitivity, which is stronger, corresponds to ultrametrics. This
close connection between fuzzy sets and similarity explains why a significant part of
the applications of fuzzy sets deals with data analysis (Kacprzyk and Fedrizzi, 1992),
clustering and pattern classification (Bezdek and Pal, 1992).

5. Fuzzy Controllers are Similarity-Driven

Another family of applications of ideas of similarity is the fuzzy controller (Berenji,
1992; Lee, 1990; Pedrycz, 1995; Sugeno, 1985). Many authors have pointed out that
fuzzy control techniques perform an interpolation between the conclusions of the fuzzy
control rules, on the basis of the degrees of matching of the situation under considera-
tion with the condition parts of the different rules. Interpolative reasoning naturally
subsumes some idea of proximity since intermediary decisions are computed from the
known controls corresponding to the rules applicable to prototypical situations that
are the most similar to the current one. So, it is not surprizing that two main fuzzy
control methods, namely Mamdani’s and Sugeno’s, can receive some justifications,
starting with a proper handling of proximity relations.

The basic idea was first proposed by Zadeh (1973) and was implemented for the
first time by Professor Mamdani’s research team (Mamdani and Assilian, 1975) the
following year. The principle of this technique is very simple and makes use of only a
fragment of fuzzy set theory. The knowledge incorporated in a fuzzy control system
is made of a collection of several parallel rules of the type:

if Xy is Ay and --- and X, _js A, then YV is B

The X;’s are observable variables of the system to be controlled and therefore are
the input variables of the control system, whereas Y is the output of the control
system and is obviously an input variable for the system that is controlled. The
fuzzy sets A; are elements of fuzzy partitions of the domains of the variables X; (for
instance “negative large” (INL), “negative medium” (NM), “negative small” (N.S),
“close to zero” (ZE), “positive small” (PS), “positive medium” (PM), “positive
large” (PL)), which leads to rules such as “if X; is NS and X, is PS, then Y is
ZE”. For instance, it enables us to encode rules like “if the oxygen percentage is high
and the temperature is low, then strongly increase the fuel rate” (under the form “if
oxy.percent. is PL and temp. is PJS, then increase of fuel is PL”).

Given precise observations z1,...,z,, a fuzzy subset B of values of Y is deter-
mined by ,U,E('U) = maxX;=1,n p,A(li)(.’El)* . -*p,Agz)(.’L‘p) * g (v), in Mamdani’s method
{(* = min or product). This fuzzy set is a weighted union of the different fuzzy sets,
like B® (for rule 7) which appear in the conclusion parts of the rules whose condition
parts more or less correspond to the current observation. This may be seen as a form
of analogical reasoning: the value of the control should be taken from the union of the
sets of recommended values for the situations (described in the condition parts of the
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tool for approximating real functions in the above sense, because they are only capa-
ble of bracketing functions in the general case (even if this bracketing may be made
very small by sufficiently increasing the number of rules), and they do not lay bare
a class of simple membership functions with special interpolating capabilities as with
neuro-fuzzy methods. For instance, gradual rules with linear membership functions
only capture linear interpolation. Even Sugeno’s fuzzy interpolation method has some
drawbacks from the point of view of interpolation (Babushka, 1995). The potential of
fuzzy rules rather lies in their capability to compute linguistic summaries of numerical
descriptions of input-output systems inside a prescribed, user-driven vocabulary. For
this type of problem the precision of the approximation is less important than the
linguistic interpretability of the fuzzy model, in the spirit of early verbal modelling re-
search as done by Wenstgp (1976), for instance. The bracketting property of gradual
rule-based approximations of functions can ensure a consistency between a numerical
model and the corresponding verbal model.

6. Fuzziness Versus Uncertainty

While surveying the key-papers (Zadeh, 1987), two periods in the development of the
fuzzy set theory can be laid bare. The first one (1965-1975) put emphasis on the
notion of a fuzzy class as a class without definite boundaries. The main applications
of this idea and of the resulting formal tools were fuzzy clustering and classification,
a smooth interface between numerical and symbolic knowledge, and the use of in-
terpolative reasoning as done in fuzzy control. From 1975 on, Zadeh developed the
idea of a fuzzy set as an elastic constraint on possible situations, parameter values,
etc. (Zadeh, 1978). This research culminated in the late seventies and early eighties
by the introduction of possibility theory.

There always remains some confusion in the fuzzy literature on the potential of
fuzzy sets for handling uncertainty. This state of confusion can be exemplified in some
texts by fuzzy set proponents claiming that probability theory models randomness
while fuzzy set models subjective uncertainty (hence ignoring subjective probability).
It is also present in the expert systems literature where certainty factors have been
confused with membership grades. It also pervades the antifuzzy literature where the
truth-functionality of conjunction, disjunction and negation in fuzzy logic is conside-
red as mathematically inconsistent (see (Elkan, 1994) for a recent restatement of this
fallacy).

In fact, insofar as fuzzy sets model vague predicates, membership grades model
degrees of truth of vague propositions, not degrees of uncertainty. In the scope of
knowledge representation, truth is a matter of convention, while uncertainty reflects
incomplete or contradictory knowledge. In classical logic the convention is that truth
is binary. The fuzzy set theory (and before, multivalued logics) has modified this
convention. This shift in convention does not entitle degrees of truth to be interpreted
as degrees of uncertainty.

Degrees of uncertainty can be attached to a clear-cut proposition in order to
model the fact that it is not known whether this proposition is true or false. Un-
certainty is at the meta-level with respect to truth. In classical logic truth is binary
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(a proposition is true or false) while uncertainty is ternary (a proposition is surely
true, surely false, or unknown). In probability theory, truth is usually binary (crisp
propositions) while uncertainty takes on all values in the unit interval. In the fuzzy
set theory truth is many-valued but there is no uncertainty insofar as the element,
the membership grade of which is computed, is precisely located. Fuzzy-truth values
(which Zadeh has claimed to be typical of fuzzy logic) are uncertainty distributions
that describe partially unknown truth-values.

As pointed out above, it happens that a degree of membership pp(u) is inter-
preted as a degree of uncertainty instead of a degree of truth. But this degree of
uncertainty is not attached to the fuzzy proposition ‘X is F’ when it is known that
X = u, but to the non-fuzzy proposition X = u, when all that is known is that the
value of X is somewhere in the support of F.

From the point of view of uncertainty modelling, probability theory is unable to
model ignorance (and partial ignorance) in a natural way. Probability theory, which,
in decision-theory, has traditionally been considered a proper tool for representing
partial belief, is not fully satisfactory for that purpose. Uniform probability distribu-
tions on finite sets better express randomness than ignorance: when you ignore the
properties of a die, assume it is fair so as to maximize the uncertainty of outcomes.
Ignorance rather means that each event is equally plausible, because there is no avail-
able evidence that supports any of them. No probability measure can account for
such a state of lacking knowledge. The problem of representing ignorance is at the
root of controversies regarding the existence of prior probabilities in Bayesian infer-
ence. When a fuzzy set is used in order to represent what is known about the value
of a variable, the degree attached to a value only expresses the level of possibility
that this value is indeed the value of the variable. However, in the case of incomplete
information, several values may have a degree of possibility equal to 1. All values
may have possibility value 1 in the case of complete ignorance.

7. Possibility Theory and Common-Sense Reasoning

The main contents of Zadeh’s message on the representation of uncertainty can be
summarized as follows:

o A piece of fuzzy knowledge (as given for instance in natural language) pertaining
to a given universe of discourse U (other would say a “set of possible worlds”)
expresses an elastic constraint on this universe, that can be encoded as a possi-
bility distribution 7, i.e. a mapping from U to [0,1] such that 7(u) = 0 means
that u is an impossible situation;

e Such pieces of knowledge can be used to address queries, and the corresponding
responses can be given in terms of possibility-qualified and certainty-qualified
statements.

In the following, subsets of the set U of possible worlds are denoted by
A, B, C,... and @A denotes the complement of A. Here 7 is a possibility dis-
tribution that encodes pieces of imprecise knowledge and x denotes the variable
fuzzily restricted by #. Given a simple query of the form “does z belong to A?”

AL
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rules) that resemble more or less the observation; this union is then obviously weight-
ed by a combination of the similarity degrees a; = p,w(%;), j = 1,p. In practice
7

(for a continuous ordered domain), a particular value yo of B is chosen (operation
usually called “defuzzification”) often as the barycentre of the elements of B with
respect to their membership degrees (method usually called “gravity centre method”
in the literature). In the particular case, where the subsets B(%) appearing in the
conclusion parts of rules reduce to precise scalar values 5(*), this method leads to
compute yo as a weighted mean of these precise values. This latter combination rule
is used by Sugeno and his group (e.g., Sugeno and Nishida, 1985) and by many others
in numerous applications. In the case of triangular membership functions (often used

in practice) for the Ag»i)’s, it appears that in general a precise observation z; only
belongs to two fuzzy sets with a strictly positive degree.

The fuzzy rules for control are worked out either from information given by
a human operator (as is done for expert systems), or from recordings of a human
operator operating the system. Self-adaptation techniques have been proposed and
can be used when necessary to determine the fuzzy partitions of the domains (number
of fuzzy subsets and parameters connected to their width). Neural networks are also
used for fuzzy control rules acquisition (e.g. Lee, 1991). A fuzzy control unit does the
same work as a PID controller since it defines implicitly a numerical function tying
the control variable and the observed variables together. The difference between
classical and fuzzy control methods lies in the way this control law is found. In the
context of classical automatic control, especially optimal control theory, the control
law is calculated using a mathematical model of the process, whereas the fuzzy logic
approach, consistent with artificial intelligence, suggests that the control law be built
starting from the expertise of a human operator. In the case of industrial applications
of PID controllers, the philosophy is close to fuzzy logic controllers, since the tuning
of the PID parameters is usually done in an ad hoc way. However, only linear control
laws can be attained with a PID, while the fuzzy controller may capture non-linear
laws, which may explain some observed successes of the fuzzy controller over PID
controllers. In fact, any kind of control law can be modelled by the fuzzy controller
methodology, provided that this law is expressible in terms of “if ..., then ...” rules,
just like in the case of expert systems. However, fuzzy logic diverges from the standard
expert system approach by providing an interpolation mechanism from several rules.
So doing, although a linguistic rule-based control is modelled, the function simulated
by the control part remains continuous just like in classical automatic control. If
the “right rules” are exhibited, one gets a possibly non-linear continuous control law
where jolts are avoided. In the context of complex processes, it may turn out to
be practically simpler to get the knowledge from an expert operator rather than to
calculate an optimal control.

The fuzzy control systems after having first been developed and tested in Europe
at the end of the 1970s, have been applied on a large-scale in Japanese industry since
the first half of the 1980s (Sugeno, 1985). Since then, interest in fuzzy control has
still increased in Japan, where many industrial applications have been developed: e.g.
automatic guidance control for subway trains, chlorine controller for water purification
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plants, elevator control systems, automatic focusing systems for cameras; system
for the control of shield tunnelling, control of automatic container crane operation
systems, control system of the speed of a car, stabilization of the image of a camcorder,
automatic selection of a program of a washing machine, etc. See (Bellon et al,
1992) for an overview. Recently, Germany has started extensive research programs
especially on fuzzy control, both with public money (in Westfalia, especially) and
with industrial support (e.g. SIEMENS).

In all these applications, the same interpolation mechanism provided by the fuzzy
control methodology is at work: the current situation encountered by the system
resembles more or less two or more prototypical situations for which recommended
control actions are known, and a control action which is intermediary between these
recommended ones is computed on the basis of the resemblance degrees. For instance,
in the simple case of the washing machine, the temperature of the water, the washing
time and the quantity of washing product are determined from the weight, the nature
and the dirtiness of the clothes, using a rather small set of fuzzy rules which roughly
describes how these variables are related.

In fuzzy controllers no uncertainty is involved, only similarity-based reasoning is
at work. Klawonn and Kruse (1993a; 1993b) have shown that a set of fuzzy rules can
be viewed as a set of crisp rules along with a set of similarity relations and that the
extensionality axiom applied to the similarity relation induced on the input-output
space justifies Mamdani’s method. Alternatively, an interpolation-dedicated fuzzy
rule "if X is A, then Y is B” can be understood as “the more X is A the more
Y is B”. This type of fuzzy rule is called “gradual rule” ‘and the corresponding
inference machinery works as follows: if X = z and a@ = pa(z), then Y lies in
the level cut B, containing the values with membership grades at least equal to «.
When two rules are at work, such that o = pa,(z), as = pa,(z), then the conclusion
Y € (B1)a, N(B2)a, lies between the cores of By and By, i.e. on ordered universes,
an interpolation effect is obtained. It can be proved that Sugeno’s fuzzy reasoning
method for control can be cast in the framework of gradual rules (Dubois, Grabisch
and Prade, 1995). More generally, interpolation is clearly a kind of reasoning based
on similarity (rather than uncertainty) and it should be related to current research
on similarity logics. Similarity relations and fuzzy interpolation methods should also
impact on current research in case-based reasoning.

Neither gradual rules, nor other kinds of well-behaved fuzzy rules, provide a tool
of the kind used in the neuro-fuzzy literature for approximating functions (e.g. Mendel,
1995). In the approximation problem, what is looked for is a class of fuzzy rules that
are simple (e.g. Gaussian membership functions) and an interpolation method that
is altogether powerful (a large class of functions can be approximated with arbitrary
precision), easy to compute with, and amenable to efficient learning methods when ap-
plied to input-output data. Fuzzy rule-based systems are then viewed as a convenient
way of compressing data. It has been proved that fuzzy rules are universal approxima-
tors, but such results need arbitrary large sets of rules to be achieved, which does not
agree with the idea of data compression. Moreover, the initial ambition of fuzzy sets,
that is the interface between natural language and numerical models of systems, has
kind of disappeared in this program. For instance, gradual rules are not an efficient
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where A is a prescribed subset of situations, the response to the query can be ob-
tained by computing the uncertainty induced on A by the pieces of fuzzy knowledge,
noticeably (Dubois and Prade, 1988):

o A is consistent with «, with degree II(A) = sup, 4 m(u),
o A is certainly implied by m, with degree N(A) = 1-1I(pA) = inf ¢4 1—7(u).

II(A) qualifies the degree of possibility of A, defined by assuming that, if it is only
known that A occurs, then the most plausible situation compatible with A prevails.
For instance, the degree of possibility of the event “the light is off” is computed after
the degree of possibility of “someone switched off the light” rather than “the bulb is
broken”, insofar as the latter is very unusual compared to the former. Here, “possible”
means “unsurprizing”. The basic axiom of possibility measures is

VA, VB, II(AU B) = max (H(A), H(B))

By convention, VA, II(A) € [0,1] and II(0) = 0. N(A) > @ > 0 means that the
most plausible situation where A is false is rather impossible, i.e. not possible to a
level greater than 1 — a. Set functions II and N are respectively called possibility
and necessity measures, and are simple ordinal models of graded uncertainty (Dubois
and Prade, 1988). Their particular character lies in their ordinal nature, i.e. the unit
interval is used only to rank-order the various possible situations in U, in terms of
their compatibility with the normal course of things as encoded by the possibility dis-
tribution . The above view contrasts with the probabilistic encoding of knowledge,
which relies on an additivity assumption. The latter is justified either on the basis of a
combinatorial (“case counting”) interpretation, or on a pay-off (betting-behavioural)
view of uncertainty. Only ordering is requested in possibility theory.

A systematic assumption in possibility theory is that the actual situation is nor-
mal, i.e. it is any w» such that 7(u) is maximal given other known constraints. It
justifies the evaluation TI(A), and contrasts with the probabilistic evaluation of the
likelihood of events. Moreover N(A) > 0 means that A holds in all the most normal
situations. Since the assumption of normality is always made, N(A) > 0 means that
A is an accepted belief, i.e. one may act as if A were true. This assumption is always
a default one and can be revised if further pieces of evidence contradict it.

Possibility theory is an approach to uncertainty where statements of the form “A
is possible” and “A is believed” are clearly distinguished via the two set-functions II
and N respectively. This distinction cannot be made in Bayesian probability where
the negation of “A is believed ” is always interpreted as “not A is believed”, instead
of “A is not believed” (the latter does not commit into believing “not A”). This
feature of possibility theory is shared by alternative settings such as belief functions
and upper-lower probabililies. If viewed as genuinely numerical, function N is indeed
a particular case of Shafer belief function and lower probability. However the rules
of possibility theory make it extremely simple with respect to its competitors, which
also means that it has a more limited expressive power since it is purely ordinal.

Fuzzy sets, as possibility distributions, offer a powerful tool for the modelling of
various kinds of common-sense reasoning. Let us review some of them.
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Fuzzy Deductive Inference

This type of approximate reasoning has been advocated by Zadeh (1975) in the mid-
seventies, as a calculus of fuzzy restrictions. The principles of this approach are
as follows: consider a set of statements (in natural language, for instance). Each
statement is translated into a possibility distribution that relates the considered varia-
bles. Then all possibility distributions are conjunctively combined (using minimum
operation) into an overall possibility distribution 7. Reasoning consists in projecting
« over various subsets of variables of interest. This method is a direct generalization
of deductive classical logic reasoning which only considers binary-valued possibility
distributions: stating proposition p amounts to considering all situations where p is
false as impossible. Using fuzzy propositions induced by natural language sentences,
the set of situations where a proposition is not false is a fuzzy set, and deductive
inference propagates these membership grades, viewed as degrees of possibility. A
typical example of fuzzy deductive inference is the generalized modus ponens whereby,
from two statements “X is A*” and “If X is A then Y is B”, a conclusion “Y is
B*” can be computed even if A* slightly differs from A (Zadeh, 1979).

Reasoning under Uncertainty and Inconsistency

A possibilistic knowledge base K is a set of pairs (p,s) where p is a classical logic
formula and s is a lower bound of a degree of necessity (N{p) > s). It can be
viewed as a stratified deductive data base where the higher s, the safer the piece
of knowledge p. Reasoning from K means using the safest part of K to make
inference, whenever possible. Setting K, = {p,(p,s) € K,s > a}, the entailment
K+ (p,a) means that K, - p. K can be inconsistent and its inconsistency degree
is inc(K) = sup{a, K  (L,a)}, where L denotes the contradiction. In contrast to
classical logic, inference in the presence of inconsistency becomes non-trivial. This
is the case when K + (p,a), where a > inc(K). Then it means that p follows
from a consistent and safe part of K (at least at level «). This kind of syntactic non-
trivial inference is sound and complete with respect to the non-monotonic preferential
entailment defined below (Dubois, Lang and Prade, 1994). Moreover, adding p to K
and nontrivially entailing ¢ from K U {p} corresponds to revising K upon learning
p, and having ¢ as a consequence of the revised knowledge base. This notion of
revision is exactly the one studied by Géardenfors (1988) at the axiomatic level.

Nonmonotonic Plausible Inference Using Generic Knowledge

Possibilistic logic does not allow for a direct encoding of pieces of generic knowledge
such as “birds fly”. However, it provides a target language in which plausible infer-
ence from generic knowledge can be achieved in the face of incomplete evidence. In
possibility theory, “p generally entails ¢” is understood as “p A ¢ is a more plausible
situation than p A —¢”. It defines a constraint of the form I(p A q) > II(p A —q)
that restricts the set of possibility distributions. Given a set S of generic knowledge
statements of the form “p; generally entails ¢;”, a possibilistic base can be computed
as follows. For each interpretation w of the language, the maximal possibility degree
m(w) is computed, that obeys the set of contraints in S. This is done by virtue of
the principle of minimal specificity (or commitment) that assumes each situation as
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a possible one insofar as it has not been ruled out. Then each generic statement is
turned into a material implication —p; V¢, to which the level N(-p;Vg¢;) is attached.
It comes down, as shown in (Benferhat et al, 1992) to rank-order the generic rules
giving priority to the most specific ones. A very important property of this approach
is that it is exception-tolerant. It offers a convenient framework for implementing a
basic form of nonmonotonic system called “rational closure” (Lehmann and Magidor,
1992), and addresses a basic problem in the expert system literature, i.e. handling
exceptions in uncertain rules.

Hypothetical Reasoning

The idea is to cope with incomplete information by explicitly handling assumptions
under which conclusions can be derived. To this end some literals in the language are
distinguished as being asssumptions. Possibilistic logic offers a tool for reasoning with
assumptions. It is based on the fact that in possibilistic logic the clause (=hV q,a)
is semantically equivalent to the formula ¢ with symbolic weight min(a,t(h)), where
t(h) is the (possibly unknown) truth value of h. The set of environments in which a
proposition p is true can thus be calculated by putting all assumptions in the weight
slots, carrying out possibilistic inference so as to derive p. The subsets of assumptions
under which p is true with more or less certainty can be retrieved from the weight
attached to p. This technique can be used to detect minimal inconsistent subsets of
a propositional knowledge base (see Benferhat et al., 1994).

Abductive Reasoning

Abductive reasoning is viewed as the task of retrieving plausible explanations of avail-
able observations on the basis of causal knowledge. In fuzzy-set theory causal knowl-
edge has often been represented by means of fuzzy relations relating a set of causes C
to a set of observations S. However the problem of the semantics of this relation has
often been overlooked. Here pg(c,s) may be viewed either as a degree of intensity or
a degree of uncertainty. Namely, when observations are not binary, ur(c, s) can be
understood as the intensity of presence of the observed symptom s when the cause ¢
is present. This is the traditional view in fuzzy-set theory. It leads to Sanchez’s ap-
proach (1977) to abduction, based on fuzzy relational equations. Another view has
been recently proposed, where pg(c,s) is understood as the degree of certainty that
a binary symptom s is present when c is present. A dual causal matrix R’ must be
used, where pg/(c,s) is the degree of certainty that a binary symptom s is absent
when c is present. On such a basis the theory of parsimonious covering for causal
diagnosis by Peng and Reggia (1990) can be extended to the case of uncertain causal
knowledge and incomplete observations. This method is currently applied to satellite
failure diagnosis (Cayrac et al., 1994).

8. Flexible Constraint Propagation

As it turns out, there are two distinct understandings of a possibility distribution. A
possibility distribution may encode imprecise knowledge about a situation. In that
case, m(u) = 1 means that u is a normal (maximally plausible) situation. However,
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in that case, no choice is at stake, that is, the actual situation is what it is and =«
encodes plausible guesses about it. The other understanding is in terms of preference
and leads to a calculus of flexible constraints (Dubois, Fargier and Prade, 1994). Then
a possibility distribution encodes a flexible requirement, 7(u) = 1 means that v is a
preferred choice, and 7(u) > m(u') means that u is a better choice than '.

The notion of a constraint is basic in operations research. A constraint describes
what are the potentially acceptable decisions (the solutions to a problem) and what
are the absolutely unacceptable ones: it is an all-or-nothing matter. Moreover, no
constraint can be violated, i.e. a constraint is classically considered as imperative.
Especially the violation of a constraint cannot be compensated by the satisfaction of
another one. If a solution violates a single constraint, it is regarded as unfeasible. The
idea of a goal is quite different: attaining an objective is a matter of degree and leads
to introducing a preference ordering on the the solutions, via the objective function
attached to a goal; moreover, in the presence of multiple conflicting goals, trade-offs
are allowed. In other words, the “optimal” solutions may fail to attain some of the
goals, so that goals are not imperative, strictly speaking. In this picture, flexible
constraints fall between these two modelling attitudes. The idea is to keep the non-
compensatory property of constraints, while introducing intermediary levels between
feasibility and non-feasibility, as well as levels in the imperativeness of constraints.

A classical hard constraint C' is represented by a classical set of solutions, i.e.
only using degrees of membership 0 or 1. However, since eventually a single solution
will be picked up, the feasible solutions are mutually exclusive and the characteristic
function pe that is attached to the constraint is a binary possibility distribution =,
where z is a vector of decision variables. Introducing intermediary levels of feasibility,
C is called a fuzzy, or soft constraint: pc(s) = 1 means that a solution s totally
satisfies C while pc(s) = 0 means that it totally violates C' (s is unfeasible). If
0 < pe(s) < 1, s satisfies C only partially; pc(s) < pc(s’) indicates that C
is more satisfied by s than by s’ (C prefers s to s'). Hence, like an objective
function, a fuzzy constraint rank-orders the feasible decisions. However, contrary to
an objective function, a fuzzy constraint also models a threshold (represented by the
bottom level 0) beyond which a solution will be rejected. In fact, a fuzzy constraint
can be viewed as the association of a constraint (defining the support of C) and a
criterion which rank-orders the solutions satisfying the constraints. In this interpretive
framework, a membership function, construed as a possibility distribution, is similar
to a utility function, or better, a value function. A soft constraint C will be looser
than another C' if and only if pc < per, that is, if any solution to C is at least as
feasible as for C'.

Here, the meaning of possibility has to do with feasibility (objective interpre-
tation) or preference (subjective interpretation). The axiom of possibility measures
means that if A or B is to be achieved, it is equivalent to achieve the easiest of the
two. It has little to do with uncertainty, since all the variables involved in the problem
are supposed to be decision variables, i.e. the ultimate choice of the solution is ours.
Possibility distributions encode feasibility profiles of soft constraints. In the presence
of very loose constraints, it is clear that the use of soft constraints can help breaking
ties among feasible solutions, just as objective functions do. On the contrary, when
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hard constraints are tight, there is no feasible solution. One way out is to relax the
constraints, but automating this process is not so easy and is usually time-consuming.
What is usually done is to assign priorities to constraints. Solutions that satisfy all
constraints are selected if any. Otherwise the less prioritary constraints are dropped,
and the chosen solution satisfies only higher priority constraints. It can be proved
that this decision strategy can be captured in the setting of possibility theory.

Assume the unit interval is viewed as a priority scale with top 1 and bottom 0. A
prioritized constraint is a pair (C,p) where p estimates how imperative C is. (C,1)
denotes an imperative constraint; (C,0) denotes a “non-constraint”, i.e. C can be
violated in any case. Priorities on constraints can be transformed, without any loss
of information, into feasibility levels on solutions. Indeed, since p represents to what
extent it is necessary to satisfy C, 1 — p indicates to what extent it is possible to
violate it. In other words, any potential solution s that violates C satisfies (C, D)
to a degree equal to 1 — p. While possibility degrees are interpreted in terms of
feasibility, necessity degrees are levels of priority. The pair (C, p), where C is a crisp
constraint, can be modelled as a special kind of fuzzy constraint C' (Dubois, Fargier
and Prade, 1994):

1 if s satisfies C
pei(s) = . i
1-p if s violates C

If C is itself a soft constraint with priority p, it can be modelled by the fuzzy
constraint C' with membership function: pc:(s) = max(1 — p, uc(s)). The notion
of fuzzy set as viewed by Bellman and Zadeh (1970) meant to represent constraints
as well as objective functions by fuzzy subsets C' of possible decisions. If Cy,...,C,
denote n fuzzy constraints, the fuzzy decision set was defined by

pp(s) = min uc,(s)

However this definition of a decision set is not really in accordance with the usual
view of multiple-criteria decision-making since an optimal solution in the sense of
Bellman and Zadeh does not make a trade-off between the membership values pe; (s).
On the contrary, an optimal solution is one that least violates the most violated
constraint. Hence, Bellman and Zadeh’s proposal is a constraint-directed view of
problem-solving, where constraint are flexible: if there is a solution s that completely
satisfies all constraints, this solution is optimal. Otherwise A+ = sup, up(s) < 1, and
this indicates that the constraints are partially contradictory. To accept a solution
such that pp(s) = A+ means to partially relax some of the constraints C;. In
that sense constraints C; are flexible, since the formulation of the problem makes
it possible to accept a solution as long as pp(s) > 0, which implies some relaxed
constraints whenever up(s) < 1.

This notion of optimality is not new in the literature of decision making. It is
known as the maximin stategy and is well-known in game theory as the most cautious
strategy for players. It is also well-known in decision-making under uncertainty, where
there are n states of the world and g, (s) is the reward of decision s when the state
is %; again it is a cautious strategy. Despite these formal analogies, the problem
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tackled by flexible constraint satisfaction is very different, since index i pertains
neither to an opposing player nor to a state of the world. The paradigm most akin
to Bellman and Zadeh’s is to be found in social choice theory (Moulin, 1988) and
min;_; , fic,(8) is an egalitarist social welfare function, puc,(s) being the welfare
index of an individual 4. Maximizing min;—; ¢, (s) tends to select solutions which
equally satisfy all constraints.

A powerful advantage of the flexible constraint satisfaction setting is its ability
to extend all the results and tools from constraint propagation in Artificial Intelli-
gence. Here, preference propagation can be achieved. It is formally equivalent to
fuzzy deductive inference, in the sense of Zadeh (1979). Fuzzy inference comes down
to consistency analysis (such as arc-consistency, path-consistency, etc.) in the termi-
nology of constraint-directed reasoning (see Dubois, Fargier and Prade, 1994). Fuzzy
constraint propagation is carried out to speed up the search for an optimal solution
to a problem involving flexible constraints and priorities. Typical examples of appli-
cation of fuzzy constraint satisfaction are engineering design (Wood et al., 1992) and
scheduling (Dubois, Fargier and Prade, 1995).

9. Conclusion

This paper has emphasized the capabilities of fuzzy set-based methods for modelling
gradual properties, similarity, flexible constraints, preferences as well as for repre-
senting uncertain and imprecise pieces of information. Fuzzy controllers which have
become the most popular and visible side of fuzzy set theory are only the emerged
part of the fuzzy iceberg. The idea of similarity takes an important place in every-
day common-sense reasoning patterns. Proximity and similarity are notions which
are naturally graded, which suggests fuzzy sets as a good framework for represent-
ing them. Qualitative reasoning, interpolative reasoning, case-based and analogical
reasoning can benefit from the proper handling of fuzzy similarity relations. They
can also be useful in advanced information systems (e.g., Bosc and Kacprzyk, 1995).
Possibility theory offers a convenient framework for handling dual notions like cer-
tainty /possibility in the case of incomplete information, or like satisfaction/priority in
decision processes. These two features may appear alone or jointly in a great number
of fields of applications different from fuzzy control, especially in

o decision support systems, for handling multicriteria aggregation, possibly in
imprecise or uncertain environment (Dubois and Prade, 1988; Kaufmann and
Gupta, 1988; Zimmermann, 1987);

o advanced information systems, in order to allow for flexible queries and imprecise
or uncertain pieces of information stored in the data base (Dubois, Prade and
Sanchez, 1989; Bosc and Kacprzyk, 1995);

e the qualitative modelling of complex systems (for instance with human com-
ponents) (Kickert, 1978), by means of equations involving fuzzy numbers or
fuzzy functions, by means of fuzzy “if ..., then ...” rules, or by means of fuzzy
regression analysis techniques (Kacprzyk and Fedrizzi, 1992);
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e operations research by offering a tool for dealing with flexible constraints,
prioritized constraints or constraints with ill-known coefficients for example
(Kaufmann and Gupta, 1988; Slowinski and Teghem, 1990; Zimmermann,
1987);

e classification or clustering analysis, by allowing for classes with unsharp bounda-
ries if necessary (when clusters of data are ill-separated) (Bezdek and Pal, 1992).
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