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AUTOMATED CONSTRUCTION OF POSSIBILISTIC
NETWORKS FROM DATA'

Jorc GEBHARDT*, RupoLrF KRUSE*

Possibilistic networks constitute a promising framework for efficient treatment of
uncertain and imprecise information in knowledge-based systems. In this paper,
we propose a new method for induction of the structure (the qualitative part)
and the attached possibility distributions (the quantitative part) of a possibilistic
network from a database of sample cases that may contain imprecise or missing
values. It turns out that a modified random-set approach to the semantics of
possibility distributions is adequate to provide a possibilistic interpretation of
the databases under consideration. Since constructing a possibilistic network
can be viewed as a generalization of the structure identification problem in re-
lational data, we have to overcome well-known complexity problems. Therefore
we present an efficient Greedy search structure induction algorithm for possi-
bilistic networks that has successfully been applied to construct a non-trivial
network of practical interest from a given database.

1. Introduction

One of the major problems in handling imprecise and uncertain information in
knowledge-based systems is the problem of finding a computationally appealing de-
scription of the available data, which is both economical in using storage and supports
efficient propagation techniques. The existence of such a description strongly depends
on whether dependencies among the data items are decomposable into local, more ba-
sic dependencies. The relational database model (Maier, 1983; Ullman, 1988; 1989)
has tackled this problem by storing the database as a lossless join decomposition,
namely a collection of projections, from which the original relation can be recon-
structed. Recent work in this field concerns structure identification in relational data
(Dechter and Pearl, 1992) and the clarification of cross-references to the solution
of constraint-satisfaction problems (Dechter and Pearl, 1988; Gyssens et al., 1994).
Although various applications in artificial intelligence, database theory, graph theo-
ry, and operational research are connected with decomposition problems, very few
general results have been established so far. The most advanced deliverables re-
fer to the induction of Bayesian networks (Lauritzen and Spiegelhalter, 1988; Pearl,
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1988) from statistical data. For an overview, see (Buntine, 1994). The correspond-
ing algorithms are based on linearity and normality assumptions (Pearl and Wer-
muth, 1993), the extensive testing of conditional independence relations (Spirtes and
Glymour, 1991; Verma and Pearl, 1992) or Bayesian approaches (Cooper and
Herskovits, 1992; Lauritzen et al, 1993). Some crucial problems regard-
ing these methods are their computational complexity, their limited reliabil-
ity unless the amount of data is enormous, and strong presuppositions like
the requirement of an ordering of the nodes and a priori distribution as-
sumptions. In order to overcome the complexity problems, some heuris-
tic approaches like, for example, the K2 Greedy algorithm (Cooper and
Herskovits, 1992) and the combination of conditional independence tests with
Bayesian learning (Singh and Valtorta, 1993) have been proposed. But even find-
ing a most likely belief network structure Bg, given a database D of samples, often
turns out to be not sufficiently informative if the probability P(Bgs | D) is too small

Bayesian networks provide a well-founded normative framework for knowledge
representation and belief updating in the presence of uncertainty in precise data, but
extending pure probabilistic settings to the treatment of imprecise (set-valued) infor-
mation in general restricts the computational tractability of inference mechanisms.
Therefore it seems to be convenient to discuss appropriate strategies of information
compression and to investigate other uncertainty calculi in order to support efficient
propagation without essentially affecting the expressive power and correctness of de-
cision making procedures. Information compression is acceptable for systems that
perform approzimate reasoning, justified by a weak sensitivity with respect to an im-
perfect modelling of the system’s behaviour.

A quite general approach to uncertain reasoning under imprecision in the so-
called wvaluation-based networks which can be applied, for example, to upper and
lower probabilities (Kyburg, 1987; Walley, 1991; Walley and Fine, 1982), Dempster—
Shafer theory of evidence (Dempster, 1967; 1968; Shafer, 1976; Shafer and Pearl,
1990; Smets and Kennes, 1994), and possibility theory (Dubois and Prade, 1988;
1991; Zadeh, 1978) has been proposed in (Shenoy, 1989; 1993; Shenoy and Shafer,
1990) and implemented in the software tool PULCINELLA (Saffiotti and Umkehrer,
1991). Nevertheless, quantitative learning of distribution functions as well as qual-
itative learning of dependency structures in the non-standard calculi of uncertainty
modelling has not been studied in much detail yet.

In this paper, we focus our attention on the possibility theory as a promising
framework for the information-compressed representation of databases of (imprecise)
sample cases. Compared to the alternative uncertainty calculi that we have mentioned
above, it is the simplest one in order to support the development of efficient inference

and learning algorithms.
As an example for the addressed type of imperfect information consider the

database given in Table 1. It shows five variables (attributes) X, Xz, X3, Xy,
and X5 that describe the state of some system. X;, X3, and X4 denote three pos-
sible faults, whereas X3 and X; stand for two possible findings that are influenced
by one or more of the faults. The domains Q) = Dom(X;), i = 1,...,5, of the
variables are defined as Dom(X;) = {0, 1}, where ‘0’ reflects the absence, and ‘1’ the
presence of the corresponding item.
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Tab. 1. A database D of cases.

[ case | X1 | X2 | X3 | Xa Xs l
1 1 0 1 1 1
2 lol1|o]|1|{0ny
3 0 1 1 * 0
4 0 1 0 0 1
5 1 0 1 1 0
6 0 1 1 0 1
7 0 1 1 1 1
8 0 1 0 1 0

Our database consists of eight representative sample cases that specify the pre-
vious states of the system, and each of them can be formalized as a tuple w; € Q,
taken from the universe of discourse Q= QW) x ... xQ®),

For example, the first case of the database is a precise specification of the system
state wy, stating that X3 =1, Xo =0, X3 =1, X4 =1, and X5 = 1. The second
case is an imprecise (set-valued) specification of ws, given by X; = 0, X, = 1,
X3 =0, X4 =1, and X5 € {0,1}. Imprecision consists in the existence of at least
two alternatives that are both considered to be possible values of X5, while ignoring
the information contained in the rest of the database. The third case is a missing value
specification of ws, namely X7 =0, Xo =1, X3 =1, Xy = *, and X5 = 0, where
‘«’ stands for an unobserved value, which may be assigned based on the dependencies
that follow from the other cases.

Our aim is to use the database as general knowledge for an imperfect specification
of a system state wp € (@ that may be observed at a selected point in time. We call
wg the “current object state of interest.” The imperfection in using the database
for a specification of wy is due to uncertainty about the selection of sample cases
R C 0 that are correct specifications of wo (i.e. wp € R) and the nonspecificity of
imprecise cases (i.e. |[R| > 1). In the possibilistic setting, imperfection is described by
possibility distributions 7 : Q@ — [0,1], where n(w) quantifies the degree of possibility
with which the statement “w = wy” is regarded as being true.

Recent years of research have resulted in various proposals for the semantic back-
ground of a degree of possibility and possibility theory as a framework for reasoning
with uncertain and imprecise data (Dubois et al, 1993). From the viewpoint of
providing an adequate possibilistic interpretation of a database of (imprecise) sample
cases, it seems to be most convenient to introduce possibility distributions as one-point
coverages of random sets (Hestir et al., 1991; Nguyen, 1978), but to extend the under-
lying semantic background in comparison with pure random set theory (Gebhardt and
Kruse, 1993c). Related to this origin of possibility distributions, the major aim of our
paper is to develop concepts for an efficient induction of possibilistic networks from
data, which are families of possibility distributions on low-dimensional subspaces of
the universe of discourse, induced by a dependency hypergraph or a directed acyclic



532 J. Gebhardt and R. Kruse

graph (DAG) of causal dependencies. Aspects of knowledge propagation (focusing)
in possibilistic networks are not addressed here, but have been published elsewhere
(Gebhardt and Kruse, 1995b). For a comparison with probabilistic networks, see
(Gebhardt and Kruse, 1995a).

Following our introductory remarks, this paper is organized as follows. Section 2
proposes a general framework for the interpretation of databases with imprecise cas-
es. Our investigations start with the special problem of structure identification in
relational data. We present an approach which is rather oriented at knowledge-based
reasoning in causal constraint networks than the traditional decomposition techniques
from database theory. In particular, given a relation R as an imprecise specification
of wy, the basic idea is to search for a DAG G that minimizes the expected amount
of additional information needed beyond R, when the deductive reasoning scheme in-
duced by G is applied to identify or to reject an element of the universe of discourse
as the current object state wp. We present a theorem for computing such an optimal
DAG and an efficient algorithm for approximating it relative to a given class of DAGs.
Using the Greedy search method, the algorithm runs in time O(mn2r**1), where m
is the number of cases (|R| = m), n the number of variables, r the maximum car-
dinality of the single domains, and % the maximum number of parents of each node
in the DAG. This is a convenient result, since the underlying learning problem is
known as being NP-hard, so that the consideration of good heuristics is unavoidable.
In Section 3 we deal with an information-compressed possibilistic representation of a
database of sample cases and show in which way the results obtained for the relational
framework can easily be transferred to the more general possibilistic setting without
essentially affecting efficiency conditions. Note that the approach chosen of course
does not coincide with viewing a DAG as a directed independence graph in terms of
standard graphical modelling (Whittaker, 1990). Our main purpose is to define an
adequate heuristic for the efficient automated construction of a DAG G in order to
find a good decomposition of a possibility distribution with respect to the attached
hypergraph H(G), induced by the moral graph of G. Theoretical investigations on
the concept of a possibilistic independence graph, the proof of the possibilistic coun-
terparts of the well-known probabilistic factorization theorems of decomposition, and
inducing tightest hypertree decompositions of possibility distributions from data, can
be found in (Gebhardt and Kruse, 1996a; 1996b). Section 4 concludes the paper
with a summary, a discussion, and a report of an experiment that demonstrates the
successful application of our approach to the reconstruction of a non-trivial 22-node
network from a given database with 747 cases.

2. Structure Identification in Relational Data
2.1. Basic Issues
Starting with the presentation of a formal framework for the interpretation of a

database of imprecise sample cases, the aim of this subsection is to address some
basic issues concerning the special problem of structure identification in relational
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data. As an extension of the introductory example shown in Table 1 to the gene-
ral case, let Obj(X),...,X,) be an object type of interest, characterized by a set
V = {X1,...,X,} of variables (attributes) with finite domains 0 = Dom(X;),
1=1,...,7m.

The precise specification of a current object state of this type is then for-
malized as a tuple wg = (wél),...,w(()")), taken from the wuniverse of discourse
Q=004 .. x0™. Any subset R C Q can be used as a set-valued specifica-
tion of wg, which consists of all states that are possible candidates for wy. R is
therefore called correct for wg, if and only if wg € R. R is called imprecise, iff
|R| > 1, precise, iff |R| =1, and contradictory, iff |R| = 0.

Suppose that general knowledge about the dependencies among the variables
is available in the form of a database D = (D;)7, of sample cases. Each case
D, is interpreted as a (set-valued) correct specification of the previously observed

representative object state w; = (wj(-l), e ,wﬁ-")).

Supporting imprecision (non-specificity) consists in stating D; =
D jl) X oei X D;"), where D;’) denotes a non-empty subset of Q(?). We assume that
i
)

W'D € D;i) is satisfied, but no further information about any preferences among the

J
elements in Dg’) is given. When the cases in D are applied as an imperfect specifica-
tion of the current object state wog, then uncertainty concerning wy occurs in the way
that the underlying frame conditions, under which a sample state w; has been ob-
served and which we call the contest ¢; of w;, may only for some of the cases coincide
with the context on which the observation of wy is based. A complete description
of context ¢; depends on the physical frame conditions of wj, but is also influenced
by the frame conditions of observing w; by a human expert, a sensor, or any other
observation unit. For the following consideration, we make some assumptions on the
relationships between contexts and context-dependent specifications of object states.
In particular, we suppose that our knowledge about wo can be represented by an
imperfect specification

r = (V)PC)
C = {cl,...,cm}
7:C — P(Q)

’)’(Cj) ="D;, j=1...,n

with C denoting the set of contexts, y(c;) the context-dependent set-valued speci-
fication of w;, Pc a probability measure on C, and P(f2) the power set of .
Pc({¢}) quantifies the probability of occurrence of context ¢ € C. If all contexts
are equally representative and thus equally likely, then Pc should be the uniform
distribution on C.

We suppose that C can be described as a subset of logical propositions. The
mapping v : C — P(Q) indicates the assumption that there is a functional depen-
dency of the sample cases from the underlying contexts, so that each context c;
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determines uniquely its set-valued specification ~(c¢;) = D; of w;. It is reasonable
to state that ~v(c¢;) is correct for w; (i.e. w; € v(c¢;)) and of mazimum specificity,
which means that no proper subset of y(c;) is guaranteed to be correct for w; with
respect to context c;. Related to the current object state of interest, specified by
the (unknown) value wy € R, and observed in a new context c¢p, any ¢; in C is
adequate for delivering a set-valued specification of wy, if ¢y and c¢;, formalized as
logical propositions, are not contradicting. Intersecting the context-dependent set-
valued specifications v(c;) of all contexts ¢; that do not contradict ¢y, we obtain
the most specific correct set-valued specification of wy with respect to 7.

The idea of using set-valued mappings on probability fields in order to treat un-
certain and imprecise data refers to similar random-set-like approaches that were sug-
gested, for instance, in (Dempster, 1968; Kampe de Feriet, 1982; Strassen, 1964). But
note that for operating on imperfect specifications in the field of knowledge-based sys-
tems, it is important to provide adequate semantics. We addressed this topic in more
detail elsewhere (Gebhardt and Kruse, 1993a; 1993b). For the purpose of this paper,
the method of carrying out inference based on an imperfect specification I' of wq is
only of theoretical relevance, since simply given a database of (imprecise) samples,
it seems to be out of reach and in some sense also not intended to provide complete
descriptions of contexts. In Section 3 we will investigate how a possibilistic interpre-
tation of a database of sample cases supports well-founded information-compressed
reasoning without perfect knowledge of context descriptions.

In this section, we confine to a more elementary situation where the database
D= (Dj);f;l consists of pairwise disjoint cases of precise data. Formally speaking,
we state the following presuppositions:

(R1) Dj#D; forall jke{l,...,m}, j#£k

(R2) Dj={r;} forall je({1,...,m}

Additionally, as the first approach to structure identification in relational data, we
do not incorporate any uncertainty concept in our considerations. In this restricted
framework, there is of course no need for interpreting D as an imperfect specification
I' = (v,Pc) of wo, but it is sufficient to recognize that D induces the relation
R ={r1,...,mm} € Q that reflects the set of all observed dependencies among the
values of variables in V.

The detailed description of the underlying contexts as well as the frequency of
the occurrence of the same cases in D is ignored.

All relationships encoded by the tuples contained in Q\R are regarded as being
impossible for a correct specification of wy. R serves as the most specific set-valued
specification of wg, which means that wy € R holds for sure, but wy € R’ is not
guaranteed for any proper subset R’ of R. In order to make the dependencies con-
tained in R more evident, we have to establish a meaningful structure of R. This
problem is well-known in database theory, namely finding a decomposition £ of R
into lower-dimensional, more basic dependencies (Maier, 1983; Ullman, 1988; 1989).

From a purely qualitative point of view, a decomposition can be represented with
the aid of a dependency hypergraph (Berge, 1976) H = (V,£), where V is interpreted
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as a finite set of vertices and £ as a set of hyperedges, where each of them is a subset
of V. Furthermore, we suppose that the following conditions are satisfied:

(Hl) E#0 forall Ec€

H2) (JE=V
E€&
(H3) E¢E forall E,E' €&

Every hyperedge E € & reflects a significant dependency among the values of the
variables contained in E. Condition (H1) avoids empty hyperedges, (H2) ensures
that all variables are contained in the dependency structure, and (H3) assumes that
hyperegdes are reduced (skeletal), i.e. no hyperedge E is a proper subset of another
hyperedge E', since otherwise E' would already cover the dependencies that can be
expressed by E.

From a quantitative point of view, a dependency hypergraph H = (V,£), when
applied to a relation R, induces a constraint network Ng(R) over V, which is defined
as the family of nonempty relations

def
Rp = IIj(R)

with II% denoting the pointwise projection from QY onto QF. Let Q{*} be the
domain of the variable v € V. If W C V is an arbitrary subset of variables, then
QW 4t XoewQ, if W+#0
{e}, if W=490

is defined as the product of their domains, where the empty tuple e is the only
element of Qf.

Since Nz (R) specifies local dependencies among the values of the variables in
E € £, Ng(R) may be less informative than R. In particular, defining

rel (Nr(R)) = {we | VB e Mfw) € Rp}
as the set of all global dependencies in  that can be derived from Ny (R), we obtain
R Crel (NH(R))

Structure identification of R is the task of finding a dependency hypergraph H =
(V,&) such that

R =rel (NH(R))

holds. The induced constraint network Ng(R) is then called a lossless join decom-
position of R which describes or represents R.

Unfortunately there are some complexity problems concerning structure identi-
fication in relational data. If we are given a hypergraph H, then only in the cases
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where H is tractable (for instance, if H is a hypertree), one can (tractably) decide
whether rel(My(R)) = R. On the other hand, lossless join decomposition of a rela-
tion into a structure taken from a class of dependency hypergraphs turns out to be a
harder task, which is presumably intractable even in the cases where each individual
member of the class is tractable (Dechter and Pearl, 1992).

From database theory it is known that given a relation R and any arbitrary
hypergraph H, deciding whether rel(Ny(R)) = R, is NP-hard. A conjecture in
(Dechter and Pearl, 1992) claims that this result can be extended to the complete
hypergraphs

Ho=(V,&), &={BCPW)||E =4k}

Given a relation R and an integer k, we are therefore in general not in a position to
decide whether rel(Ny, (R)) = R in polynomial time.

At first glance, these results are not very encouraging, and there are only a
few efficient structure identification algorithms for quite special classes of constraint
networks. As an example, in the case of tree-structured constraint networks, it is
possible to use an algorithm which determines whether a given relation R has a
lossless join decomposition, and if the answer is positive, it identifies the topology
of the corresponding tree in O((|R| + log, n)n?) time (Dechter, 1990). Assuming a
uniform distribution on R, the underlying approach is based on a procedure for lear-
ning the maximum-weight spanning tree of a tree-structured Bayesian network from
data (Chow and Liu, 1968). It applies the Kullback-Leibler cross-entropy (Kullback
and Leibler, 1951; Shore and Johnson, 1980) for probability distributions in order to
quantify the strength of dependency between any two variables in the network.

Nevertheless, as a consequence of the above-mentioned crucial complexity prob-
lems in the general case, structure identification algorithms for relational data require
good heuristic search methods to be efficient. Since there is a very close relationship
between constraint satisfaction problems and the recognition of lossless join decom-
positions in relational databases, which is due to the common underlying structure,
namely a hypergraph, some results obtained in one of the two fields can lead to an
improvement in the other field. Recently some work has been done to make these
relationships explicit, and to show how a constraint satisfaction problem may be
decomposed into a number of subproblems that support the development of heuris-
tic solution strategies with an acceptable worst-case complexity bound (Dechter and
Pearl, 1989; Gyssens et al., 1994).

2.2. A New Approach to Structure Identification

We now want to investigate the problem of structure identification in relational data
from a different point of view, which is more oriented to reasoning in causal networks
than dependency hypergraph representations. We refer to the situation when depen-
dencies among the variables can be represented by a directed acyclic graph (DAG)
G = (V,E) with V as a finite set of nodes and E CV xV as a set of arcs. Any arc
(v,v") € E signifies the presence of a direct causal dependency of the values of the
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variable v/ on the values of the variable v. Since there are no cyclic dependencies in
a DAG, it can be seen as a scheme for deductive reasoning from causes to effects. In
the following, we shall study the corresponding reasoning process in more detail.

Definition 1. Let V = {X1,..-,Xa} be a set of variables, 0 = Dom(X;),
i =1,...,n, their finite domains, and 0 =00 x ... x Q") their common universe
of discourse. Furthermore let R C Q be a nonempty relation and G = (V,E) a
DAG. Forany W CV and X € VAW, define

LP[R;W — X] . oW o potth

(p[R;W—»X](w) o R(XIW:w), where

def
R(X |W = w) ! H{VX}({W' € R| IV, (W) = w})
For any X € V, let
def
parg(X) = {Y eV |(Y,X)¢€ E}
" denote the set of all parent nodes of X. Then the family
def
No(®) (e[Ripare(0) = X1)
is called the causal constraint network induced by G and R.

Tf parg(X) # 0, then R(X | parg(X) = w) is the set of those values of effect X
that remain possible, if the direct causes Y € parg(X) of X are instantiated with
the values H’E;‘f(x)(w), which means that all the variables in parg(X) are known.
Referred to the current object state wo, these instantiations induce that the equality
W= HXMG ( X)(wg) holds. R(X | parg(X) =w) is the most specific correct set-valued
specification of H}’X}(wo), i.e. R(X | parg(X) = w) is correct for H‘{/X}(wo), but this
correctness property is not ensured for any proper subset of R(X | parg(X) = w).

If parg(X) = 0, then the variable X does not occur as an effect of any other
variable. In this case @[R;0 — X ] collapses to a function with no arguments, and
we obtain R(X | parg(X) =¢) = H‘{/X}(R), which in fact is the set of all values of
X that can be derived from R without any instantiation.

Example 1. Let V = {X1, X2} be a set of two variables (attributes) that describe
the state of some system. Let Q) = Dom(X;) = {0,1}, 02 = Dom(X3) =
{0,1,2} the underlying domains, and Q = 0 0@ = {(0,0),(0,1),(0,2),(1,0),
(1,1),(1,2)} the common universe of discourse. Additionally, let R = {(0,0),(0,1),
(1,1),(1,2)} be the most specific correct set-valued specification of the current state
wp of interest. Suppose that the dependencies among X1 and X, are represented
with the aid of the DAG G = (V,E), E = {(Xa, X,)}, saying that X; can be viewed
as a direct cause of Xo. G and R induce the causal constraint network

Ne(R) = (9l 0 — Xil,plRs {2} = Xl

which indicates how knowledge about X, restricts the possible values of Xo.
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Let wy = (wél),wgz)), and assume that wél) = 0 is known. With respect to

Ne(R) we obtain
o[ Bspar(Xs) = Xs] (0) = o[[R: {X1} - %] (0) = {0,1)

as the most specific correct set-valued specification of wé” that follows from R and
the additional information wél) = 0. We thus infer that w(()z) =0 or w(()z) =1, while
wéz) = 2 has to be rejected.

Note that the specification {0,1,2} is also correct for w((,Q) but that it does
not satisfy the maximum specificity criterion. On the other hand, any proper subset
of {0,1} may not be correct for w((f). Choosing, for example, {0} C {0,1} and
wo = (0,1), the condition wy € R and w(()l) = 0 holds, but the specification {0} is
not correct for w(()z). B

Using the concept of a causal constraint network, we now establish the above-
mentioned deductive reasoning scheme. Let < be a topological ordering of V, i.e.
all nodes v,v' € V with v < o' satisfy the condition (v',v) ¢ E. Suppose that
vy < vz <...<wp reflects this ordering. For any w € Q we want either to identify
w as the current object state wy (w = wy € R) or to verify w #wo and w ¢ R by
marking those variables v;, i = 1,...,n, for which HVW (w) turns out to contradict
the available general knowledge of all possible object states encoded by R, given the
instantiations wi¥?} = H}’},}(w) for all direct causes (parent nodes) Y € parg(v;).

Scheme 1. Pseudocode of a deductive reasoning scheme for identifying or rejecting
any w € 2 as the current object state wg, given a causal constraint network Ng(R).

for 1:=1 to n do begin

assign X :=wv; and calculate ®; := R (X | parg(X) = Hgarc(x)(w)>;

(the topological ordering of V' ensures that parg(X) is a set of already instan-
tiated variables)

if &, #0

then provide further information such that H}/X}(wg) is identified within
the set ®; of remaining possible instantiations of X , Or H}’X}(w) #
HYX}(LU[)) is recognized

end

if (®;=0) or (H}/X}(w) # ng}(wg))

then mark X as a variable where an erroneous instantiation has been detected
(w # wo)

end

end
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The amount of information that has to be added in order to identify H}/w}(wg)

within the set ®; of possible alternatives can be quantified by H(®;), where H
denotes the Hartley measure of information (Hartley, 1928).

For any non-empty finite set A,

def
H(A) = log; |4

is the number of elementary propositions (measured in bits), whose truth values must
be determined for the specification and thus the identification of a single element in
the reference set A.

Note that in the case ®; = @, there is no need for adding further information,
since no possible alternative instantiations of v; exist. We therefore define

HO) E o

Example 1. (continued) Let w = (wél),wgz)) = (0,1). We want to identify w as
the current object state wy = (w1, w®). The application of Scheme 1 to the node
ordering X; < Xy yields:

1. &1 = R(X, | parg(X1) = €) = Iy y(R) = QY = {0,1}, where parg(X1) =0
and II§ (w) = ¢.

2. The amount of information needed in order to identify w[()l) =w® =0 in the
set ®; of possible alternatives is H(®;) = log, |®1| =1 bit.

3. & = R(Xs | parg(X2) = 0) = {0,1} ¢ @ = {0,1,2}, where parg(X;) =
{X1} and IIYy y(w) = 0.

4. The additional amount of information for identifying w((,z) =w® =11in &, is
H(®,) =log, |P2| =1 bit.

Hence, using the deductive reasoning scheme induced by G, the total amount of
information needed in order to identify w as the current object state wy is 2 bits.

Let w = (w®,w®) = (0,2). Then foz}(w) =2 ¢ &, = {0,1}, and we mark
X, as a variable where an erroneous instantiation has been detected. This implies
w ¢ R and therefore w # wy, so that w is rejected as the current object state. [ |

Based on Hartley information, we measure the nonspecificity of Ng(R) with
respect to w € €, namely the total amount of additional information (beyond R)
that is necessary either to identify w as the current object state (w = wq) by carrying
out inference in the presented deductive reasoning scheme, or to mark all variables for
which the reasoning process provides a contradiction (w # wp, w ¢ R). We summarize
these ideas in the following definition.
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Definition 2. Let G = (V,E) be a DAG, R C Q a non-empty relation, and
Ng(R) = (p[R;parg(X) — X])xev their causal constraint network. Then, for any
weE N,

def

Nonspec[Ng(R)|(w Z H(R (X | parg(X) = HgarG(X)( )))

XeV

is called the nonspecificity of Ng(R) w.r.t. w.

While interpreting Nonspec[Ng(R)] : 2 — R as a uniformly distributed random
variable,

E(Nonspec[./\fc( ) |Q| ZNonspec[N'c( N(w)

is the ezpected nonspecificity of Ng(R).

The concept of the expected nonspecificity of a causal constraint network is
helpful for inducing an optimal DAG G that minimizes EF(Nonspec[Ng(R)]) relative
to R and a chosen class of DAGs. Our assumption that Nonspec[Ng(R)] is a uni-
formly distributed random variable coincides with the a priori state of knowledge
that wp = w is equally likely for all w € Q.

The following algorithm constructs a DAG G that is optimal relative to a class
of DAGs that we will specify in more detail afterwards.

Algorithm 1.
Input: A non-empty relation R C 2 and a number k € N.

Output: A DAG G = (V, E) for the induction of a causal constraint network Ng(R)
that satisfies |parg(X)| < k for all X € V and reflects significant causal
dependencies in R.

V*:=V; E:=0
while V* # ( do begin

select a node X € V* and a set W C V of possible parent nodes (X ¢ W,
|[W| < k) such that the DAG property of G is not affected, if the arcs (Y, X)
for all Y € W are added to G, and the quantity

m(W, X) = | Z H(RX]W—w))

wEQW
is minimized.
E=Fu{V,X)|YeW}
V* = V:\{X}

end
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The numbers m(W, X) quantify the degree of independence of X from the varia-
bles in W. In this context we want to distinguish two different kinds of independence
concerning the treatment of imprecise data, namely the concepts of strong and weak
independence.

X is called strongly independent of W relative to R, iff R does not help us to
leave the state of total ignorance about the value of X (i.e. v {x (wp) € O1X}) when
any additional knowledge about the values of the variables in W} becomes avalla.ble
On the other hand, X is called weakly independent of W relative to R, iff learning
something about the values of the variables in W does not further restrict the set of
possible values of X.

Formally speaking, X is strongly independent of W relative to R, iff
VweQW:R(XH/V:w) = X}
and X is weakly independent of W relative to R, iff
Vwe Q7 R(X | W = w) = Yy, (R)

Strong independence thus implies weak independence, whereas the converse is not
true.

If we define
m(W, X) .
| ey, it >
m* (W, X) = { HOX))
1, iff X =1

then the quantity m*(W, X) is the degree of strong independence of X from the
variables in W relative to R.

The minimum value m*(W,X) = 0 reflects a functional dependence, whereas
the maximum value m*(W, X) = 1 characterizes strong independence as the weakest
form of relational dependence.

In a similar way,

m(W, X) _
ma W, X) % | H o (R)’ iff [T}y, (R)| > 1
1, iff |H¥X}(R)| =1

quantifies the degree of weak independence of X from the variables in W relative
to K.

Note that weak independence coincides with strong independence when referred
to the restricted universe of discourse

def
0= IH{X } (R)

From this point of view, there is in fact only one underlying concept of independence,
which may be applied to different universes of discourse. Whereas weak independence
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refers to the dynamics of knowledge expansion, strong independence is rather oriented
to the static original universe of discourse chosen for the initial state of total ignorance
about wpy. For this reason, m.(W, X) should be preferred in the case where we
are searching for a decomposition of a relation, but using m*(W, X) has obvious
advantages when we want to quantify the nonspecificity of a relation relative to €.

For our purposes, we do not need any of the two independence concepts in an
explicit way, but we only use the weights m(W, X). The following theorem shows
that these quantities are adequate in order to determine an optimal DAG for a given
relation R.

Theorem 1. Using the weights m(W, X) as defined in Algorithm 1, we have
E(Nonspec[N'g(R)]) = Z m(pa.rG(X),X)
Xev

With respect to the above theorem, it is quite easy to check the optimality of
a DAG relative to R. On the other hand, it does not provide an efficient procedure
to construct an optimal DAG. Therefore we study the heuristic search method of
Algorithm 1 concerning the optimality of the output DAGs. As a preparation we
introduce an additional concept:

For any DAG G = (V, E), let cons(G) denote the transitive hull of E, namely
the smallest subset of V' x V such that the conditions

(T1) E Ccons(@)
(T2) (X,Y) € cons(G) and (Y, Z) € cons(G)
implies (X, Z) € cons(G)
hold.

The set cons(G) specifies a partial ordering of ¥V and thus all constraints for
a linear node ordering that follow from the topology of G. We say that a DAG
G' = (V,E') satisfies the node ordering constraints of G, iff cons(G) C cons(G").

Let
def
Gu(V) & {G* = (V,E*) | G* DAG and VX € V : | parg. (X)| < k}

The next Theorem clarifies that the optimality of any output DAG G € Gx(V) of
Algorithm 1 is relative to the subclass of Gi(V) that satisfies the node ordering
constraints of G.

Theorem 2. Let G be a DAG that is constructed by application of Algorithm 1.
Then

E(Nonspec[Ng(R)]) = min {E(Nonspec[./\/gr (R)]} | G' € Gi(V) and

cons(G) C conS(G')}
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Note that the time complexity of an efficient deterministic implementation of
Algorithm 1 is O(mn*+1r*+1) and therefore it is polynomial with respect to n,
where 7 denotes the maximum cardinality of the single domains. The fact that
optimality is only reached relative to a specific class of DAGs is not surprising, since
we already emphasized that, due to the complexity problems of a general solution,
good heuristics (as proposed by our strategy of minimizing the expected nonspecificity
of deductive reasoning in a dependency DAG) have to be considered in order to reach
efficiency.

Any DAG G = (V,E) that is obtained as an output of Algorithm 1 or with the
aid of Theorem 1 can be used to define a dependency hypergraph H(G), induced by
the moral graph of G, which is

HG) = (i), &% {{X}upara(X)| X €V}

and thus a constraint network Np(g)(R) such that R C rel(Mp(g)(R)) holds. Hence,
if R is a correct (set-valued) specification of wo, then rel(Ng(g)(R)) is correct for wo,
too. For this reason rel(Ny(g)(R)) may serve as an approximation of R, and the
distance |rel(Np(g)(R))| — |R| as a measure of the approximation quality. It is
near at hand that there should be a strong relationship between this distance and the
expected amount E(Nonspec[Ng(R)]) of information to be added to Ng(R) in order
to identify or to reject any element w € R as the current object state. But it is not
clear to us at the moment in which cases a DAG G minimizes E(Nonspec[Ng(R)])
when Np(g)(R) is alossless join decomposition of R, because the concept of expected
nonspecificity is more oriented to reasoning tasks than structure identification. It is
also not obvious in which way decreasing values E(Nonspec[Ng(R)]) lead to relations
rel(Mp(c)(R)) that are tighter approximations of R. Presumably, optimal results can
only be reached when H(G) is a hypertree.

Nevertheless, the results obtained in the following example, and especially the
success of using an extension of the presented concepts to the more complex problem
of inducing structure in the possibilistic setting that we will introduce in the next
section, confirm the presumable power of our approach.

Also consider that Algorithm 1 is based on a simple ad-hoc search method that
may be improved in various directions, one of which refers to the node selection
process, when the set of nodes X that minimizes m(W, X) consists of more than
only one node. Anyway, other techniques of minimizing E(Nonspec[Ng(R)]) can be
used. '

Constructing tight approximations of R from an efficiency point of view leads
to the development of Greedy search algorithms. One example is to compute Wi(W)
for all X €V, satisfying ’

m(w,(X),X) = min {m(W,X) | W CV,[W| <L, Wima(X) C W}
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where Wy (X) & @, starting with ! = 1, and terminating the iteration after calcula-
ting Wy (X) without affecting the DAG property of

G =V,E), EZ {(Y,X) |X€eVandY e W,(X)}

Note that this algorithm has a nice time complexity of O(mn2rk+1),

An additional strategy of a Greedy search algorithm could avoid an increasing
number of parent nodes, whenever the decrease of expected nonspecificity, connected
with the addition of one more node, does not exceed a predefined threshold.

We now summarize the main ideas discussed in this section with the aid of a
small example of inducing structure from relational data. The calculations carried
out in this example are easy to follow. An extension will be presented at the end of
Section 3.

Example 2. With respect to our introductory example, let V = {X1, X2, X3, Xy,
X5} be a set of binary variables with domains Q(*) = Dom(X;) ={0,1}, i =1,...,5.
Suppose that there is general knowledge about dependencies among the values of these
variables encoded as the relation R C 2 C {0,1}® given in Table 2.

Tab. 2. A dependency relation R.

[ tuple | X2 [ X0 | s [ X [ X5 |
1 (1ot [1]1
2 o |1]o| 1|1
3 Jol1]1]1]o
4 o fl1]lofo]:1
5 |1 ]o|l1]1]o
6 o1 |1]o]:1
Tolo |11
8 {o]1]o]1]o

Let H = (‘/, S), defined by &= {{Xl,Xz},{Xz,X;;},{Xz, 74},{X4,X5}}, de-
note the dependency hypergraph that coincides with the tree-structured undirect-
ed graph in Fig. 1. Then H and R constitute the constraint network Ng(R) =
(Rg)Ece that consists of the relations shown in Table 3.

N (R) is alossless join decomposition of R, so that the equality rel(Ng(R)) =
R holds.

We now want to apply Algorithm 1 in order to get a DAG G = (V,E) as a
deductive reasoning scheme for R. We state that G is tree-structured and choose
R and k =1 as the inputs of the algorithm. The first step in constructing G is
the computation of the quantities m(W, X) for all W CV and X € V that satisfy
[W|<1 and X ¢ W. The corresponding results are presented in Table 4.

We apply Theorem 1 and realize that E(Nonspec[Ng(R)]) = 2.5 is satisfied
for each DAG G that minimizes the expected nonspecificity of its induced causal
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Fig. 1. A tree-structured dependency hypergraph.

Tab. 3. The relations of the constraint network Az (R).

Rixy,%2} Rix,,x3) Rixy,X4} Rix,,x5)
] [Bln] [mlx] [Flx)
0| 1 0| 1 0| 1 0| 1
110 10 1] 0 1] 0

1] 1 1|1 1|1

Tab. 4. The quantities m(W, X).

w X x| X | X | Xa | X5
0 11111
(X} | o | 0]05]05
(Xo} | 0| » |05]05
(X5} [05]05]| o |1
(X4} |05]05| 1 | o |05
(X5} | 1] 1|1 ]05] e

[

constraint network Ng(R) relative to the class G1(V) of all tree-structured DAGs.
Figure 2 establishes all dependency trees that assume this minimum value.

These trees coincide with the possible outputs of non-deterministic Algorithm 1.
One example of a sequence of iteration steps is presented in Table 5, while the resulting
DAG G and its attached dependency hypergraph H(G) in Fig. 3.
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Note that H(G) is the dependency hypergraph of all possible DAGs that may
be delivered by Algorithm 1. H(G) induces a constraint network Npy(g)(R) that
equals the lossless join decomposition of Table 3. Hence, the structure identification
problem of R has been solved successfully. ]

/I, ‘Yz \\\
74N
X3 Xy

Xs

Fig. 2. The topology of all dependency trees G that minimize E(Nonspec[Ng(R)]).

Tab. 5. Sequence of iteration steps in Algorithm 1.

' step | v select X | select W | m(W, X) | add to E I
1 {X1,X2,X3,X4,X5} X1 {Xz} 0 (Xz,Xl)
2 | {X2, X3, X4, X5} Xs {X4} 0.5 (X4, Xs5)
3 {XZ,X37X4} X3 {Xz} 0.5 (Xz,Xg)
4 {X2, X4} Xa {X2} 0.5 (X2, X4)
5 {X2} X2 0 1 —
Xa
X2
X3 Xa
Xs

Fig. 3. A tree-structured DAG as an output of Algorithm 1 and its attached
dependency hypergraph.
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3. Inducing Possibilistic Networks from Data

Our investigations have been s0 far confined to the problem of structure identification
in relational data. This section will extend our approach from relations to databases
and from tuples of precise values to imprecise cases.

We already proposed a framework for modelling imprecise and uncertain data
based on the concept of an imperfect specification T = (v, Pc) of the current object
state wo € O of interest, where 7 : ¢ — P() is a set-valued mapping from a set
of consideration contexts to the set of all possible set-valued specifications of object
states in Q, and Pc isa probability measure on C.

In our setting we choose C = {c1y.-->Cm} with ¢j, J = 1,...,™, denoting
the context that describes the physical and the observation-related frame conditions
that determine y(c;) as the most specific correct set-valued specification of the sample
object state wj. Pc({c;}) is the probability of occurrence of ¢; and thus it quantifies
the weight with which ¢; may also serve as the underlying context for specifying wq.

m

When we are only given a database D = (D;)7x1 of sample cases, where D; C
Q is assumed to be a context-dependent most specific specification of wj, we are
normally not in a position to fully describe the contexts ¢; in the form of logical
propositions. For this reason, it is convenient to carry out information compression by
paying attention to the context-dependent specifications rather than to the contexts
themselves. We do not directly refer to T = (v, Pc), but to its degree of a-correctness
w.I.t. any w, which is defined as the total mass of all contexts ¢; that yield a correct
context-dependent specification v(c;) of wo. If we are given any w € &, then I' =
(7, Pc) is called a-correct w.r.t. w, iff

Pc({cEC\wEW(C)})Za, 0<a<l

Note that, although the use of a probability measure Fc suggests disjoint contexts,
we do not make any assumptions about the interrelation of contexts. They may be—
with respect to the frame conditions that cause the observations—identical, partially
corresponding, or disjoint—we just do mot know. We add their weights, because
disjoint contexts are the «“worst case” in which we cannot restrict the total weight to
a smaller value without losing correctness. In this manner, a possibility degree is the
upper bound for the total weight of the combined contexts.

Suppose that our only information about wq is the a-correctness of T w.r.t. wo,
without having any knowledge of the description of the contexts in C. Under these
restrictions, we are searching for the most specific set-valued specification A € Q of
wg, namely the largest subset of Q such that a-correctness of T w.r.t. w is satisfied
for all w € Aq. It easily turns out that the family (Aa)agfo,1] consists of all a-cuts
[rr]a of the induced possibility distribution

7r:Q — [0,1]

ar(w) = Pc ({c eClwe 7(0)})
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where for any =, taken from the set POSS(Q) of all possibility distributions that can
be induced from imperfect specifications w.r.t. 2, the a-cut [r], is defined as

7)o {w€Q|7r(w)2a}, O<a<1

[0 = Q

Note that 7p(w) can in fact be viewed as a degree of possibility for the truth of
‘w=w": If mr(w) =1, then w € 7(c) holds for all contexts ¢ & C, which means
that w = w; is possible for all sample object states w;, j =1,... ,m, so that wy = w
should be possible without any restriction.

If 7r(w) = 0, then w; = w has been rejected for wj, § = 1,...,n, since
w & v(c;) is true for the set-valued specifications +(c;) of w;. This entails the
impossibility of wy = w, if the description of the context ¢, for the specification of
wo is assumed to be a conjunction of the descriptions of any contexts in C.

If 0 < wr(w) < 1, then there are contexts that support wy = w as well as
contexts that contradict wg = w. The quantity 7r(w) reflects the maximum possible
total mass of contexts that support wy = w.

It has to be emphasized that in the special case of precise data (i.e. lv(e)] =1
for all ¢ € C), the possibility distribution 7 formally coincides with a probability
distribution on ), but note that its interpretation is quite different. This becomes
obvious when we compare the probability P(A) of an event “w, € A A CQ, with
the possibility II(A) of the same event: Since mr(w) is the degree of a-correctness
of I' w.r.t. w, II(A4) is defined as the maximum degree of a-correctness of T' w.r.t.
of any element contained in A. Hence, we obtain

II(A) L max (w)

whereas

Pa= Y Po(ig)

c€C: ANy (c)#0

quantifies the total mass of all contexts that support the considered event “w, € A.”

In case |y(c)] = 1 holds for all ¢ € C, P(A) can directly be related to the
possibility distribution p:

P(4) =" mr(w)

wEA

Note that in recent years several proposals for the semantics of the theory of possibility
as a framework for reasoning with uncertain and imprecise data have been made.
Among the numerical approaches, we like to mention the epistemic interpretation
of fuzzy sets (Zadeh, 1978), the axiomatic view of possibility theory using possibility
measures (Dubois and Prade, 1988), one-point coverages of random sets (Hestir et al.,
1991; Nguyen, 1978), contour functions of consonant belief functions (Shafer, 1976),
falling shadows in set-valued statistics (Wang, 1983), Spohn’s theory of epistemic
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states (Spohn, 1990), and possibility theory based on likelihoods (Dubois et al., 1993).
While ignoring the underlying interpretation of contexts, nr formally coincides with
one-point coverage of I', when it is interpreted as a (not necessarily nested) random
set. From a semantics point of view, operating on possibility distributions in our
setting may be strongly oriented to the concept of a-correctness. For an extensive
presentation of this background of possibility theory, we refer to (Gebhardt and Kruse,
1993b; 1993c). Special aspects of possibility measures for decision making in this
framework have been considered in (Gebhardt and Kruse, 1994). We do not go into
further details here, but focus our interest on the problem of generalizing the concepts
and results presented in the previous section to the possibilistic setting.

As the starting point for the definition of a possibilistic (causal) network and its
induction from a database D = (D;)7L; of (imprecise) sample cases, we suppose,
just as in Section 2, that all relevant dependencies among the variables in V' can
be represented in the form of a hypergraph H = (V,£), so that any most specific
set-valued specification R of the current object state wq is assumed to have a loss-
less join decomposition (Rg)gee. This property has an important influence on the
interpretation of D, caused by the decomposability of D into a family (Dg)gee of
databases, where each Dg provides sample cases of observed dependencies among
the variables contained in the hyperedge E. The database D = (D;E )7L, consists
of the set-valued specifications D¥ = II;(D;) of the dependencies 11} (w;) that are
part of the sample object states w;. Given the dependency hypergraph H and the
database D, the pair (D, H) may be applied in order to specify wy imperfectly.
Our knowledge about wy can be represented with the aid of a family (T'g)gee of
imperfect specifications T'g = (vg, Pg), where vz : Cg — B(QF) is defined on the

set Cg = {cf,...,cE} of those contexts cF that reflect the frame conditions for

def
specifying the sample dependency Iy (w;), ie., 75(cF) = DF.

Under the assumption that the contexts cf‘ in CF are equally likely, we choose
de
PE(cf) Xl 1/m for all j =1,...,m. The family Ng(D) = (nr;)Eee of the induced
possibility distributions 7, is called a possibilistic (constraint) network over V.

Stating ag-correctness of I'p w.r.t. II%(wp), we obtain Rp = [rry]a, as the
most specific correct set-valued specification of IT%(wp) that follows from the inter-
pretation of D and H. The specifications Rg can be combined with the constraint
network A = (Rg)ges as a lossless join decomposition of rel(N), which is the
resulting most specific correct set-valued specification of wy.

Calculating rel(A') requires not only the availability of the database D, but also
knowledge of the dependency structure H. In order to induce H from D, we refer to
our preparations in Section 2 and assume that the existing dependencies among the
variables can be represented by a DAG as a scheme for deductive reasoning from causes
to effects. The following definition is the straightforward extension of the concept of
a causal constraint network to the concept of a possibilistic (causal) network.

Definition 3. Let V = {Xj,...,X,} be a set of variables, Q) = Dom(X;),
i =1,...,n, their attached finite domains, and Q2 = QM) x ... x Q™) their common
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universe of discourse. Furthermore, let D = (D;)j.; be a database of (imprecise)
sample cases D; = D{") x ... x D\ with 0 # DS C Q) for j=1,...,m.

Let I' = (v, P¢), determined by v: C — B(Q), C = {c1,...,em}, and v(¢j) =
D;, j =1,...,m, be an imperfect specification of the current object state wy € 2 of
interest.

Let G = (V,E) be a directed acyclic graph. For any W CV and X € V\W,
define

(p[D;W - V] . 0 — POSS (Q{X})
(p[D;W — V] (w) f ™D (X |W = w), where

(X | W =w)(W') = Po({ceClwelll(1(0) and o' €My, (v(c))})

Then the family Ng(D) = (¢[D;parg(X) — X])xev is called a possibilistic causal
network for wp, induced by D and G.

Note that [1p(X | W = w)], is the most specific correct set-valued specification
of H}’X}(wo) that follows from D, given the instantiation of the variables in W (i.e.

IT}y (wo) = w) and the a-correctness of I'yy(x) W.I.t. H{@U{X}(wg).

When choosing an ordering v; < w2 < ... < v, of the nodes in V, the concept of
a possibilistic causal network is helpful for specifying an abstract deductive reasoning
scheme for the identification or rejection of any w € Q as the current object state
of interest. It extends Scheme 1 by the additional step of determining for all Z =
parg(X)U{X}, X € V, the total mass az of all contexts in C; whose description
does not contradict the description of the context cZ for the specification of the

dependency I1Y(wo) within the current object state wp. Let w' = H;"MG( xy(w) and
"= H}/X}(w). Since we assume that the descriptions of the addressed contexts are

not available, we only know that 0 < az < a(w',w”, X) holds, where
o', X) = 1 (X | parg(X) = w') (")
is the maximum possible correctness degree of I'z w.r.t. II4(w). Applied to any

w € {1, the reasoning scheme works as follows:

Scheme 2. Pseudocode of a deductive reasoning scheme for identifying or rejecting
any w € §) as the current object state wy, given a possibilistic causal network Ng(D).

for i:=1 to n do begin
assign X :=v; and calculate m; := wp(X | parg(X) = H;’arc(x)(w));
if my i 0
then determine the total mass «z of all contexts in Cz, Z = parg(X) U
{X}, whose description does not contradict the description of the context

cZ for the specification of IIY(wp); (note that I'z is az-correct w.r.t.
IT% (wo))
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provide further information such that either HYXi(wo) is identified within
the set ®; := [m]a, of remaining possible instantiations of X, or
IT{xy (W) # Yy (wo) is recognized.

end;

if (m=0) or (I{xy(w) # ITYxy(w0))

then mark X as a variable where an erroneous instantiation has been detected

(w # wo)

end

end

Assuming that all choices of az-correctness degrees in the intervals [0, a(w’,w”, X)]
are equally likely, we obtain the generalizations of Definition 2, Algorithm 1, Theo-
rem 1, and Theorem 2 to the possibilistic setting.

Definition 4. Let G = (V,E) be a DAG, D a database of sample cases, and
Ng(D) = (¢[D;parg(X) — X])xev their induced possibilistic causal network.
Then, for any w € Q and any family A(w) = (ei(w))™, of correctness degrees
o; that satisfy 0 < a;(w) < a(HparG Xi)(w) {X‘_}(w) X;), the quantity

Nonspec [Ng(D)] (w A( w)) E H ([QO[D; parg(X;) — Xi](w)] ai(w))

is called the nonspecificity of Ng(D) w.rt. w and A(w). If we assume uniform
distributions on © and all A(w), w € Q, then

(Nonspec [Na(D lm Z /A(w) Nonspec Ng(D)] (w,A(w)) dFp(w)
is called the expected nonspecificity of Ng(D).

Algorithm 2.

Input: A database D of sample cases and a number %k € N.

Output: A DAG G = (V,E) for the induction of a possibilistic causal network
Nc(D) that satisfies |parg(X)| < k for all X € V and reflects signifi-
cant causal dependencies in D.

V*:=V; E:=0;
while V* # 0 do begin
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select a node X € V* and aset W C V of possible parent nodes (X ¢ W,
|W| < k) such that the quantity

1
W X) = o ae

x a(w”w”’X);H (X | W =u' do
> i [rp(X | e

a(w ,w'", X
W' enW w'eq (X}, ( ’ ’ )
a(w’,w",X))O

is minimized without affecting the DAG property of G, when the arcs (Y, X)
forall Y € W are added to G;

E=EUu{(\,X)|YeW})
Vr=V\{X}

end

Note that m(W, X) is in analogy with the corresponding quantity used in Algo-
rithm 1 for the relational setting. It is straightforward to define the modified values
m*(W, X) and m.(W, X), respectively, and to talk about strong/weak independence
in the possibilistic framework. It turns out that weak independence coincides with
the property of non-interactivity that is well-known in possibility theory (Dubois and
Prade, 1988). For more details on an axiomatic and semantic treatment of possibilistic
independence, see (Campos et al., 1995).

Theorem 3. Using the weights m(W, X) as defined in Algorithm 2, we have

E(Nonspec [NG(’D)]) = Z m(parG(X),X)

Xev

Theorem 4. Let G = (V,E) be a DAG that is constructed by application of Algo-
rithm 2. Then

o ot 1101 = i (2 S 1 91) < 63)
cons(G) C cons(G’)}

The above theorems correspond to Theorems 1 and 2 that we obtained in the
more restrictive relational setting. Nevertheless, note that the modified definition of
the quantity m(W, X) in Algorithm 2 does not change essentially the tractability
of the structure induction problem under consideration. Hence, we obtain that an
efficient implementation of Algorithm 2 has a time complexity of O(mn*+1r#+1) and
the extension of the Greedy search algorithm presented in Section 2 runs efficiently
in O(mn?rkt!) time.
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Example 3. Consider the database D = (Dj)?zl of precise cases shown in Table 6.
D corresponds exactly to the relation R studied in Example 2, but it should be
recognized that D and R have different interpretations: R may be viewed as a
single correct set-valued specification of the current object state wy, whereas D is a
collection of precise specifications of sample object states wy,...,ws, obtained in a set
C of contexts ci,...,cs that may coincide with the context used for wy. Assuming
that all of these contexts are equally likely, D induces an imperfect specification
I' = (v,Pz) of wy that reflects the imprecision as well as the uncertainty in our
knowledge regarding the value wp. The definition of I is shown in Table 7.

Tab. 6. A database of precise sample cases.

sample case E X3 | X | X3 I Xy

: |

Dy
D,
Dy
Dy
Ds
D¢
Dy
Dy

1 0 1
0 1 0
0 1 1
0 1 0
1 0 1
0 1 1
0 1 1
0 1 0

X
1
1
0
1
0
1
1
G

= =

Tab. 7. Imperfect specification ' = (v, Pc) of wg.

context | weight | sample state | specification v(c;)
¢ Pc({c;}) wj of sample state w;
c 0.125 w {(1,0,1,1,1) }
c2 0.125 wa {(0,1,0,1,1) }
cs 0.125 w3 {(0,1,1,1,0) }
ca 0.125 w4 {(0,1,0,0,1) }
es 0.125 ws {(1,0,1,1,0) }
ce 0.125 we {(0,1,1,0,1) }
cr 0.125 wr {(1,1,1,1) }
cs 0.125 ws { (0,1,0,1,0) }

If we are given a dependency hypergraph H = (V, &), for example the one in
Fig. 4, we can calculate the induced possibilistic network Ng(D) = (1, )gee. The

corresponding possibility distributions #r, are listed in Table 8.
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Fig. 4. Dependency hypergraph H.

Tab. 8. Possibility distributions of the possibilistic network Ny (D).

WFE("‘J)

w Pl 23 [ {24 ] (45
(0,0) 0 0 0 0
(0,1) 0.75 0.25 0.25 0.25
(1,0) | 025 | 0375 | 0.25 | 0.375
(1,1) 0 0.375 | 0.5 | 0.375

Note that the choice of the dependency hypergraph H is connected with the
assumption that H signifies all relevant dependencies among the variables, so that any
most specific correct set-valued specification R of wg has a lossless join decomposition
Ny (R), which means that R = rel(Mg(R)). For this reason, each context ¢; can
be restricted to a context cf that only describes the frame conditions for specifying
the dependencies II%(w;), where E € £ is an arbitrary hyperedge. Table 9 shows
an example for such a restriction, namely the choice of E = {1,2}, and the resulting
imperfect specification I'g. Its induced information-compressed representation as the
possibility distribution IIp, is characterized in the two left columns of Table 8.

The a-cut [ar,]« is the most specific correct set-valued specification of IT% (wp)
that follows from D, if a-correctness of I'p w.r.t. Hg (wo) is assumed. As an example,
selecting a = 0.25 means that at least two of the contexts in Cg do not contradict
the context that is used in order to specify I} (wo). In this case, at least two of the
set-valued specifications vg(cF) of IIj(w;) are also correct w.r.t. IIj(wo), and we
obtain [mrglo.2s = {(0,1),(1,0)}, E = {1,2}. If we choose a = 0.5, only one of the
four candidates (0,0), (0,1), (1,0), and (1,1) for 1% (wp) remains possible, namely
(0,1), since we calculate [rrz]os = {(0,1)}, E = {1,2}.
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Tab. 9. Imperfect specification T'g = (vg, Pg) of ITg(wo), given E = {1,2}.

context | specification weight
cf e () Pe({c))
cf {(1,0)} 0.125
c? {(0,1)} 0.125
ct {(0,1)} 0.125
cf {(0,1)} 0.125
& {(1,0)} 0.125
c& {(0,1)} 0.125
cF {(0,1)} 0.125
cZ {(0,1)} 0.125

The selection of any family A = (ag)ges of correctness degrees, and the as-
sumption that, for all E € £, I'g is ag-correct w.r.t. IIg(wo), yields most specific
correct set-valued specifications [mr ]y if II%(wo) and thus the most specific com-
bined correct set-valued specification rel(([mrg]az)Ece of wo. An example for such
specifications [mr,)ay Of Ij(wo) is shown in Table 10.

Tab. 10. Specifications [#FE],,E of TI%(wo).

[ E I ap | [Trgles l
{1,2} | 0.5 {(0,1)}
(2,3} | 03 | {(1,0),(1,1)}
{2,4} | 0.4 {(1,1)}
{4,5} | 0.3 | {(1,0),(1,1)}

Given the involved correctness assumptions,
wn € el (frrglas) = {(0,1,0,1,0),(0,1,0,1,1),(0,1,1,1,0),(0,1,1,1,1)}

turns out to be the most specific correct set-valued specification of wy. Note that
the increasing degrees of correctness always lead to the non-decreasing specificity,
possibly resulting in a contradictory specification. Selecting, for instance, ag = 0.5
for all E € &, we calculate rel([rr,]ax)Ece = 0, because ag = 0.5 exceeds the total
mass of contexts that can be correct for 114 (wo), of E = {2,3} or E = {4,5}.

So far we have seen how to get most specific correct set-valued specifications of
wo, based on an available possibilistic contraint network Ny (D) = (71, )Ece and a
family A = (ap)gee of assumed correctness degrees of I'p w.r.t. H%(wo). From
a practical point of view, the problem refers to the fact that at our starting point
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X3 X4
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\

Fig. 5. Scheme of all optimal tree-structured DAGs that can be induced from D.

of considerations, we are normally given the database D, but no information on a
dependency hypergraph H and thus an adequate structuring of the data. For this
reason, our purpose is to induce H from D. As an approach to a solution to this
problem, we presented a method for constructing an optimal DAG G = (V, E) that
minimizes the expected amount of information to be provided beyond D in order
to identify or reject any w € Q as the current object state with respect to the
deductive reasoning scheme induced by G. In this connection, we assumed that there
are uniform distributions on ¢ and the possible families A of correctness degrees.
Theorem 3 helps us to find a DAG with the above-mentioned optimality. For this, we
need to compute the nonspecificity values m(W, X) forall X € V and W C V\{X}
that satisfy |W| < 1, where we again restrict ourselves to the class of tree-structured
DAGs. Table 11 lists the results of these computations.

Tab. 11. The nonspecificity values m(W, X).

v X || %] x]x]

0 0.667 | 0.667 | 0.8 | 0.667 | 0.667
{X1} — 0 0.5 | 0.375 | 0.875
{X2} 0 — 0.5 | 0.375 | 0.875
{X3} | 0417 | 0417 | — | 0.688 | 0.792
{X4} |0.375 | 0.375 | 0.875 | — 0.5
{Xs} | 0.708 | 0.708 | 0.792 | 0.417 | —

As a consequence of Theorem 3, we find
E( Nonspec [Ng(D)] ) = 0.667+0 + 0.5 +0.375 + 0.5 = 2.042
as the minimum expected nonspecificity of the possibilistic causal network Ng(D)

with a DAG G that is taken from the class G;(V) of all tree-structured DAGs
w.r.t. V. Figure 5 shows a scheme of all optimal trees.
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These trees G and their induced dependency hypergraphs H(G) coincide with
those obtained in Section 2, but note that we consider a richer semantic background in
the possibilistic setting that leads to more expressive nonspecificity values m(W, X)
than in the pure relational setting.

Up to now we confined ourselves to investigate an example of a database with
precise cases. But the approach that we introduced in this section together with its
background semantics is also appropriate for the treatment of imprecise cases and
missing velues. When inducing a structure from a database with missing values, the
major aim is to find this structure based on dependencies without missing values, and
then to complete the rest of the database by postulating the induced structure for all
sample cases. If imprecise cases are given, we do not intend to complete the database,
but rather consider all possible dependencies that may appear as a consequence of
knowledge expansion to more specific sample cases.

Referred to our example, suppose to have a simple modification of our database
D, saying that

either the value of X5 in case D, has not been observed (a missing value,
ie. D§5) is ignored),

or there is no preference regarding the possible values of X5 in case
D, (imprecise case, i.e. Dés) ={0,1}).

In the interpretation as a missing value, given a dependency hypergraph H = (V,§),
for all E € £ that contain Xj, the context c¥ is regarded as being absent for a
specification of the sample dependency II}(ws), and thus Cg changes to Cp =
{cf,cf,cf,...,cf} with Pg({c}) = % for all ¢ € Cp. This modification concerns
the nonspecificity values m(W,X) in the way presented in Table 12. Nevertheless,
the minimum expected nonspecificity E(Nonspec[Ng(D)]) remains unchanged, and

we get the same set of optimal DAGs.

Tab. 12. Modified nonspecificity values (missing value X5 in case Da).

L w [mwXs)| [ X [ m({Xs),X) ]
0 0.875 X3 0.708
(X1} | 0917 X, 0.708
(X2} | 0917 Xs 0.708
(X3} | 0917 X4 0.5
(X} | 0417 Xs —
{Xs} —

Turning over to the interpretation as an imprecise sample case, the contexts c¥
are present, but the context-dependent set-valued specifications of II} (ws) have to be
modified as shown in Table 13. The necessary changes in the possibility distributions
of the induced possibilistic network Ny (D) are illustrated in Table 14 and can be
compared with Table 8. Note that the occurrence of an imprecise case implies that
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Tab. 13. Modified set-valued specifications (imprecision in X5 of case Ds). -

l E ‘ ve(c3) }
{1,5} | {(0,0),(0,1)}
{2,5} | {(1,0),(1,1)}
{3,5} | {(0,0),(0,1)}
{4,5} | {(1,0), (1, 1)}

Tab. 14. New definition of Ny (D).

7rg(w)
w Plaas) {24 ] {45
(0,0) 0 0 0 0
(0,1) | 075 | 025 | 025 | 0.25
(1,0) | 0.25 | 0.375 | 0.25 0.5

3

f1 1) n n 27g n g n
\L; 1) u V.oio u.g u.

the possibility degrees in at least one of the possibility distributions do no longer sum
up to 1.

Again there is an effect of the nonspecificity values m(W,X), as illustrat-
ed in Table 15. The set of optimal DAGs does not change, but we now ob-
tain E(Nonspec[Ng(D)]) = 1.98. Note that a loss of specificity in the database
(Dg5) = {0,1} instead of Dgs) = {1}) may produce new possible dependencies among
variables, which can be weaker or stronger than the old dependencies. In our example,
observing a decrease of E(Nonspec[N¢g(D)]), more imprecision has led to a slightly
reduced expected nonspecificity of deductive reasoning in the possibilistic causal net-
work Ng(D), i.e. on average we will need about 2 bits of additional information for
identifying or rejecting any w € Q as the current object state under consideration.

|

Tab. 15. Resulting changes of nonspecificity values.

| w [mwWXs) | | X | m({Xs},X) |
) 0.643 X, 0.667
(X1} | 0938 X, 0.667
{(X:} | 0938 X3 0.917
{Xs} | 0917 Xa 0.417
(X} | 0438 Xs —
{Xs} —
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4. Application and Concluding Remarks

The main purpose of this paper is to provide concepts for the induction of possi-
bilistic networks from data, based on strong semantics of possibility distributions
in an extended random set framework. Considering the presented background, the
proposed view of possibilistic reasoning has been implemented in cooperation with
Deutsche Aerospace as a part of a project on data fusion preblems. We developed a
prototype version of the interactive software tool POSSINFER (Gebhardt and Kruse,
1995b; Kruse et al., 1994) for possibilistic inference in multidimensional universes of
discourse.

POSSINFER runs on SUN workstations under X-Windows and OSF-Motif, and
adapts representational features of HUGIN (Andersen et al., 1989) as a powerful tool
for knowledge propagation in Bayesian networks. Practical applications confirmed
that possibilistic networks have some advantages in the sense that they do not only
consider uncertainty, but also imprecision which is typically involved in expert opi-
nions, observations, and measurements. A common effective handling of these two
types of imperfect information needs an adequate concept of information compres-
sion. Possibilistic networks should therefore be applied only to systems that are not
sensitive with respect to the kind of approximate reasoning that has to be tolerated
when possibility distributions serve as information-compressed representations of the
underlying imperfect specification of a current object state of interest. This is by no
means a crucial restriction, since a significant number of industrial applications is in
fact not sensitive to approximate modelling. As an example, we mention the impres-
sive success of fuzzy control (Kruse et al., 1994; Zadeh, 1972) as an engineering-related
technique of information-compressed interpolation in vague environments (Klawonn
et al., 1995).

Referred to the structure induction strategy for possibilistic networks proposed
in this paper, we checked our approach with respect to a tutorial example that is dis-
cussed in CEC-ESPRIT III Basic Research Project DRUMS II (Defeasible Reasoning
and Uncertainty Management Systems). This example deals with the determination
of the genotype and verification of the parentage in the F-blood group system of
Danish Jersey cattle (Rasmussen, 1992). In the original version, the blood-type de-
termination problem was modelled by using a Bayesian network with the structure
shown in Fig. 6, and then implemented under HUGIN for daily use. The induction of
the network is supported by 747 sample cases for 9 variables marked as grey nodes.
Furthermore, there is additional expert knowledge concerning the relationships be-
tween the remaining variables. The expressive power of the example results from the
non-trivial, but managable network structure, the consideration of functional, rela-
tional, and uncertain dependencies, lots of missing values, and the existence of some
interesting exceptional relationships that are only weakly supported by the database.

The most convincing way of handling this example consists in a combined model-
ling of the two above-mentioned kinds of available information. In this paper, we
confined ourselves to structure induction from a database of samples. For this reason,
we extended the real database for the 9 marked variables to an artificial database for
all 22 variables, while generating the corresponding cases with the aid of the available
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Fig. 6. The blood-type example network.

expert knowledge. Nevertheless, when applying the presented Greedy search modifi-
cation of Algorithm 2 to the extended database, we could efficiently reconstruct the
DAG of Fig. 6 in O(mn2r¥*1) time without any erroneous link, except for those de-
pendencies, where a unique directing of arcs is not possible, since it is not expressable
in a database. As a simple example consider DAGs G with the same hypergraph
H(G) that is induced by their attached moral graphs.

It turned out that the induced possibilistic network, related to its quantitative
part, provides propagation results that are, in spite of the underlying information
compression, specific enough to obtain a decision quality similar to that of the corre-
sponding Bayesian network. A task of future research is to verify the benefits as well
as limits of possibilistic networks in comparison with probabilistic networks from a
less pragmatic point of view (Gebhardt and Kruse, 1995a). The first strict theoretical
results concerning the calculation of tightest hypertree decompositions of multivariate
possibility distributions can be found in (Gebhardt and Kruse, 1996a; 1996b).

Appendix

Proof of Theorem 1

For brevity, let p(X) f parg(X). Then,

1

E(Nonspec [N(;(R)]) P 2 I—Q-l ZQ Z;/lo%z |R (X p(X) = H;‘;/(X)(“")) |
weQ Xe
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1
Zm Z log2.R(XIp(X)=w)
XeV weNP(X)

Y m(p(X),X)

XeVv

Proof of Theorem 2
Let G € Ge(V) be an output DAG of Algorithm 1. Additionally, let G’ = Gi(V)
such that cons(G) C cons(G') is satisfied. For any G* € Gx(V) and any X € V, let

def

We-(X) & {W CV||W|<k and YY € W: (X,Y) ¢ cons(G*)}

Then parg(X) € We(X), parg/(X) € We(X), Wa(X) € Wg(X), and thus
parg (X) € Wg(X). Hence, due to the minimality of m(parg(X),X) relative to
We(X), we have

m(parG, (X), X) > m(parG(X),X)
and therefore

E(Nonspec [.N'G'(R)]) Thm- 1 Z m(parG,(X),X)
Xev

> Z m(parG(X),X)
XeV

Thm- 1 E(Nonspec [NG(R)])

The strategy of proving Theorems 3 and 4 is similar to that of Theorems 1 and 2,
respectively.
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