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ALGEBRAIC OPERATORS: AN ALTERNATIVE
APPROACH TO FUZZY SETS

WirAaDYSEAW HOMENDA***

The paper deals with processing of uncertain information in terms of its repeti-
tiveness and negativity. Neither of these features is handled in the lattice struc-
ture of fuzzy sets. In the case of repetitive information, the max-min operators
are noninteractive (see (Pedrycz, 1993)). Triangular norms presented there can
cope with repetitive information. Nevertheless, negativity still creates prob-
lems. In this paper, a new approach to processing of uncertain information is
proposed. This approach is based on some extension of fuzzy sets theory: the
linear space and ring structure of fuzzy sets. This extension is created by new
operators, algebraic rather than logic. In this paper, the operators are called
a-p-v operators. Basic properties of the introduced spaces are discussed. Both
repetitive and negative kinds of information are handled in algebraic structures
of fuzzy sets. Operators introduced in this paper are applied in two examples:
fuzzy reasoning and fuzzy neural networks.

1. Introduction

The basis of the theory of fuzzy sets is commonly related to classical set theory.
Namely, given the universe of discourse X one can define a fuzzy set A over X asa
mapping w4 : X — [0,1] and interpret the values of this mapping for each element
of X as the grades of membership of fuzzy set A. Apparently, this is an extension
of classical set theory, which gives the respective interpretation of a non-fuzzy set A
in the universe of discourse X through the characteristic function x4 : X — {0,1}.

Following this intuitive analogy, we get the space of fuzzy sets
F(x)={u: x - [0,1]}

which is equipped with operators similar to those of set theory: the union, intersection
and complement. To be more specific, the tuplet

(F(X),u,n,‘)
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with AUB defined as the max operation on respective values of membership functions
of fuzzy sets A and B, AUB—as the min operation, and the complement as subtrac-
tion from 1, constitute the structure very similar to that obtained from the classical
set theory. The tuplet (F(X),U,N,”) is a complete lattice while (P(X),uU,Nn,” ) is
a Boolean algebra, where P(X) stands for the family of all crisp sets defined in the
universe of discourse X.

A lot of research has been done following the theoretical foundations of the lat-
tice structure of fuzzy sets, including studies on fuzzy control (where most real-life
implementations refer to max and min operators), fuzzy reasoning, relational equa-
tions, pattern recognition, neural networks, etc. The properties of the max-min based
fuzzy set structure are well understood and widely utilized in practice. Nevertheless,
there is a disadvantage called by Pedrycz (1993) noninteractivity of max and min
operations. To avoid this drawback, triangular norms were utilized. Let us follow
Pedrycz (1993) to discuss more clearly the problem of noninteractivity of max and
min operations:

“For any arguments a and b from the unit interval [0,1], the result of
min (a,b) yields a and does not depend on b as far as b > a. In other
words, in this case the computed value of min(a,b) is not influenced by
the second argument b. While this type of insensitivity could be viewed
advantageous in some situations, this phenomenon in general might lead
to a fairly undesired performance of the operation. Let us put a = 0.1;
then for all the values of b varying over broad sub-range of the unit in-
terval, 0.1 < b < 1, its changes do not affect the final result. In the
models of the logical connectives for fuzzy sets it has been experimentally
verified, cf. (Zimmermann and Zysno, 1980), that some sort of compen-
sation (i.e. interaction) between the values of the membership functions
does occur. This behaviour clarifies why ¢t-norms other than the mini-
mum operation can be successfully utilized to model interaction between
items under aggregation. Secondly, the lattice operations cannot cope with
the repetitive information (which in fact has a well legitimized statistical
meaning).”

To supplement the above excerpt, let us consider the following observation. In the
decision making process we often are faced with data coming from sources of different
character, e.g. some information is available from experts while other comes from
pooling. These sources of information may be regarded as the sources of repetitive
information. To get an overall picture of all sources of information we have to refer
to their aggregation. In this case noninteractivity of aggregation will distort the final
result.

Triangular norms, the generalized max-min operators, cf. (Gupta and Rao,
1994; Pedrycz, 1993), still have a drawback related to the nature of the lattice
structure-—they cannot cope with negative information.

Let us explain the meaning of negative information. Notice that the degree
of membership function, say A(zg), specifies the grade to which zy satisfies the
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concept conveyed by the fuzzy set A. Observe that A(zp) set to 1 denotes complete
membership, while A(zg) = 0 excludes its membership. Note, however, that nothing
is said explicitly about the degree to which an element z, does not belong to A. By
default it could be stated that as far as A(zgp) decreases, the grade of belongingness
of zy to the complement of A should increase. This leads to the interpretation that
membership values from the interval (0, 0.5) should be considered as the grade of
exclusion from the set A: the lower the membership value, the greater the grade of
exclusion. This interpretation satisfies the default but is not well-handled by neither
simple max-min operators nor by triangular norms. The main drawback of the lattice-
oriented triangular norms is that they cannot handle negative information in a way
intuitively well legitimized: negative information, if present among arguments of the
operator, decreases the result of the operation. So, if many pieces of information are
aggregated and most of them are negative pieces of information, the result is expected
to be negative. And vice versa, if most of aggregated pieces of information are positive,
the result is expected to be positive.

A simple example related to a reasoning rule underlines and explains the existence
of this type of problems.

Example 1. The description of a reasoning rule given by an expert is often of the
form:

If forobject O features (Fy,..., F,) are observed with grades close to 1,
then object O belongs to class C with grade close to 1

or, more precisely,

If forobject O features ( Fi,..., F, ) areobserved with grades (f1,- .., fn),
respectively, then object O belongs to class C with grade equal to c.

Let us make some more assumptions to give evidence of this problem:

o the grades in the reasoning rule (fi,...,f,) are equal to (0.9,0.9,...,0.9),
respectively;

e the membership grade ¢ is equal to 0.9;

e the features (Fy,...,F,) of the object O were observed with certainty factors
(0.8,0.2,0.8,...,0.8).

Utilizing the following formula:

min (ma.x (min(f1,21),.-., min(fn,a:")),c)

we obtain 0.8 as the grade of membership of the object O to the class C. The result
- is acceptable since most of the grades of features are close to 1, so the final result
reflects significantly the situation. On the other hand, if one deals with collected
values of grades of features equal to (0.2,0.8,0.2,...,0.2), then the above rule yields
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again the value 0.8, which, however, according to our expectations, is much too high.
But this result is not unexpected because lattice operators applied in the rule cannot
cope with this type of problems, i.e. the problems related to negativity: most of the
grades of observed features are close to 0, i.e. the test for their existence gave a
negative result and, because of this, the expected result should also be negative, close
to 0.

For simplicity, only max and min operators were used in above rules, but since
the following inequalities hold:

s(a,b) > max(a,b) > min(a,b) > t(a,b)

then it is clear that the results obtained by replacing the min operator by any f-norm
and the max operator by a ¢t-conorm (denoted here by s) will be still far away from
our intuitive expectation. In this formula, the If a then b rule is implemented as the
min(a,b) operator. It is easy to check that using other operators for implementing
the If a, then b rule, (e.g. the Lukasiewicz, Kleene-Dienes or other rules) will give a
similar (i.e. close to 1) result.

In this paper, we will discuss a new kind of operators in the space of fuzzy sets
and present how the above shortcoming can be eliminated.

2. Algebraic Structures of Fuzzy Sets

Membership functions are usually defined as mappings from any universe of discourse
into the unit interval. This fact comes from a tradition rather than is a result of
theoretical requirements. Membership functions may refer to values from [-1,1].
This symmetrical bipolar representation was used in dealing with uncertainty in the
MYCIN system (Dubois and Prade, 1980), it is also applied in fuzzy neural networks
(Gupta and Rao, 1994), in cognitive maps (Kosko, 1986), etc. Representation of
negative information is also more obvious in the case of bipolarity: a positive value
defines the grade of inclusion of the element into a fuzzy set, while negative—the
grade of exclusion. The greater the absolute value of membership, the more certain
inclusion/exclusion information. By treating the intersection and union as imple-
mented by the minimum and maximum, respectively, and viewing the complement
as changing the sign of the value of the membership function, the spaces of grades of
membership are isomorphic for both cases: unipolar and bipolar. Take for instance
the following mappings:

e for crisp sets
i:{0,1}* = {-1,1}% such that i(z) =2z -1,
e for fuzzy sets

i:[0,1)% - [-1,1]¥ and asbefore  i(z) =2z —1.
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These mappings are isomorphic functions, where a straightforward proof of satisfac-
tion of this property can easily be derived, cf. (Homenda and Pedrycz, 1991). The
difference between both representations of fuzzy sets, though insignificant from the
theoretical point of view, may play a significant role in practice, but this topic is out
of the scope of this paper.

Despite the above observations, we will also refer to unipolar representation of
fuzzy sets. Bipolar representation of fuzzy sets, though closer to the nature of a
negative kind of fuzzy information, still seems to be less appropriate than the widely
spread unipolar representation.

In the sequel, we adopt the notation

FX) = (0,1% = {uln: X~ (0,1)}
FX) = (0,1 = {ulu: X — [0,1]}
G(X) = (-1, = {ulu: X = (-1,1)}
G0 = [-1,1% = {ulp: X - [-1,1]}

In the space G(X) of membership functions the following observations can be made:

e a fuzzy set is empty if its membership function is identically equal to —1 on X,
e the complement of a fuzzy set A, denoted by A’, is defined by far = —fa,

e definitions of equality, containment, union and intersection are taken from clas-
sical fuzzy set theory,

o the value 1 denotes complete inclusion while the value —1 refers to complete
exclusion,

e the greater the absolute value of the membership function, the more certain
information about the object; 0 refers to the case where the element is neither
accepted to the category nor excluded from it. The higher the absolute value
of the grade of membership, the less uncertainty allocated to the corresponding
element of the universe of discourse.

Let us consider the following example:

Example 2. Let X be the real line R! and let A be a fuzzy set of numbers that are
much greater than 1. Then one can give a precise, albeit subjective characterization of
A by specifying fa(z) as a function on R'. Representative values of such a function
might be as shown in Table 1.
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Tab. 1. Classical processing of fuzzy sets.

| x ] fa [ 94 |fA’ ‘ gar ‘fAUfA’ |gAUgAr|fAﬂfA' |gAﬂgA'

1 0 -1 1 1 1 1 0 -1
5 0.05 | =09 {095 | 0.9 0.95 0.9 0.05 -0.9
10 02 | -06| 08 0.6 0.8 0.6 0.2 —-0.6
15 0.5 0 0.5 0 0.5 0 0.5 0
30 0.7 0.4 03 | ~04 0.7 04 0.3 -04
100 | 095 [ 0.9 | 0.05 | —0.9 0.95 0.9 0.05 -0.9
500 1 1 0 -1 1 1 0 -1

When the mapping into [—1,1] is applied, the membership function is denoted
by ga. The values of membership functions f4 and ga, complements f4 and gu,
unions faU far and g4 Ugar, together with intersections f4 N far and gaNgar are
outlined in Table 1.

The value g4(5) = —0.9 gives less uncertainty than the value g4(30) = 0.4 as to
the exclusion/ inclusion of the elements 5 and 30 to the set A. The element 5 is more
certainly excluded from A than the element 30 is included in A. Because of this, the
space G(X) seems to be more suitable to express the grades of inclusion/exclusion
elements from a fuzzy set/concept. Nevertheless, as is noted above, the classical space
of fuzzy sets F(X) will also be referred to.

On the basis of the above observations, new operators are presented in the sub-
sequent sections. These operators are called a-p-v operators (sum-product-vector
operators). They create algebraic structures of fuzzy sets: the ring and vector (lin-
ear) space.

2.1. Vector Space of Fuzzy Sets

The vector (linear) space of fuzzy sets will be defined by introducing new operators
in the space of fuzzy sets, i.e. in the space G(X) (see (Homenda and Pedrycz, 1991)
for a primary discussion of this topic). In general, let us introduce a transforming
function A from the open interval (—1,1) onto the real line R, such that it is

e continuous,
e symmetric, i.e. h(—z) = —h(z),
e strictly increasing.
Obviously, we have
e h(0) =0,
e lim h(z) = too as z — +1,

e h~1 exists.
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2.3. Processing of Fuzzy Sets in Algebraic Structures

The general scheme of a-p-v operators used in the fuzzy-set processing is presented in
this section. Lattice-like triangular norms operate on a space of unipolar membership
functions, and on the other hand, a-p-v operators are bipolar membership functions.
To preserve compatibility with lattice-like operators, i.e. to have arguments and results
of new operators kept in the unit interval rather than [—1,1], the space G(X) and the
isomorphic transformation from F(X) to G(X) are introduced. This transformation
gives a view on merit features of new operators compatible with the classical approach.
So, one can compare results of classical triangular norms and a-p-v operators applied
to a given task.

The proposed scheme of the fuzzy set processing may be expressed in the following
steps (see also Fig. 1(a)):

o transformation of the fuzzy space F(X) to the fuzzy space G(X) using an
isomorphic mapping 1,

e processing the fuzzy sets in the fuzzy space G(X) by applying a-p-v operators,

e transforming the results back to the fuzzy space F(X) using the inverse iso-

morphic mapping i~!.

Processing in the fuzzy space G(X) may be expressed in the following steps (see also
Fig. 1(b)):

e transformation of the fuzzy space G(X) to the respective algebraic structure
using the (isomorphic) transforming function h,

e application of the usual algebraic operators,
o transforming the results back to the fuzzy space F(X) using the inverse func-

tion AL,

The a-p-v operators introduced above are defined on the fuzzy sets whose mem-
bership values are not crisp, i.e. absolute values are less than 1. The crisp values
(i.e. —1 and 1) need a special treatment because inclusion of these values breaks regu-
larity in the linear space and ring structure of fuzzy sets. Two different attempts are
proposed here to cope with fuzzy sets attaining crisp values as the grades of member-
ship of given elements of the universe. The first attempt is based on the extension of
the real line by inclusion of infinity values, i.e.

R=RuU{-00,+0c0}
The addition operator in R will be defined accordingly for any real a:
o a+ (fo0) = () +a=+o00

o (400) + (+00) = 40
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space space space space
of isomorphic of : of isomorphic of
fuzzy mapping fuzzy processing fuzzy mapping fuzzy
sets sets sets sets
: -1
F(X) i G(X) G(X) i F(X)
(a)
space : ! space
of transforming alr%l?g applying all%?g transforming of
fuzzy function §-p-v function fuzzy
sets struc- struc- ] sets
G(X) h ture operators ture h G(X)
(b)
space space space space
of mappin of rocessin, of mappin of
fuzzy pping fuzzy p g fuzzy pping fuzzy
sets sets sets sets
Fx | ja*i 6w G(X) il FX)
(©)
space space space space
of mappin _of rocessin of mappin of
fuzzy pping tuzzy P g fuzzy pping fuzzy
sets sets sets sets
FX) | j=A*i G(X) T G(X) J' F(X)

(d)

Fig. 1. Schemes of fuzzy sets processing.
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Examples of the transforming function are: hyperbolic arc tangent, z/(1 —
abs(z)), tan (7z/2), etc. We refer the interested reader to (Homenda and Pedrycz,
1995) for discussion of the problem of selection of transforming function.

Now let a binary operator (additive operator) be such that:
a:G(X)xG(X) - G(X)
and for all z within the universe of discourse X:
a(4, B)(z) = (AaB)(z) = h* (h(A(=)) + h(B(2)) )

where A, B are fuzzy sets, + is the addition operator on real numbers, and x is the
Cartesian product.

Proposition 1. The pair (G(X),a) is a commutative group.

Define another operator v (outer multiplicative operator) such that
v:R'xG(X) = G(X)
and for all real A and all z within the universe of discourse X :
v(\,B)(z) = (\vB)(z) = b~ (,\ * h(B(:z:)))

where B is a fuzzy set, * is the multiplication operator on real numbers and x is the
Cartesian product. For both ¢ and v, we have the following result:

Proposition 2.

@ (Ax8)vA=Av(6vA)),

(2) A+8vA=(AvA)a(bvA),

or, if we assume that v is of higher precedence than a, this yields
(A+8)vA=AvAabvA,

(3) Av{(AaB)=AvAaAvB,

(4) 1vA=a.

Finally, we conclude:

Corollary 1. The structure W.= (G(X),R,a,v) is a vector space.

For proofs of the above results see (Homenda and Pedrycz, 1991).
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2.2. Ring Structure of Fuzzy Sets

Let us define new operators on the space G(X) of fuzzy sets based on the transforming
function h introduced above. The definition of the additive operator a is adopted
from the previous subsection. The definition of the (inner) multiplicative operator is
as follows: '

p: G(X)xG(X) — G(X)
and for all z within the universe of discourse X:
p(4,B)(z) = (ApB)(z) = h™ (h(A(2)) *h(B(z))
where A, B are fuzzy sets, * is the multiplication operator on real numbers and x is
the Cartesian product.
Proposition 3. The pair (G(X),p) is a commutative group.
Proposition 4. The operator p is distributive with respect to the operator a:
Ap(BaC)=(ApB)a(ApC)
or, if we assume that p is of higher precedence than a, this yields

Ap(BaC)=ApBaApC

Corollary 2. The structure R = (G(X),a,p) is a ring.

One could easily prove the following properties:
¢ (Aa B)(z) > max{A(z), B(z)} if A(z)>0and B(z) >0
¢ (AaB)(z) < min{A(z), B(z)} if A(z) <0and B(z) <0
* A(z) < (AaB)(z) < B(z) if A(z) <0< B(z)
e (ApB)(z) > A(z) if A(z) >0and B(z) > h71(1)
o (ApB)(z) > max{|A(z)],|B(z)]} if A(z) 2 h7'(1) and B(z) 2 h7'(1)
¢ [(ApB)(z)| < min{|A(z)],|B(z)[} if |A(z)] <Ah7(1)and |B(z)] <A7H(1)

It is necessary to recall that the certainty factor is interpreted here as a number
belonging to the interval (—1,1) of real numbers rather than to the interval (0,1). As
usual, the higher the positive value of c.f., the more certain information on inclusion
of an element to the fuzzy set. And vice versa, the higher the negative value of c.f.,
the more certain information of excluding an element from the fuzzy set. The zero
value means lack of information whether an element belongs to the given fuzzy set
(Homenda and Pedrycz, 1991).

It can easily be seen that both structures are different due to different multi-
plicative operators. In the first case, arguments of multiplicative operator come from
different spaces: the first one is a real number and may be interpreted as an impor-
tance factor, the second one is from the interval [0,1] and is simply a membership
value. In the second case, both arguments come from the interval [0,1] and are of
the same character—they may be relevantly interpreted as membership values.

T
T
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o (+00) + (—o0)and (—o0) + (+00) are undefined.

For multiplication in R we introduce the following:

e a*(+o0) = (+o0)*a=+o00 if a>0
* (2oo) = (£o0) *xa = Foo ifa<0

o 0x(+o0)=(+o0)*0=0

e (+00) * (+00) = (—00) * (—00) = +00

e (400) * (—00) = (—00) * (+00) = —00

Having such an extension of the real line, we can extend the definition of the
transforming mapping to the closed interval [—1,1]. But this involes extension of the
ring and vector space to the infinity values of opposite signs. This fact has a clear
interpretation: if we consider the values of the extended real line resulting from the
transforming mapping, the infinity values are obtained from crisp values of the fuzzy
concept. On the other hand, such crisp values of the fuzzy concept are interpreted
as certain, not fuzzy, pieces of information. From this point of view, two certain
but contradictory pieces of information should produce undefined results, and such
a result should not be utilized in further processing as the source of this type of
information cannot be viewed as reliable.

The second attempt to rectify this irregularity is based on decreasing the certainty
of incoming information. It may simply be done in the step of transformation of the
space of fuzzy sets F(X) into the space of fuzzy sets G(X). A new mapping is
obtained by multiplication of the isomorphism 4 by any number A from the unit
interval (0,1) (see the scheme in Fig. 1(c)). Specifically, the new mapping j is
defined as follows:

_1_7‘_(_){;) — G(X)
and

jl@)=Ax(2x-1)

In some cases, the above processing scheme may not be relevant to the given
problem. The matter is that the output fuzzy information belongs to the space
F(X), i.e. the output fuzzy information does not contain crisp values, while input
information is from F(X). More precisely, for each fuzzy set A from the space
F(X), if it is not changed in the processing step m in the space G(X), the output
result should be equal to A. According to problem specific features one can apply
the mapping from G(X) into F(X) similar to that from F(X) into G(X):

7'(z) = max ( — 1, min (l,i“l(m))) = max ( —1,min (1,(z + 1)/2))
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Note that the above mapping is not the inverse of 7, but the condition
§'(i(4) = A

is preserved for any fuzzy set A from the space F(X). The new scheme is shown in
Fig. 1(d).

3. Dealing with Repetitive and Negative Information

The general meaning of repetitive and negative information is explained in Introduc-
tion. An initial discussion of unsuitability of the classical approach for these kinds of
information is outlined there. In contrast with the classical approach (i.e. with the
approach utilizing minimum and maximum operators or, more generally, triangular
norms and conorms), application of algebraic operators to repetitive and negative
information processing is presented in this section.

We refer here to Example 2, which, although rather simple, seems informative
and explaining the nature of the proposed a-p-v operators. Of course, this example
may be considered as a projection of a real-life problem on a formal space of fuzzy
sets over the real line R!, e.g. when a market expert advises that in order to earn
a much greater profit than this year it is necessary to invest at the level of ... in
advertizing the product and to invest in the research on the product at the level of . . .,
he uses fuzzy opinions: much greater and at the level of. While assuming that the
notion much greater than 1 is subjectively characterized, the generalizations of given
characterizations of that notion are done by processing fuzzy sets related to those
characterizations. The processing of fuzzy sets is done in three formal environments:
in the max-min lattice of fuzzy sets, in the triangular norm structure of fuzzy sets
and in the a-p-v operators’ structures introduced here. All these characterizations of
the notion much greater than 1 can be considered as repetitive information. On the
other hand, the membership grades less than 0.5 can be regarded here as negative
information according to the interpretation given in Introduction.

Example 3. Three fuzzy sets describing the notion much greater than 5 were
defined and they are given in Fig. 2(a). The noninteractivity drawback discussed
in Introduction can be easily observed in Fig. 2(b), where fuzzy sets were pro-
cessed by applying max-min operators and triangular norms. More specifical-
ly, distinguished characteristics shown in Fig. 2(b) were obtained by computing
max(A(z), B(z), C(z)), s(A(z), B(z),C(z)), etc., for every real z. As an example
of triangular norms, the probabilistic sum and product were used.

As regards max-min operators, the non-interactivity can easily be observed: the
results of max-min operators, applied to fuzzy sets A and C, are equal to the same
fuzzy sets, respectively. If triangular norms are utilized, the results depend on all
their arguments, so the noninteractivity problem is removed.

Nevertheless, as was mentioned before, one can expect that when membership
grades are all small—less than 0.5 or even close to 0—the s-norm should produce
a result even smaller than the arguments of that operation. This means that when
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1.0

max(A,B,C)

<o
Jy 4

s(A,B.C)

Fig. 2. Fuzzy sets processing with triangular norms.

negative pieces of information are processed, the result should not be positive. In
other words, if all pieces of information suggest exclusion of an element from a fuzzy
concept, then aggregated information should not suggest inclusion of that element
into the given fuzzy concept.

As a counterexample of this expectation it is sufficient to compute the result of
the probabilistic sum of two arguments both equal to 0.4. The result is then equal
to 0.64. The application of the additive operator a—defined by the transforming
function h(z) = x/(1 + abs(z))—gives the result equal to 0.33. A similar situation
can be observed in Fig. 2(b).

Remark. In this paper, the probabilistic sum was used as an example of the s-norm,
and the product as the t-norm. A-p-v operators were defined on the basis of the
transforming function h(z) = z/(1 + abs(z)).

On the other hand, when the t-norm is applied to the arguments which all are
greater than 0.5, the expected result should be, in any way, greater than 0.5. When
applying the product of two arguments both equal to 0.6, one obtains 0.36, but the
operator a gives the result equal to 0.67 (see also Fig. 2(b)). This behaviour clarifies
why e-p-v operators other than lattice-like operators (the min-max operators and
triangular norms) can successfully be used in modelling the interaction between items
under aggregation.
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Aggregation of data with s-f norms does not provide any control over the ag-
gregation characteristics. For example, when the probabilistic sum is applied to two
arguments, both equal to 0.4, the result is equal to 0.64. It is necessary to change
the applied s-norm for changing this local result. In other words, it is necessary to
change the s-norm applied for changing the characteristics of data aggregation.

On the other hand, a-p-v operators are provided with the feature of controlling
data aggregation. This is done as a kind of local transformation of the data over ag-
gregation. Namely, before grades of membership of different fuzzy sets are aggregated
by applying the operator a, they are locally transformed by the operation p or v, and
then the aggregation result may be transformed back by an inverse-like operation p
or v.

To be more specific, the control over data aggregation can be kept in two ways:

e by controlling the parameter A of the processing scheme given in Figs. 1(c) and
1(d) (cf. Figs. 3(a) and 3(b));

e by controlling the scalar argument of the operator v or, which is equivalent,
by controlling one argument of the operator p; in the case of the operator
p, additional assumptions should be made: the operator p is applied to two
arguments and one of them, the non-controlled one, supports the aggregated
data, while the other argument, the controlled one, influences the aggregation
characteristic (cf. Figs. 3(a) and 3(b)).

Figures 3 and 4 provide an illustration for the aggregation controlling feature.
1.0

s 3(A,B,C)

Fig. 3. Algebraic operators: crisped aggregation of fuzzy sets.
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2 26 30 34 38
(b)

Fig. 4. Algebraic operators: weighted aggregation of fuzzy sets.

By picking up freely any of the parameters mentioned above, one can develop
parametrically a broad spectrum of the aggregation characteristics without changing
a-p-v operators. This feature may be used for defining the importance of data being
aggregated as in Fig. 4, in which the parameter k reflects the importance of fuzzy
information.

4. Fuzzy Reasoning with Negative Information

Since the fundamental concept of fuzzy reasoning given by Zadeh (1968; 1971), the
problems of fuzzy reasoning, fuzzy relational equations and their applications have
been extensively developed e.g. in (Baldwin, 1979a; 1979b; Pedrycz, 1982; 1983; 1990;
1993; Sunchez, 1979; Yager, 1980) and others. The problem of negative information
in the aspect of fuzzy reasoning was primarily discussed in (Homenda, 1994; 1991). In
this section, a synthesis of this problem is provided. Advantages from the application
of the a-p-v operators in fuzzy relational equations are also pointed out.
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Let us consider the fuzzy reasoning rule of the form:

If Xis A then Y is By
If Xis A, then Y is B,
If X is Ax then Y is By
X is Ag
Y is Bo
where X and Y are names of variables, Ag, A1,..., Ay and By, Bi,...,By are

fuzzy sets in a finite universe of discourse representing the values of these variables,
i.e. Ao, As,..., A are elements of the space F({zo,21,...,2t}), Bo,B1,..., By are
elements of the space F({yo,¥1,...,yx})- This form of fuzzy reasoning rule is similar
to that given by an expert in the knowledge acquisition process in a diagnostic model.
Diagnostic models are of particular interest since they cope with uncertainty existing
in many real-life cases concerning either a medical diagnosis or a diagnosis of technical
devices. For example, fuzzy concepts Aj,..., A can be considered as coming from
the space of symptoms and fuzzy concepts By, ..., B} from the space of faults (dis-
eases). Descriptions obtained from the expert are of the form: if symptoms z1,...,z
are observed with certainty factors a;y,...,a, then faults 1,...,y% should be con-
sidered with certainty factors b;1,..., b, respectively. Having a given space of symp-
toms x1,...,Tr with certainty factors ai,...,ax, we face the problem of concluding
on the relevant space of diseases y1,...,¥r and on their certainty factors b, ..., bs.
This form of fuzzy reasoning may also be expressed as the fuzzy relational equation

XoR=Y (1)

where R is a fuzzy relation obtained from the above fuzzy reasoning rule, e.g. by the
application of the methods described in works mentioned below.

By interpreting the composition operator ¢ in (1) as a max-min composition,
e.g.

Y (y) = max (X (z) A R(z,y))
one could easily check some basic results:

e the existence of a solution to eqn. (1) with X or R unknown (Pappis and
Sugeno, 1985; Pedrycz, 1982; 1990),

e the structure of the set of solution (Di Nola, 1983),

e a solution algorithm (Pedrycz, 1990).

Unfortunately, this approach, though theoretically well-explored, has also a non-
interactivity drawback. In this case, let us discuss the problem of noninteractivity and
negative information by exploring one more example. It sheds light on the differences
between max-min operators, s-t norms and a-p operators. The s-t norms and a-p
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operators used here are the same as in Example 3, i.e. the probabilistic sum is taken
as the s-norm, the product as the t-norm, and the function h(z) =z/(1—abs(z)) as
the transforming function for defining the a-p operators.

Example 4. Let fuzzy relation equal

0.6 075 08
07 075 06
0.75 0.65 0.8
0.7 0.7 055

while the fuzzy sets of symptoms are equal to
A; =[0.2 0.6 0.5 0.6]
Ap = [0.55 0.6 0.5 0.6]
As; ={0.80.75 0.6 0.7]
Ay =[0.950.9 0.95 0.9]
Fuzzy sets of faults obtained from equations AocR = B are shown in Table 2.

Tab. 2. Results obtained from (1).

I l max-min | s-t norms I s-p operators l
Ai1oR [0.6 0.6 0.6] [0.82 0.82 0.78] | [0.48 0.24 0.16]
AsoR | [0.60.60.6] [0.86 0.87 0.86] | [0.63 0.67 0.60]
AszoR | [0.750.750.8] | [0.94 0.95 0.95] | [0.85 0.88 0.90]
AsoR | [0.750.75 0.8 | [0.98 0.99 0.99] | [0.97 0.98 0.98]

The max-min operators produce the same faults for both pairs of symptoms:
Ay, A; and Az, As. The application of s-¢ norms removes this disadvantage—fuzzy
sets of faults are differentiated. In this case, membership values can be seen as
much higher than practically expected, e.g. compare the vector of symptoms A; =
[0.2,0.6,0.5,0.6] with the resulting fuzzy set of faults By = [0.82,0.82,0.78], and
the vector of symptoms A; = [0.55,0.6,0.5,0.6] with the resulting fuzzy sets of
faults By = [0.86,0.87,0.86]. Let us recall that membership values close to 0.5
are interpreted as providing little information about the inclusion of the respective
element of the universe into a fuzzy concept and that a value close to I means that
an element of the universe is almost certainly included in the fuzzy concept, while a
value close to 0—that the corresponding element is almost surely excluded from the
fuzzy concept. For this interpretation of membership grades, the results obtained by
applying s-t norms to the vector of symptoms A; are too high. Notice that only the
membership grade of the first symptom (close to 0) means that this symptom should
be excluded from the set of symptoms under consideration, grades of other symptoms
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are close to 0.5 and our knowledge about their inclusion/exclusion is rather poor.
This is the reason why we can expect here less certain knowledge about faults than
if we had applied s-t norms.

On the other hand, the use of a-p operators brings expected results. In particular,
very interesting results are obtained when the vector of symptoms A; is processed.
The obtained results [0.48,0.24,0.16] can be easily explained. The decrease in mem-
bership values of faults was caused by the increase in values in the first row of the
fuzzy relation. This row is related to the first element of Ay, which, in fact, brings
negative information. The negative information is cumulated because the respective
element of the relation increases. Of course, there is some influence from the second
and fourth rows of the fuzzy relation on the resulting fuzzy set of faults, but no in-
fluence comes from the second row of the fuzzy relation. This lack of influence of
the second row is due to the respective (third) element of the fuzzy set of symptoms,
which is equal to 0.5, which means that it brings no information.

5. Modelling an Artificial Neuron with Algebraic Operators

In this section, a fuzzy neural network is explored from the perspective of the task
performed by a single neuron in one network pulse. Since the computational model
of a fuzzy neuron involves classical fuzzy operations such as triangular norms, it still
suffers from drawbacks outlined in the previous sections, which are related to the
negative and repetitive character of input signals being processed by the neuron. To
avoid these disadvantages, a model of an algebraic neuron is proposed on the basis of
a-p-v operators.

The architecture of a (classical and fuzzy) neuron is shown in Fig. 5 (see also
(Bezdek, 1992a; 1992b; Gupta, 1994)).

Fig. 5. Architecture of classical and fuzzy neuron.
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From the mathematical point of view, processing information within a neuron involves
two distinct mathematical operations, namely:

e an integration function (a synapsic operation) f first integrates the (synapsic)
weights W = (ws,...,w,) with pulse input X = (z1,...,2,), and is followed
by

e a transfer (activation) function (a somatic operation) F' applied to the value

y = f(2) A
The integration function f is usually the inner product:
FX)=wz1 +... + WnTn +

where a is the bias or offset from the origin of R™ to the hyperplane normal to W
defined by the equation:

wizTy + ...+ Wy, +a=0

This model of an artificial neuron is called the first-order neuron because f is an
affine (linear when a = 0) function of its input, cf. (Bezdek, 1992b). Although more
complicated models of neurons have been developed, including higher-order neurons,
e.g. neurons with quadratic integration function, the attention is focused here on this
simple, first-order neuron because this model is the basis of the artificial fuzzy neuron.

The activation function F' is used to decide whether the node should fire and,
if so, how much charge, and of what sign, should be broadcast to the network in
response to the node inputs. F is typically the logistic (sigmoidal) function, e.g.
F(z) = F(f(X)) =1/(1 + exp(-2)).

One of the models of fuzzy neurons is defined by replacing the integration func-
tion f with triangular norms:

u(t) = s(wy tx1,... , W tTy)

where ¢ and s are the triangular norm and co-norm, respectively.

o) e
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> S— @ >

Fig. 6. Architecture of neural network layer.

With respect to one layer of the fuzzy neural network (see Fig. 6), this model
of the fuzzy neuron leads to a fuzzy relational equation as a mathematical model of
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the layer. It may be assumed that every input of the layer is copied the number of
times equal to the number of neurons in this layer. Thus, each input of the layer
comes to each neuron of this layer. If this assumption is not true, the network may
be extended by adding new connections going to the corresponding neurons of the
layer with weights equal to 0. One can label all input connections by putting two
indices for every weight: the first index is equal to the number of input connections,
the second—to the number of neurons receiving the connections. In this way, all the
weights of the layer may be arranged in the table:

w11t Wim

Wn1 crr Wam

The output of the layer can be described by an equation similar to (1):
XoW=Y (2)

This result shows that issues discussed in previous sections are applicable to the model
of fuzzy neural networks explored here. Specifically, the problems of noninteractivity,
handling repetitive and negative information, selection of proper s-t norms, control
over data aggregation, and so on, should be considered in this model of the fuzzy
neural network.

¥
xl— =0
Yy
wﬂ
T
n

Fig. 7. Architecture of algebraic neuron.

The a-p-v operators defined and discussed in this paper seem to be a natural
solution for handling negative information, defining connection weights, controlling
data aggregation by integration function, describing the task of one algebraic neu-
ron as well as of the whole layer and the whole network in one pulse. The archi-
tecture of an algebraic neuron is given in Fig. 7. This neuron aggregates inputs
z = (%1,...,Zn) € (—1,1) by first combining them individually at the synaptic level
with connections (weights) w = (wp,...,wn) € (=1,1) and, afterwards, globally
aggregating this results. The discussion of this model is restricted here to the open
interval (—1,1). The values —1 and 1 may be regarded as asymptotic behaviour of
respective operators. An extended -discussion of this topic is going to be presented
in forthcoming papers. Figure 7 illustrates the fact that the synaptic operation is in
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general a nonlinear operation applied to the signals and weights. The mathematical
model of this neuron is summarized as follows:

y =A%, (w;ipw;)

zi=w;pzi = plw; pz;) = f (f(wi) * f(xi))

y= A1) = (3 1) = 171 (3 (Flws) « £a1))
i=1

g=1

From the functional point of view, the algebraic neuron may be regarded as
an intermediate model that can be situated between the classical and fuzzy neuron.
Similarities between the algebraic and classical neurons can easily be shown: when
classical neuron inputs and weights are normalized to (—1,1), the difference is only
in the way the inputs and weights are combined, which is nonlinear in the algebraic
model and the simple product in the classical model. The inverted transforming
function, f~!, plays here a role similar to the activation function.

On the other hand, an algebraic a-operator, when its domain is restricted to the
unit square, is an Archimedean s-norm and, because of this, the activation function
of the algebraic neuron (on a restricted domain of the function) is exactly equal to the
activation function of the respective fuzzy s-¢t neuron. As to the synaptic operation,
when the input and weight domains are restricted to the unit square, the product
of (nonlinearly transformed) input and weight may be considered as a triangular
norm applied to both. Thus, the algebraic neuron can be regarded as an extension
of a fuzzy s-t neuron with respect to inputs and weights with its full compatibility
for nonnegative values. This extension is supposed to give much more flexibility and
adaptability in a single neuron and neural network behaviour, as well as in the training
process. We refer the reader to (Homenda and Pedrycz, 1995) for discussion of fuzzy
and algebraic neuron behaviour for the two-dimensional case (two inputs).

6. Conclusions

This paper deals with the processing of uncertain information in the aspect of its
repetitiveness and negativity. Neither of these features is handled in the lattice struc-
ture of fuzzy sets. In the case of repetitive information, the max-min operators are
noninteractive. Triangular norms, in contrast to max-min operators, cope with repet-
itive information. Nevertheless, negativity still creates problems in lattice-like struc-
tures (structures with max-min operators and s-t norms). An alternative approach to
uncertain information processing is presented in this paper. This approach is based on
the extension of fuzzy sets created by new—arithmetic rather than logic—operators,
called a-p-v operators. The a-p-v operators create the linear space of fuzzy sets and
the ring structure of fuzzy sets instead of the lattice structure created by max-min
operators or the lattice-like structure created by triangular norms. Both repetitive
and negative kinds of information are handled in the structures introduced in the
paper.
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The a-p-v operators are applied to two example problems: fuzzy reasoning and
fuzzy neural networks. Those two topics are similar from the mathematical point of
view. Both can be modelled by fuzzy relational equations and, because of this, max-
min operators and triangular norms applied in those two topics create similar problems
related to repetitive and negative kinds of information. A-p-v operators, developed
in this paper, remove these problems, and also give control over data aggregation.

The paper gives a general approach to processing uncertain information handled
by a-p-v operators. This subject is in its infancy and needs detailed studies in both
theoretical and practical aspects. It seems that a-p-v operators give a new perspective
on the uncertainty. The question as to how fertile this perspective is could be answered
only if further studies on this subject were performed.
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