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ROBUSTNESS ANALYSIS FOR LINEAR
TIME-INVARIANT SYSTEMS WITH STRUCTURED
INCREMENTALLY SECTOR BOUNDED
FEEDBACK NONLINEARITIES

XiN CHEN*, JouNn T. WEN**

This paper addresses the stability analysis of a negative feedback interconnection
of a multivariable linear time-invariant system and a structured time-invariant
incrementally sector bounded nonlinearity. The classic Zames-Falb multiplier
is extended to the multivariable case and is approximated by linear matrix
inequalities. The problem of finding the multiplier that provides the largest
stability bound then becomes a convex optimization problem over state space
parameters. The method is also applied to symmetric incrementally sector boun-
ded structured nonlinearities and provides an upper bound for the generalized
structured singular value. Numerical examples are provided to demonstrate the
effectiveness of this method.

1. Introduction

The structured singular value (SSV or p) was introduced in (Doyle, 1982) to charac-
terize robust stability of a linear time invariant (LTI) system subject to complex LTI
structured uncertainties. As the complex uncertainty description is in general too
conservative for real parametric uncertainties (Fan et al., 1991), the p framework was
extended to the mixed real and complex uncertainties (the mixed g problem) (Fan
et al., 1991; Young, 1993). The p theory was further generalized in (Krause et al.,
1988) to allow for nonlinear/time-varying (NLTV) nominal systems and uncertainties;
this result has, in particular, been applied to the case of nominally LTI systems subject
to L2 induced norm bounded NLTV uncertainties. An upper robustness bound
can be computed by using constant diagonal scalings. However, as in the linear
case, norm bounded nonlinear/time varying perturbations are often a conservative
characterization.

In this paper, we consider the stability of a linear multivariate time invariant
system, T', connected to a real, structured (i.e., block diagonal) nonlinear time in-
variant (NLTI) uncertainty, 4, in a negative feedback configuration. Fach diagonal
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block in A is assumed to be ihcrementa.lly sector bounded and possibly odd. In
the single-input/single-output (SISO) case, stability condition of such systems can
be obtained via graphical criteria such as the Popov criterion, circle criterion, and
off-axis circle criterion (Narendra and Taylor, 1973). However, these criteria often
give conservative stability conditions. Using an operator approach, Zames and Falb
(1965) introduced a much more general class of multipliers which includes the graphi-
cal criteria mentioned above. In (Safonov and Wyetzner, 1987), an optimal multiplier
method was first proposed as an infinite-dimensional linear programming problem.
An optimal multiplier method involving a sequence of approximate finite dimensional
optimization was proposed in (Wen and Chen, 1990), but the optimization prob-
lem is not convex. A concave nonlinear programming approach was proposed in
(Gapski and Geromel, 1994). Robust stability for multivariable systems with diago-
nal differentiable monotone and odd monotone nonlinearities has been studied using a
combination of Popov and RC multipliers (Haddad et al., 1992; How, 1993; Narendra
and Neuman, 1967). This approach results in a nonconvex parameterization and no
systematic method has been given to find the best robust stability bound within this
class. Currently, no efficient computational method exists for the stability analysis of
structured monotone (or odd monotone) nonlinearities.

Noting the recent numerical advance in solving convex optimization over linear
matrix inequalities (LMIs), we show in this paper that a subclass of the Zames-Falb
multipliers, and the generalization-to the multivariable case, can be characterized by
linear matrix inequalities (LMIs). Convex optimization can then be applied to fine
the optimal multiplier (the one that provides the best robustness bound) within this
class. This method can be further extended to the odd monotone case.

In the special case of symmetric incrementally sector bounded structured mono-
tone and odd monotone nonlinearities, our method also produces a less conservative
upper bound for the generalized structured singular value (GSSV) (Krause et al.,
1988). Since our approach is state space based and no frequency domain searching
is involved, the method is computationally very attractive and can be combined with
recently developed LMI based optimal multiplier methods for linear complex and real
structured uncertainties (Balakrishnan et al., 1994; Ly et al., 1994) and norm boun-
ded NLTV perturbations (Balakrishnan et al., 1994) to provide a unified state space
LMI optimization framework for robustness analysis of structured uncertainties.

The rest of the paper is organized as follows. Section 2 reviews and generalizes the
multiplier class considered in (Zames and Falb, 1968) to system with block diagonal
monotone or odd monotone nonlinearities. In Section 3, we parameterize a subclass
of multipliers for monotone or odd monotone nonlinearities based on LMIs. We also
show that in the case of monotone nonlinearities, the LMI formulation can be made
arbitrarily close to the general multiplier class. In Section 4, we formulate the problem

of finding the optimal multiplier and the largest robust stability. bound as a convex

optimization problem. Numerical examples are provided in Section 5.

!
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2. Robustness Analysis
2.1. Review of SISO Case

The multiplier method was first developed in the 60’s for scalar systems connected
with a feedback nonlinearity (Zames and Falb, 1968). As shown in Fig. 1, the forward
system, denoted by T, is linear time invariant, and the feedback, A, is a time-invariant
nonlinearity and belongs to an incrementally sector bounded [a, 8+ @], which means,
A(0) =0 and

A(y1) — A(ye)
Y1 — Y2

If « =0, A is called a monotone nonlinearity. If A is monotone and satisfies
A(-y) = —A(y), Yy € R, it is called an odd monotone nonlinearity.

o< <B+a, Yy1,y2 € R

—5p— T

A

Fig. 1. Interconnected system.

Using a loop transformation (Vidyasagar, 1993), A € sector[a, 8] can be con-
verted to A £ (I-(A- a)(%))‘l(A — «) which is in the [0,00) sector. With the
loop transformation, a sufficient condition for the global asymptotic stability of the
zero equilibrium of the interconnected system is that the transformed forward system

~a T 1
T'=s———+-=
1+aoT * I}
is strictly positive real (Desoer and Vidyasagar, 1975). The graphical interpretation
of this condition leads to the circle criterion.

The feedforward system and feedback systems can be further modified, without
affecting the overall interconnections, by linear, but possibly noncausal, systems Z
and 1/Z, respectively. If Z is chosen such that A(%-y) remains monotone, then Z ¥
being strictly positive real is a sufficient condition for stability. Such Z’s are called
multipliers (Desoer and Vidyasagar, 1975). Several well-known graphical stability
criteria, listed below, were obtained using this approach (Safonov and Wyetzner,
1987)

1. Circle criterion: Z = 1;
2. Popov criterion: Z =1+ jwq, q > 0;
3. Off-axis circle criterion: Z =e?%, 6 € (—7/2,7/2).
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In (Zames, 1968; Zames and Falb, 1968), the authors showed that there exists a
much broader class of multipliers for the case of monotone feedback uncertainty A:

Z(jw) = 29 — /_00 z(t)e 9@t dt (1)
/oo l2(8)] dt < z 2)
2(t)>0 forall te R or A() is odd (3)

where 2q is any positive constant.

2.2. Extension to MIMO Case

We now generalize the classic multiplier approach to multivariable systems with struc-
tured nonlinearities from the following class:

A = {A A = diag{AW AQ) .. AP AR g, g
“A(k)(y)“ < M ||y|| for some M >0 and for all y € R™*

!
AR (0) =0, (M) (y1) — A(k)(yz)) (y1 —y2) >0 for all y1,y, € R™ } (4)

I, in addition, each diagonal A®) is odd, A®)(—y) = —A®)(y), then we say A €
A,. Note that by definition, A is of finite Ly gain.

Define the following classes of multivariable multipliers:

Definition 1. Given (my,...,my;), an LTI transfer matrix Z belongs to the mul-
tiplier class Z if Z = diag{Z(V1,,,---,2®)1, }, Z®*) is a scalar LTI transfer
function that satisfies

1. Z®) (w) = z((]k) - / 2B (4)e=7wt 4t (5)
2. / ‘z(k)(t)l dt < 28" (6)
3. M) >0  forall teR (7)

An LTI transfer matrix Z belongs to the multiplier class Z,, if Z satisfies
conditions 1-2 above.

As in the SISO case, Z is applicable to the case where A € A and Z, is
applicable to the case where A € A,.

We also need the following definition related to positive realness.
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Definition 2. An exponentially stable LTI transfer matrix 7' is extendedly strictly
positive real (ESPR) if there exists 7 > 0 such that for all w € R,

T(jw)+ T'(—jw) 2l

The following theorem summarizes the generalization of the multiplier stability
analysis criterion to MIMO systems.

Theorem 1. Consider the interconnected system in Fig. 1 where T is an exponen-
tially stable LTI transfer matriz with a minimal state space realization (A, B,C,D):

i = Az + Bu, z(0) = xo
y=Cz+ Du
u=—A(y)

and £ € R, v and y belong to R™. Assume that a unique solution exists for all t.
Suppose that one of the following conditions is true:

1. A € A and there ezists Z € Z such that ZT is ESPR,
2. A € A, and there exists Z € Z, such that ZT is ESPR.

Then the zero equilibrium of the interconnected system is globally asymptotically
stable.

Following the standard argument on the existence and uniqueness of solutions of
ordinary differential equations, a sufficient condition for the existence of a unique
solution is that A is globally Lipschitz with Lipschitz constant L, and L ||D|| < 1.

To prove the theorem, we need the following lemma which shows that cascading
A with a multiplier Z remains passive. Note that (-,-) denotes the Lo inner product.
The proof is given in Appendix A.

Lemmal. f A€A and Z€Z,0or A€ A, and Z € Z,, then

P
(v,AZ7) >0, VveLPR), m:ka (8)
k=1

Proof of Theorem 1. Given Z € Z or Z,, there exist Zy = diag(ZSLl),---,ZSf))

and Z_ = diag(Zz®,---,2?)), with ZSL’”),(Zg_k))_l,Z(_k)*,(Z(_k)*)_1 causal and of
finite gain, such that Z = Z_Z,; (Desoer and Vidyasagar, 1975; Zames and Falb,
1968). By Lemma 1, AZ™! is passive, and by assumption, ZT' is ESPR. It follows
that ZiAZ;l is passive and Z,T(Z*)~! is ESPR and finite gain. By the Passivity
Theorem (Desoer and Vidyasagar, 1975), the interconnected system is Lo stable.
With no exogenous input, the output y belongs to Ly (from Ly stability). Since A
is of finite L, gain, u also belongs to Lo. It follows from the exponential stability
of T that z(t) = 0 as t — oo. [ |

The following corollary strengthens the result to exponential stability if Z is
finite-dimensional (i.e., Z(s) is a rational transfer function).
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Lemma 3. (Szego, 1975) If f(t) € £1[0,c0), then for every € > 0, there exists a
vector (ag,a1, - ,ay) € RV such that

r

where « > —1.

N
ft) - Zaie‘tt(”‘") dt <e

=0

Replacing ¢ by —t, the same result also holds for £;(—oo,0].

By choosing a = 0, we obtain a basis for the approximation: ej(t) £ et

t >0, (zero for t < 0), e (t) £ elti, t < 0 (zero for ¢ > 0). Then an N-th order
approximation of an £; function z(t) is

N

an(t) = 3 (e () + bie; () (11)

=0

There are infinitely many choices of & that would render the Laplace transform of
zy rational. We make the arbitrary choice of « = 0.

Define Z and Z, subject to the above N-th order approximation as Zy and
Zopy 1espectively. From Lemma 3, it is clear that Z,y can be made arbitrarily close
to Z, by choosing N sufficiently large. However, in Z, z(k)(t) is required to be

non-negative in addition to being L,. The approximate zj(\’,c) would be close to z(¥)
in the L; norm but the pointwise non-negativity may be violated. Therefore, in using
Zn, the result may be conservative even for large N.

3.3. Monotone Nonlinearities

In this section, we show that Zx can be equivalently parameterized by LMIs. The
basic strategy is to simply substitute (11) into each z(¥)(¢) in (5)=(7) and show the
resulting expression is linear in the constants a;’s and b;’s.

First replace z(*)(t) by its N-th order approximation:

N

{0 = (olVef (1) + 1Ver (1)) (12)

1=0

where a(k),bgk) €ER k=1,---,p.

i
The first condition in Definition 1, (5), can be written as a linear function of
(k) (k) (k).
constants z;, a; '’s and b;"’s:

(k) (; GRS af” b ;
ZW (Jw) = 24 ~Z o+ D™~ Go-1™ 1! (13)

P (Jw
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The second condition in Definition 1, (6), can be written as an LMI by direct
integration:

N
Z ( (k) b(k)) il < z( ) (14)
1=0

Note that the absolute value in (6) can be removed since z(*)(t) > 0 by (7).

The last condition in Definition 1, (7), can be written as

N
dFei >0, vi>0 and Y bMett >0, Vi <0
1=0 =0
N . .
= Y aPr>o0 and Y (-1 >0, vt>0
1=0 1=
N N ) )
= > aMu? >0 and > (-1)Mw¥ >0, WweR
1=0 1=0
N _ N )
= Z as.k)(—l)zsm >0 and Zbgk)s21 >0, Vs = jw
1=0 =0
N
Za(’v -1 1,521 Zbgk)s2
>0 d =9 >0, Vs=
(—s+1) (s+1)N = and - s+1)N(s+1)N— §=Jw

Finding conditions on a; to ensure Eﬁo a;t* >0, Vt > 0, is a classic problem. For
example, the case of N = 3 is completely worked out in (Jury, 1974, pp.149-152).
The resulting condition is rather involved and the approach becomes intractable for
N > 3. In (Siljak, 1989), a general procedure involving the Modified Routh Array is
proposed. This result also leads to complicated algebraic conditions even for a small
N. In contrast, the approach here leads to a simple state space LMI test. In addition
to the application to the multiplier problem, this result is important in its own right.

Based on the above, we now have an equivalent LMI characterization of Zpy:

Theorem 2. Given a transfer matriz
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For the case where T is SISO, we can set 25 = 1 (dividing (1)—(3) by z). Let
A=1/B, then Cz7 and Dzt are affine in A. We can now minimize A subject to the
LMIs in Theorem 3 directly and the problem becomes a linear objective problem over
LMIs (Boyd et al., 1993; Gahinet and Nemirovskii, 1993). In this case, no iteration
on f is needed. Theorem 3 can be applied repeatedly for increasing N’s until 08
converges.

4.2. Nonlinearity with Symmetric Sector Bounds

We now consider the symmetric sector bound case, i.e., —ax = Br + ap = B, for

= 1,---,p. A loop transformation A = (BI + A)(BI — A)~! converts A to the
[0,00) sector and A remains block diagonal and monotone (or odd monotone if A
is odd). The transformed forward system then becomes

T = (I+BT)I - BT)™* (29)

The condition for closed loop global exponential stability becomes: T is exponentially
stable and

Z(jw)T(jw) is ESPR (30)
for some Z € Zy (or Z € Zoy if A is odd).

Write a controllable state space realization of the N-th order approximation of

Z as in (28) and a minimal realization for T as

T

(31)

N A+BB(I-pD)"'c |  2B(I-pD)~!
(I-BD)pC | (I+BD)I-pD)* |

Cr | Dr

where (4, B,C, D) is a minimal realization for T'(s). Then a controllable realization
for Z(s)T(s) is

A B Ar 0 Br
Z(s)f(s)"‘ < k) = | BzCr Az | BzDr (32)

Czr | Dzr
DzCr Cgz | DzDr

Note that as in Section 4.1, Dzt is an affine function of z((,k), and Cyzr is an affine
function of agk) and bgk) if Z € Zy, or an affine function of agk), bgk), cgk), dgk) if
Z€Zn, k=1,--,p,i=0,1,---,N.

Now for a given $3, we can check the closed loop stability by applying Theorem 3

with (Azr, Bz7,Czr,Dzr) as defined in (32). Again, to find the largest 8, a line
search algorithm such as golden search or bisection search is also needed.

We can further show that the sector bound obtained with the multiplier method
above provides an upper bound for the generalized structured singular value (GSSV).
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For norm bounded nonlinear and time varying (NLTV) uncertainties, GSSV is
defined by (Krause et al., 1988)

~1
w(T) & { inf ||A|l , I+TA is not invertible}
AcX

where X = {A | A = diag(Ar, -+, 4p), |Alls < 1,1 = 1,---,p} and | - ||z is the
induced £, norm. An upper bound is given by

w0 <2 ot fswa(0rD™) (33)

where D = diag(dym,," -, dplm,) (Krause et al., 1988). To relate GSSV to incre-
mentally bounded nonlinearities, note that A € sector[—2, 0] implies that A is Lo
norm bounded by 8 (Zames, 1966). ‘

The following theorem shows that the sector bound obtained based on the mul-
tiplier method is less conservative than ~.

Theorem 4. Define

N =inf{% ‘ ZT is ESPR , where T is given by (29) and Z € ZN}
and

n, = inf {% l ZT is ESPR , where T is given by (29) and Z € ZON}
Then

wT)<yw, <<y VN

Proof. Consider any By for which there exists a Z € Z,y such that ZT is ESPR.
By Lemma 1, AZ~! is in sector[0,00) (equivalently, passive). As in the proof of
Theorem 1, Z can be decomposed as Z = Z_Z, where Z; = diag(ZS_l), . -,Zg_p)),
Z_ = diag(z®,.--,2"), z,, 271, 2%, (2*)"" are causal and have finite gains. It
follows that Z,T(Z*)~! is ESPR and Z*AZ;' is passive. Since Zy, T, (2%)7!
are all of finite gain, Z+T(Zi)‘1 also has finite gain. By the Passivity theorem,
(I+ Z,T(2*)Z*AZ;")™' has a bounded induced L norm. Hence, I + TA is
invertible. This implies that I +TA is invertible since I + TA = 28(I — BT)(I +
TA)(BI — A)~!. From the definition of GSSV, it follows that u(T") < ianEZoNﬁLN =
~n, for all N.

The second inequality, vy, < v, follows directly from the fact that Zny C 2oy,
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It remains to show vy < . Note that v can be rewritten in the following form:

v = inf {'yl (DTD~Y)(DTD™')* <~ for some diagonal D and all w € R}

= inf {'71 TDD*T* < 42DD* for some diagonal D and all w € IR}

inf {'71 TPT* < 4P for some diagonal P >0 and all w € ]R} (34)

From the definition of vy, for any Z € Zy, v < ITIJ where Z(I + BNT)(I —

ByT)~' is ESPR. In particular, Z may be chosen as Z,, any constant positive
definite diagonal matrix. Then the ESPR condition reduces to the condition that
TZ,T < [—,%Zo. This condition is the same as in (34). Hence, vy < . This completes
the proof. ||

5. Numerical Examples

Example 1. A summary of some examples from (Wen and Chen, 1990) by using our
optimal multiplier method (with specified lower bound) is shown in Tab. 1. For com- )
parison, we have also included results obtained by using the Off-Axis Circle Criterion
and Popov Criterion. In all of the examples, our method gives the least conservative
upper bound. Examples 4 and 5 are known counterexamples to Aizerman’s Con-
jecture as shown in (Willems, 1971). This fact is also confirmed by the multiplier
method. In Tab. 1, N denotes the order of approximation when no appreciable im-
provement in 3 occurs. The corresponding Z(jw) is of order N + 1. In all of the
chosen examples, N is very small.

Tab. 1. Results of optimal multiplier algorithm 1.

Transfer Functions a | Popov |Off-Axisimonotone| odd [Nyquist|N

1 s 1| 370 | 725 | 8.00 800 | 800 |1

s+1 —3
Y mneeers |10 295 | 313 | 4.23 423 | 423 |1

7500 -3 .
3| Grrecmeey  |107°| 30.00 | 3313 | 3319 | 3329 | 3450 |2

2
S
(s24+1)(s2+9)+10—%(3s34-21s)

=

0 123x107% — |7.6x107%76x107% oo |2

52

. -8 -6 -6
e oS E ey | 0 [L1x10 —  |2.5x107°(2.5x 10 o |2

=




Robustness analysis for linear time-invariant systems with structured . .. 641

Tab. 2. Comparison of upper bounds for GSSV in Example 2.

’ | real parametric | odd sector bounded | sector bounded | norm boundzail

i 4.0988 4.1000 4.1000 4.8031
1/p 0.2440 0.2439 0.2439 0.2082
N — 2 2 —

Example 2. Consider the following nominal transfer function (Balakrishnan et al.,
1994)

—10s — 8
2 364D
T(s) = —25+38
2
s+1

with A = diag(6;,62). The upper bound for norm bounded NLTV case are taken
from (Balakrishnan et al., 1994) where constant diagonal multipliers were used. The
upper bound for linear real parametric uncertainty is calculated by MUSOL4 software
(Fan, 1994) which computes the upper bound of structured singular value reported in
(Fan et al., 1991). Note that for this particular example, the upper bound obtained by
MUSOLA is less conservative than the one obtained by using the multiplier approach
in (Balakrishnan et al., 1994). The upper bounds for symmetric incrementally sector
bounded NLTI uncertainties are obtained using our optimal multiplier method. From
Tab. 2, it is seen that our optimal multiplier method gives almost the same upper
bound as the upper bound for linear real parametric uncertainties.

Example 3. The following example is taken from (Doyle, 1982) with A =
diag(Al,Ag). )

o (I+KP)EP (I+KP)'K
B <—(I+ PK)'P (I+ PK)—1PK>

where
9 -10
s+1 s+1 1 9(s+1) 10(s+2)
P(s)y=|"" , K(s)=——(
8 9 0.0159s \ 8(s+1) 9(s+2)
s+2 s+2

The results are shown in Tab. 3. Again, our multiplier based bounds are less con-
servative than the norm bounded NLTV case. In the case of odd nonlinearity, our
bound is even better than the upper bound of the real p case.
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Tab. 3. Comparison of upper bounds for GSSV in Example 3.

L [ real parametric | odd sector bounded | sector bounded | norm bounded—l
7! 42.7350 34.4828 62.5000 554.5389
1/@ 0.0234 0.0290 0.0160 0.0018033
N — 4 4 —

6. Conclusion

In this paper, we have developed a class of multipliers parameterized by linear ma-
trix inequalities for structured time invariant sector bounded nonlinearities. Convex
optimization techniques are used to generate optimal multipliers over this class. The
result can also be specialized to symmetric incrementally sector bounded nonlinear
uncertainties to provide a less conservative upper bound for the generalized struc- ‘
tured singular value. Since this method is state space based, it is computationally
very effective as confirmed by our numerical experience. Results presented here can
be easily applied to the robustness analysis of LTI systems with mixed linear and
nonlinear structured uncertainties to provide a unified computational framework for
linear and nonlinear y analysis theory.
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Appendices

A. Proof of Lemma 1

For the proof, we need the following result that extends some integral inequalities,
shown for the SISO case in (Desoer and Vidyasagar, 1975), to the MIMO case.

Lemma 5. If & : R™ — R™ is monotone, then, for all z(-) € LT*(R) and all T € R,
/ & e(t)]a(t + ) dt < / &' (t)]2(t) dt

If, in addition, ® is odd, then

/ " St + ) dt‘ < / " o a()a(t) dt
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Proof. The monotonicity of @ implies that for all z1, z2 € R™,

(2(@2) - @(zl))l(zg — ) >0 (A1)
Denote the j-th component of & by ®;. Then from (A1), we have

tI>j<x1,...,xj._1,xj +kjyj—‘;£i,wj+1,...,xm)@l—zj—%l

—@j(zl,...,wj,...,wm)(—y%ﬁ >0

Sum k; from 0 to £; and let £; — oo, we have

/:J ®;(z1,.. ., &5 Tm)dE — ®;(z1,..,Zm)(y; —75) 20 (A2)
Setting y; = 0, (A2) becomes

@j(xl,...,xm)sz/:j 8,21, & Tm) dE; (A3)
Setting z; = 0, (A2) becomes

S, /Oyj 8,21, b s Tm) dE; (A4)

By using (A3) and (A4), we obtain

/_w ®;(x(t))z;(t)dt — /_oo &, (x(t))z;(t +7)dt

oo pzi(t)
_>_/ / Qj(wl,...,éj,...,:cm)dfjdt
—o0 JO

oo z;(t+7)
—/ / ‘I’j(il?l,...,fj,.‘.,mm)déjdt=0
—o0 JO

If & is odd, then we also have

[ee]

| a@moar [ e

oo -0

-/ " e d- [ 8 m)d

—00

oo pxj(t)
> / @j(zl,...,éj,...,xm)dfjdt
—o0 v 0
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) —z;(t+7)

~/ / ®i(z1,...,&5,. .., zm)dé; dt
—oco J0

/ / (@1, 6, Tm) A dt

(since @ is odd)

0 z;i(t+7)
—/ / ‘I’j(.’E1,...,fj,...,xm)dfjdt:0'
—o0 J0

Summing j from 1 to m, we have the desired result. ]

Proof of Lemma 1. Let v = Zx where v = (v,
from (5)~(7) that v € £3*(R) if and only if z €
sufficient to show that (8) holds for each A®) k
decoupled.

)y @ = (2q, -+, ap). It follows
L;"( ) To prove the lemma, it is
=1,---,p,since AR)(Z(F))~Dg gre

<vk, (M))z(krlvk) - <Z(k)mk,A(k)xk>
/ AW (a(0)) Pa(t) at - / AW (a(1)) (2 x 2 (t) dt
e /_ : AW (a(t) )a(t) dt - /_ Z AW (a(1)) /_ Z 2B (Pt — 7) dr dt
e [ : A®' (a(t))2(t) at - /_ Z 28 () /_ Z AW (2(t) ) alt - 7) dtdr
> A0 / )a(t)dt - /_ Z A7) dr /_ Z AW (2(1)) o) at

by Lemma 5 if A%} ¢ A

> 4® [ ” AW (a(t))a(t) at - / | ar / AW (a(t))a(t) dt

by Lemma 5 if A% ¢ A,
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B. State Space Realizations

The controllable canonical realizations for the transfer functions in Condition 2 in
Theorem 2 are: '

[0 1 0 0 - 0 0]
0 0 1 o --- 0 O
A(k) A(k) AEL) =Agk) —
0 0 0 0 0 1
L(1)N10(1)N2No N 0|
=
0
B® = B® = B® = B =
0
L1
o = [ (VP -1 0 (D¥IE -N) 0 e~ - N) 0]
k
9 = (oM -1 0 (PP -N) 0 o 0, - M) o]
¢ = [ () -1 0 (I ) 0 e~ - M) o]
k
oP = [ (-D¥@P -1 0 DY@ -N) 0 (@ =) 0]
D® =aff, DM =}, D® =, D =4y

A controllable realization for Z is

Az = diag (AZ(1) JAz@y, e AZ(r))
BZ = diag(BZ(l),Bz(z),' ‘ ‘Bz(p))
Cz = diag(CZ(l),CZ(z), v Cz(n))

Dz = di&g(Dzm Dz, Dz(;:))
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where
AR o B®
Az(k) = 3 Bz(k) -
k k
0 Agd) Blgd)
Cz(k) = —C't(llz) + C,Es), Dz(k) = Zék)
and
( 0 1 0 0o |
0 0 1 0
A =
0 0 0 1
| -1 —(V+41) QNN —(N+1) |
o]
0
BY=| o0
L 1 J
CH® = (g C(()k)) [ 1N N(]\;—l) N ]
+(af” cgk))[l N-1 N -1 o]
+oot @y =) [ 1 0 0 0]
D =0
- -
0 1 0 0
0 0 1 0
e
0 0 0 e 1
[ CDY DM ) (-pNROEY L (v gy |
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0
0
B =0
..1_
cf =0 =) [ (-1Y (N PR
0 = d) [ (0t (PR e~ - o]
+-~-+(b§f,°>—d§5’)[1 0 -+ 0 0]

By =0

where k = 1,---,p. Note that for the monotone nonlinearity case (without the
assumption that A is odd), &P = 0, d® =0 for i = 0, N, k=1,--+,p. |

T 7
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