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FLC DESIGN FOR MULTI-OBJECTIVE SYSTEMS

TAESEUNG LIM*, ZEUNGNAM BIEN*

For a system with multiple objectives, designing the rule base for a fuzzy-logic
controller (FLC) is not an easy task. In particular, when the fuzzy if-then rules
are obtained from human operators, they can be inconsistent due to possibly
conflicting multiple objectives. In this paper, we propose an FL.C design scheme
that is suitable for this type of systems. The proposed controller consists of a
supervisory controller and many subcontrollers. Each subcontroller is a typical
FLC responsible for the corresponding control objective and the supervisory
controller coordinates the subcontrollers by adjusting the weights. Some lear-
ning mechanism is also introduced for the supervisory controller to enhance its
performance. Then, the stability issue of the proposed FLC is discussed when
it is used for a regulation system. By means of a simple example, the proposed
algorithm is shown to be effective for multi-objective systems.

1. Introduction

The fuzzy logic controller is often designed by directly modelling actions of the human
operator in a human-in-loop system (Seaman et al., 1994; Wang and Mendel, 1992).
However, when there are several control objectives to satisfy in this system, it is not
an easy task to design the rule base for a fuzzy-logic controller (FLC). Usually, when
the fuzzy if-then rules are obtained by interviewing the operators, we may end up with
several groups of rules satisfying partial control objectives instead of rules satisfying
all the control objectives simultaneously. This can be due to complexities and/or
uncertainties of the plant, i.e. when the plant is complex and uncertain, the human
tends to decompose the system into several subsystems in reference to the multiple
control objectives and tries to render control rules for each simplified subsystem. Once
some form of control rules is obtained for each subsystem, then the remaining task is
to design a coordinator by which the multiple groups of rules are fused appropriately.

The design problem for a complex system with multiple objectives has been dealt
with by a number of researchers. For example, a design scheme is presented in (Katai
et al., 1994; Yu and Bien, 1994) in which all the obtained groups of rules were simply
accumulated without discrimination to form a new rule base for inference. But this
technique may result in a biased control output toward some special control objectives
(Katai et al., 1994). The methods in (Kim and Kim, 1994; Tanaka et al., 1993; Wang
and Mendel, 1992) are based on assigning certainty factors or weights to the rules.
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But such an assignment is often a tedious and difficult task in case there are many
rules and/or in case a priori knowledge is weak.

In this paper, it is proposed that an FLC be designed to handle each control
objective and then the outputs of all sub-FLCs are combined by means of variable
weights. The weights are varied according to the results of evaluating the outputs
of the system. This strategy is adopted from the observation that human operators
usually change the priorities of the control objectives based on the outputs of the
plant. That is to say, an operator tends to consider each group of rules satisfying
each corresponding control objective as an independent module and then tries to
accomplish the multiple control objectives simultaneously by assigning some weight
to each module, not to each rule. The proposed FLC design scheme is a realization of
such a control strategy of human operators when there are multiple control objectives.

The paper is organized as follows. In Section 2, a design scheme of the proposed
FLC is first specifically described. Then, the structure of the proposed FLC and
the decision making mechanism for the weights are given. In addition, the scheme is
applied to an example system to show the effectiveness for multi-objective systems.
The stability of the proposed FLC for regulator problems is studied in Section 3.
Concluding remarks are given in Section 4.

2. Multi-Objective FLC Design

2.1. Problem Description

Consider the plant described by the state equation
#(t) = f(z(t), u(?)) (1)
y(t) = g(=(2), u(t)) (2)

where z(t) is an n-dimensional state vector, y(¢) is a p-dimensional output vector,
u(t) is a scalar input, and f : R* xR — R™ and ¢ : R* xR — R? are non-linear
mappings, respectively. Suppose there are M control objectives to satisfy:

Qi qu(x()au())) 1= 17257M (3)

where ¢;(-) denotes some functional of the function arguments z(-) and u(-). Then,
the control problem may be formulated as a multi-objective optimization problem to
find a control output which maximizes the M control objective functions Q;, i =
1,2,...,M in (3) with constraints (1), (2). Some authors investigated the problem
under the assumption that the multiple objective functions were combined in a linear
quadratic form (Guez and Ahmad, 1991; Kyr, 1988; Li, 1990; 1993). But, it is pointed
out (Sakawa et al., 1994; Seaman et al.; 1994); ) that it is often inadequate to represent
the objective functions only as a linear quadratic form.

To handle effectively such a case of multiple objective optimization problem, one
may adopt the concept of a satisfaction degree (Zimmermann, 1991) of each control
objective. Here, the satisfaction degree of a control objective is defined as the value
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of a criterion selected to represent the degree of how much the control objective under
consideration is satisfied (Sakawa et al., 1994). Let the satisfaction degree of the i-th
control objective be denoted by P; (i = 1,2,...,M), where P; € [0,1]. Then the
problem in this context is to design a controller such that the overall satisfaction
degree J is maximized, where

J= min P, (4)

1<i<M

Mathematically speaking, the above formulation becomes a max-min problem which
renders very few tractable solutions (Li, 1990; Sakawa et al., 1994; Seaman et al,

1994). This is due to difficulties in applying the existing multi-objective programming
methods to the problem.

As a practical way, a heuristic approach based on a reasoning paradigm and
knowledge base of the human operator in a human-in-loop system is considered in this
paper. The advantage of this approach is to lessen the computational complexities
efficiently and to deal effectively with the imprecise data caused by uncertainties
and/or non-linearities in the dynamic system.

For this purpose, in our approach it is necessary to obtain the if-then rules from
the human operator. However, it is not an easy task to obtain a control rule base
maximizing the overall satisfaction degree (4) at once since there can be inconsistencies
among the fuzzy if-then rules, and accordingly, it is not clear how some F; is given
more weight. For example, when interviews were conducted with the operators of the
overhead cranes installed in Pohang Iron and Steel Company in Korea (Yu and Bien,
1994; Yu et al., 1993), it was found that the operators could explain their behaviour
of positioning the trolley only without referring to reducing the swing at one time
while explaining their behaviour of reducing the swing only without considering the
positioning of the trolley (Yu et al, 1993). As a result, the fuzzy if-then rules for
overhead crane control were obtained as two groups of rules, i.e. the group of rules
for positioning the trolley and the group of rules for reducing the swing, respectively.
When the two groups of rules were simply integrated to form a rule base, we found
that the FLC based on such a rule base showed a biased control output toward one
control objective (Yu and Bien, 1994).

In (Kim and Kim, 1994) a design scheme is proposed in which constant but
different weights are assigned to all the rules. Since the performance of a control
system is determined by its collective rule base, it can be difficult and tedious to
assign a weight to each of the rules when there are many rules in the rule base and /or
there are complexities and uncertainties in the relationship between the rules and the
control objectives.

As a means to alleviate the difficulties mentioned above, it is proposed in this
paper that the obtained groups of rules be treated as modules and then some appro-
priate weight is assigned to each module. This approach is based on our experience
(Yu et al., 1993) of observing how the operators of the overhead crane achieve a satis-
factory performance by changing the weights between the objective of positioning the
trolley and that of reducing the swing according to the outputs of the plant. For
example, the operators tend to concentrate on the position control when the trolley
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is far from the target position and change their priority to the swing control as the
trolley gets near to the target position. Summing up, we may suggest the following
steps in designing an FLC for plants with M multiple objectives:

Step 1. Design independently sub-FLCs such that each of them maximizes the cor-
responding satisfaction degree for an objective.

Step 2. Determine the weights for M sub-FLCs. If w; denotes the weight for the
i-th sub-FLC (i =1,2,..., M), the control output u(t), which is also the input
of the plant, is a weighted sum of the control outputs w;(t), i =1,2,..., M, of
the sub-FLCs:

M
u(t) = w;iui(t) (5)
=1

The problem is now reduced to the determination of the weights w;, 1 =1,2,..., M,
for the sub-FLCs. In this paper, it is suggested to determine w; as a function of the
output of the plant, i.e.

Wy Ewl(y) :wi(yh y27--'7yP) (6)

The design scheme implied in (6) will be described in what follows.

2.2. Design Scheme

As shown in Fig. 1, the proposed multi-objective fuzzy-logic controller (MOFLC)
consists of a supervisory controller and subcontrollers. Each subcontroller is a typical
FLC while the supervisory controller is a coordinator to determine the weights for
the subcontrollers.

The weight decision part in the supervisory controller utilizes the output of the
plant as the input, and generates weights suitable for the current control situation as
the final output of the supervisory controller. The weight decision part is made up
of the rule base and the inference engine. The rule base is expressed in the following
linguistic description:

If y; is LSjR and ... and y; is L§,’3 and ... and y, is Lg,?, then w; is LS,f} and

. and w; is L(ui) and ... and wys is LS,QV,

Here, (1), 1=1,2,...,L, is the rule number; y; is the k-th output of the plant and
L,(,l,g , Lg,) are linguistic labels of y; and w; in the (I)-th rule, respectively. Mamdani’s
method (Mamdani, 1974) is utilized for the inference engine. Therefore, the weight
decision making part produces w?’s as follows:

/wic(wi) dw;

/ c(w;) dw; ,

W,

*
k2

i=1,2,...,M (7)
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Fig. 1. Structure of MOFLC.

0

e(w) =Vizz,.n {p) @A A () Auf), (wi)} (8)

v

where V is the max operator and A is the min operator; “(Ii),k (yz) is the membership

value of y} in Lg,? and u(Ll) » is the grade membership of w; in Lg,) The

Wi (w;)
quantity c(w;) is the union of the inferenced fuzzy sets when u{, y3,...,y; (the
crisp output values of the plant) are given. Furthermore, w}’s are the outputs of the

weight decision making part, which are the crisp values. If the sub-FLCs yield uj,

u3,...,Uy as crisp outputs, the final output of MOFLC reduces to
M
u= Zw:‘ ul (9)
=1

It is worth noticing that it is often difficult to determine the membership func-
tions of the weight decision rule base, and accordingly the self-organizing mechanism
(Pedrycz, 1993) is adopted for the learning part in the supervisory controller to modi-
fy the membership functions. As shown in Fig. 1, the performance table part, the
model part and the rule modification algorithm part in the supervisory controller con-
stitute a self-organizing controller (SOC). The learning procedure in the supervisory
controller is as follows:

First, the performance table part evaluates the control result according to the
satisfaction degree of each control objective.

Secondly, the following condition is checked:

min P; > a (10)

i=1,..,
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Here, a € [0,1] is the least satisfaction limit which the designer chooses. If condition
(10) is satisfied, i.e. if the current MOFLC achieves the overall satisfaction degree,
the procedure is stopped. If not, proceed to the next step.

Thirdly, the model part determines the membership functions to be modified.
They are the membership functions of the consequents in the rule base, i.e. the mem-
bership functions of weights. Let the shapes of the membership functions be those
of isosceles triangles, and A;; be the central value of the j-th membership function
of w; ( =1,2,...,J). To determine the membership functions to be modified, let
Povg = Zfil P;/M. Then P,,, offers a reference value to determine which of the
control objectives is accounted for modification. If P; < P,,4, then A;; moves to a
larger value. In the same manner, if P; > P,,4, then X;; moves to a smaller value.
The amount of change in JA;; is determined by

Pavg_Pi

PR 1 e (11)
ElAil ‘wag - Pli

i
where 7 is a learning gain.

Finally, the rule modification algorithm part utilizes §; as the input and updates
the central values of the membership functions of w; as follows:

)\ij,new = Aij + 511 (12)

where 7 = 1,2,...,J. In this manner, the satisfaction degree gets improved by
modifying the central values of the corresponding membership functions. The SOC
part modifies the membership functions of the weight decision rule base repetitively
if condition (10) is not satisfied.

2.3. Simulation Example

The proposed MOFLC is applied for the overhead crane control problem (Nakatsuya-
ma et al., 1994; Yamada and Fujikawa, 1989; Yu et al, 1993). The dynamics of the
overhead crane is as follows:

j:% (13)
é:—-gsmﬂl-i-a:COSG (14)

Here, f is the input force (N), z is the trolley position [m], @ is the angle of the
load [rad], ! is the length of the rope [m], M is the mass of the trolley [kg] and, g
is the gravity constant [m/s?].

In this model, it is assumed that M = 1kg, /= 1m and g = 9.8 m/s?. The first
control objective in this control problem is to reduce the swing angle from 0.7 rad to
zero with tolerance 0.05rad. The second control objective is to decrease the trolley
position from 1.0m to zero with tolerance 5cm.
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Firstly, we set the satisfaction degrees as follows:

1 for telapsed < tmin
t — tmi
Pi(telaP“d) = 1~ _@?)sed—tmnl for tmin S telapsed S tmax (15)
max ~ bmin :
0 for tmax < telapsed

Here, i=1,2; P, is the satisfaction degree of the position control objective and P»
is that of the swing control objective. Moreover, teiapses is the time elapsed after
“which each control objective remains within the tolerance limit, ¢min is 10s and tnyax
is 20s.

We are given two independent groups of rules based on the operator’s knowledge.
One group of rules is designed for positioning the trolley and the other group of rules is
designed for reducing the swing. Both are used in the rule base for the corresponding
subcontrollers. Figures 2(a) and (b) show the corresponding groups of rules — the
group of the position control rules and that of the swing control rules.

%N NB NM NS ZE PS PM PB 8 BNBNMNS ZE PS PM PB
NB |PB |PB | PB | PB| PM | PS |ZE NB | ZE | ZE | ZE |NB | ZE | ZE | ZE
NM ! pB|PB | PB|PM| PS |ZE | NS NM | ZE |2ZE |ZE |NM | ZE | ZE | ZE
NS | pp|pB|PM|PS|zZE | NS |NM NS | ZE | ZE |2E |Ns | 2E | ZE | 2E
ZE |PB|PM|PS|zE| NS{NM | NB ZE | 2E|ZE |2E | 2E | ZE | ZE | ZE
ps | PM|PS|ZE| NS |NM | NB | NB PS | 2E | ZE |ZE | ps | ZE | ZE| ZE
PM |ps | ZE[NS |NM | NB | NB | NB PM | ZE|2E {2E | PM | 2E | ZE| ZE
PB | zE | Ns | NM| NB | NB | NB |NB PB | ZE|2E |2E | PB | 2E | ZE| 2E

(a) Position control rules (b) Swing control rules

Fig. 2. Obtained groups of rules.

After the subcontrollers are designed based on these groups of rules, we design
the weight decision making part in the supervisory controller. There are two weights,
w; and wsg, to be determined; w,; is for the position controller and ws is for the
swing angle controller. We construct the weight decision rules whose antecedents
are the trolley position and the swing angle, whereas the consequents are w; and
wsy. The weight decision rule tables and the membership functions of the variables
are shown in Figs. 3(a), (b) and (c), respectively. Note that the fuzzy labels of the
weights are {SMall, MiDdle, BiG} and the initial central values of the membership
functions are {0.0, 0.5, 1.0}.

In addition, we set the parameters in the the block concerning the learning ca-
pability, i.e. the learning gain () is set to 0.02 and the least satisfaction limit () is
set to 0.7. Thus the design process is completed, and the MOFLC is put to control
the overhead crane under the above initial condition till condition (10) is satisfied.
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(a) w1 decision rule table (b) we decision rule table
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SM MD BG
0 wWeight 1

(c) Membership function

Fig. 3. Weight decision making part.

Figure 4 shows the control result at the first iteration. We obtain P, = 0.3, Py =
0.87, i.e. the overall satisfaction degree is below the least satisfaction limit 0.7. In
addition, P, is small in comparison with P, while P, is large. As a result of the
learning mechanism, the central values of the memberships of w; are shifted to a
larger value by 0.1. Also, those of the memberships of ws are shifted to a smaller
value by —0.1. After five iterations, the control result is shown in Fig. 5. Figure 5
shows that P; is 0.8 which is larger than the initial value, while P is as good as the
initial value. Moreover, the overall satisfaction degree becomes larger than the least
satisfaction limit. In comparison with the result obtained by applying the technique
in (Yu and Bien, 1994) in which the two groups of rules are simply added to form a
new rule base, the result of the proposed MOFLC is less biased and more satisfactory
with larger satisfaction degrees as shown in Fig. 6. In Fig. 7 the transitions of the
weight w; before and after the learning process are shown.
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Fig. 4. Initial control result.
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Fig. 5. Control result after learning.
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Fig. 6. Comparison of MOFLC with the previous FLC.
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Fig. 7. Transition of w;.

As can be seen from this example, for multi-objective control the control parame-
ters in the proposed sclieme can be determined without great difficulties by referring
to the expert’s knowledge and/or operator’s experience. The control system designed
in this way exhibits the multiple objectives satisfied impartially. For designing a real
control plant which often involves multiple objectives and for which some forms of
expert knowledge are available to handle uncertainty, the design method of MOFLC
proposed here can be a useful tool.

3. Stability of MOFLC and Regulator Problem

In this section, the stability of the MOFLC system is studied for a regulator problem.
Although there are several results (Aracil and Ollero, 1989; Bouslama and Ichikawa,
1992; Farinwata, 1994; Kitamura and Kurozumi, 1991; Tanaka and Sugeno, 1992;
Vidyasagar, 1993) concerning the FLC stability analysis, it is found difficult to apply
directly those results to the MOFLC system. In this paper, a sufficient condition for
the MOFLC stability is presented in the context of Lyapunov stability. This result
not only provides a tool for guaranteed stability, but also gives a hint to determine
the range of the weights to stabilize the MOFLC system.

3.1. Stability Checking Mechanism

Consider the following MOFLC system:

£(t) = f(z(t), u(?)) (16)
M

u(t) = Zwi u,-(t) (17)
=1

where it is assumed that f(-,:) is a continuously differentiable non-linear function
and that f(0,0) = 0, i.e. 0 is the equilibrium point of the MOFLC system. Here
w; is the weight for the ¢-th subcontroller in the neighbourhood of 0, and u; is the
control output of the i-th subcontroller. Suppose the control problem is to regulate
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all the outputs of the plant. Here, we have M control objectives, namely the i-th
_ control objective is to regulate the 4-th output as fast as possible (1 = 1,2,..., M).

Let us suppose that the control input of the i-th subcontroller w;(¢) utilizes
only the state relating the i-th output (z*) and its time derivative (") for feedback.
Then, it is typical that the mapping relation of the i-th subcontroller, denoted by
¢i(z*, &), has the following properties (Lee, 1990; Mamdani, 1974; Yi, 1994):

(i) The diagonal term of ¢;(z*, &*) is zero while the mapping is depicted in Fig. 8.
That is, there exist gi and g% such that giz® + gi#* = 0. In particular,
:(0, 0) = 0.

(i) The upper-left triangular term of ¢;(z*, ') is negative and the lower-right
triangular term is positive as shown in Fig. 8.

(iii) The farther the distance from the diagonal, the larger |¢;(z?, )| is.

X
NB NS ZE PS PB

NB NB NB NS NS
NS NB NS NS

PS NS

PB PS PS PB PB
&

Fig. 8. General control rule table.

If the rule base of the i-th subcontroller satisfies the above conditions, there exist
ki and kj such that ¢;(giz’, gi¢*) belongs to the extended sector (kio;, kio;)
(Kitamura and Kurozumi, 1991). Here, the extended sector is an extended version of
a sector used to specify a non-linear function in the two-dimensional space (Slotine
* and Li, 1991) and, in this paper, it refers to a limited space between two planes in the
tree-dimensional space to which the non-linear function ¢;(z?, &*) with two input
variables always belongs (Kitamura and Kurozumi, 1991).

For our problem, we have
kioi® < ¢igia’, gii')os < kjoi® (18)
where o; = giz® + gid* and
K = inf 20017 957) (19)
zi,&t g7t + goTt

oA 20
oiai 91T + G5 T* (20)

Here, kio; corresponds to the lower limit and kio; to the upper limit.
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keo 1 A1 (x!, ')
kici
Gi
(a) Extended sector (b) Profile

Fig. 9. Extended sector.

Figure 9 shows that the non-linear function is contained within the extended
sector. Since the MOFLC combines all the subcontrollers whose mappings belong to
some extended sectors, we can define the bounds corresponding to the mapping of
the MOFLC.

Definition 1. Let the mapping of the MOFLC be represented by ¥(w, z), where
M M o
U(w,z) = Z wiu; = Z widi (2, £*) = wd(x) (21)
i=1 i=1

Here, w = [wy wy---wy] and ®T(z) = [¢1 (2!, 2!) @o(2?,42) - dar(az™,2M)]. I
each ¢;(z*,4*) has the corresponding sector (kio;, kio;), then the bounds of MOFLC
are defined by the set {wk;z |i=1,2,...,2M}. Here, k; is determined according to
the combination of the two limits of each extended sector.

In general, if the bounds of the MOFLC are represented by {wk;z | i =
1,2,...,2M}, the following sufficient condition for the MOFLC stability is obtained.

Theorem 1. (Local Stability): Consider the MOFLC system z(t) = f(z(t),u(t))
with u(t) = ¥(w,z), where = is an n-dimensional state vector and u is a scalar. It
is assumed that f is continuously differentiable and f(0,0) = 0. Let

Suppose that there ezist bounds {wk;x | i = 1,2,...,2M} in the sense of Def. 1.
Let A; = A+ bwk;, i =1,2,...,2M . If there ezists a positive-definite symmetric
matriz P such that 7 (4;TP + PA;)z <0 for all A;, then 0 is an asymptotically
stable equilibrium point of the resulting system %(t) = f(z(t), ¥(w, z)).
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Proof. The system in a neighbourhood of 0 is approximately expressed by the linear
equation, &(t) = Az(t) + bu(t). Let V(z) = z7 Pz. Then

V(z) = iT Pz + 2T Pi

(A:c + b¥(w, w))TPm +2TP (Aa: + b9 (w, z))

= zT(ATP + PA)z + 227 Pb¥(w, z)

IA

zT(ATP + PA)z + max {ZmTwak,tx}
= max {a:T(A + bwk;)T Pz + 2T P(A + bwki)z}

= max {xT(A;‘rP + PA;‘).’]’)}

A

<0
Since ¥(w,z) is limited by the bounds of MOFLC, the above inequality is valid.
Thus 0 is globally asymptotically stable. ]

In utilizing the above result, note that the existence of P > 0 is essential. We

may summarize the above result as a procedure if A;, and Ay are selected as follows:

(i) Linearize the plant in a neighbourhood of 0. Matrices A and b can be obtained
in this step.

(ii) Find the bounds for the MOFLC, {wk:z |i=1,2,...,2M}.
(iii) Check whether A;’s are Hurwitz matrices (4; = A + bwk;).
(iv) Check whether (A; + A;)’s are Hurwitz matrices.

(v) Select P such that ATP+ PA; <0 for i =1.

(vi) Check whether AT P+ PA; < 0 holds for i =i+ 1. Repeat it until ¢ = 2™, If
it holds, we say that the designed MOFLC system is stable. Otherwise, go to
Step (v).
The following lemma may be used in sorting out infeasible candidates.
Lemma 1. Let us suppose that A;, 1 = 1,2,...,M are Hurwitz matrices. If there

exists a positive-definite symmetric matriz P such that A;TP + PA; < 0 Vi, then
M A; is a Hurwitz matric.

The proof of the above lemma is straightforward and therefore is omitted.

For example, consider the existence of a common P matrix in the case where

0 2 0 -1
) A2 =
-1 -1 2 -1
Since A; and A; are both Hurwitz matrices, by the antithesis of Lemma 1 it follows
that there does not exist such P because A; + Ay is not Hurwitz.

A =
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3.2. Simple Example
Consider the control problem of a cart-pole system given in the form

zZ= —M ’ (22)

i - Mgsin 6 + cos8(u — my16? sin 6)
B £ M1 — mylcos? 6

(23)

where z[m] is the cart position, 6 [rad] is the angle of the pole, [N] is the input
force, I[cm] is the length of the pole, M [kg] is the mass of the cart and the pole,
my [g] is the mass of the pole and g[m/s?] is the gravity constant. It is assumed that
lis15cm, M is 1.57kg, m; is 70g, g is 9.8m/s2.

Let us suppose that there are two control objectives. The first one is to set the
cart position as close as possible to the zero position and the other one is to set the
pole as vertical as possible. Two controllers are designed independently to satisfy the
corresponding control objectives. Using the stability checking procedure mentioned
above, we can check the designed MOFLC stability.

Firstly, the system in the neighbourhood of 0 is linearized as the following state
equation:

0 1 0 0
00 0 0.64
z(t) = z(t) + u(t 24
() 0 0o L (t) 0 (t) (24)
0 0 5068 0 3.29

where z = [z! ! 22 i%|T, 2! = 2, and z? = 6.

Secondly, the bounds for MOFLC are obtained. The extended sector of the
position controlleris (17.0z!+17.02!,19.0z1 +19.04') and that of the angle controller
is (120.0z% +20.0%2,130.02% +21.632). Suppose the weight for the position controller
is —0.5 and the weight for the angle controller is 0.5. Then we can find the bounds
of the designed MOFLC as follows:

{ — 9.5z — 9.5 +60.022 + 10.02%, —9.5z' — 9.55' + 65.02° + 10.842,
— 8.5z — 8.5 +60.0z% + 10.04%, —8.5z! — 8.54! + 65.02% + 10.83‘52}

Thirdly, we check that A;’s are Hurwitz matrices. Since the eigenvalues of A4;’s
lie in the NHP (Negative Half-Plane), A;’s are Hurwitz matrices. In the fourth step,
we check that (A4; + A;)’s are Hurwitz matrices. This can be checked in the same
manner as in step (iii). In the fifth step, we can find an appropriate P:

333 233 -7.06 -047
233 285 -9.28 -0.65

-7.06 -9.28 51.01 2.49
-0.47 -065 249 0.34
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Fig. 10. Control result in case w1 = —0.5, w2 = 0.5.

Since there exists a common P, the 0 of the MOFLC system is stable. Figure 10
shows the response in the neighbourhood of 0 of the designed MOFLC system from
four different initial states. Therefore we can verify whether the designed MOFLC
system is stable by using the proposed stability checking mechanism.

4. Concluding Remarks

In this paper, we proposed an FLC design scheme for a case when multiple groups
of rules satisfying partial control objectives are given. In the proposed MOFLC,
each subcontroller is designed to satisfy the corresponding control objective only and
then the outputs of the subcontrollers are combined by varying the weights for the
subcontrollers. Moreover, owing to a self-organizing algorithm, MOFLC can learn the
weight decision rules effectively. In addition, we analysed the stability of the MOFLC
for regulation by using Lyapunov’s linearized method and the bounds of MOFLC.
The results in the paper, however, should be elaborated further. The heuristics emp-
loyed in designing the weights in the controller should further be investigated and the
stability analysis should be extended be applying to a general control problem.
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