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EXTREMAL TRANSIENTS IN LINEAR
CONTROL SYSTEMS'

HenrYK GORECKI*

The relation between extremal values of the error and the coefficients of its dif-
ferential equations is one of the central problems of control systems in chemical
industry, because extremal values of the error sometimes cause serious damages
to the environment or to the system itself. Analytical formulae for the deter-
mination of these values are known only for the second-order systems. In this
paper an approximate method which permits to determine extremal values of
the error in higher-order systems is proposed.

1. Introduction

The most popular and possibly the simplest way of determining extremal transient
errors in linear systems is as follows: Without loss of generality we start from the
equation of the SISO system for the transient error &(t) of the output

zn:an_]ﬁ(i)(t) =0 (1)
1=0

where £®(0), 4 = 0,1,...,n — 1 are known and ag = 1. The solution of (1) is
determined by the formulae

e(t) = ZAies"t, s;#£s; for i#] (2)
=1

where A; can be calculated using the initial conditions and roots of the characteristic
equation

ian_isi =0 (3)

At this point we meet the first obstacle, namely, there are no analytical formulae for
the determination of the roots of eqn. (3), if its degree is higher than four. Even for
equations of third or fourth degree the existing formulae are very complicated.
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For the determination of extrema, it is first necessary to find the moments of time
at which

di(tl = Z":Aisiesit =0 (4)

It is possible to find the extremum points 7 of eqn. (4) when this transcendental
equation contains at most two different exponential terms, which corresponds to the
second-order system described by (1).

The substitution of the values of extremum points 7 into (2) gives the extremal
values of the transient error. This way is impractical because we want to know
the solution for higher-order systems in the form of an explicit relationship between
the coefficients a; representing the parameters of the plant and controller, and the
extremum. For this reason, we look for another way directly giving the relations
between the extremum of the error and coefficients a;.

2. Overview of the Results
Let the transient error e(t) of a control system be described by the equation

d™e(t) d"e(t) de(t) _
e +as 1 Tt ana m +ane(t) =0 5)

cy=e"(0)#0 for p=0,1,...n—1

We assume that the characteristic equation (5) has m different real roots s and 2p
different complex roots r; such that

m+2p=n (6)
Write
ok +Jwr =Tk, p—jwr =Tk, k=1,...,p (7)

The solution of (5) takes the form

m P
e(t) = Z Age®t + Z(B’“ coswyt + C sinwyt)e®r? (8)
k=1 k=1

where Ay, By, Cr, i, wk, and s are real numbers. The extremal values of the

transient error occur at the points 7 where J—HZ tt =0 and
=7
m P
ee(T) = Z Ape®T + Z(Bk coswiT + Cp sinwy)e® ™ . (9)

k=1 k=1
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In (Gérecki and Turowicz, 1966a) two extremal problems were investigated:

1. When the extremal value e.(7) is extremum with respect to the roots sg,ax +
JWk 3
9. When the time 7 is extremum with respect to the roots S,k + JWk-

For the first problem it was found that the extremum of the extremal value of the
transient error may occur when the following relation is fulfilled:

P

(—=1)Pr™ ﬁ A J[BE+CH =0 (10)
k=1

k=1

For the other problem the extremum of the extremal value of time 7 may occur when
the following relation holds:

ﬁ(ai +wd)rmt \:’T + iglz +§;j (;1; + T_l—k)} =0 (11)

From (10), (11) and the well-known Vieta's formulae we deduce that

(-1 J] 4 [T B2 + €0
k=1 k=1

P

=1 1 1 _
7=0 or T=—\ik‘é;—k‘+z<a+a)}:aanl (12)

k=1

In the case of one real root sy of multiplicity n it was found that (12) is equivalent
to

r=0 or 7=——m =t (13)
Sk Qn
and
n-1
Ee = [An (an_1> 4o Ay Gn-1 + A1] e " (14)
an an

The constants Ay, Bk, Ci are determined from the relations
m P
eW(0) =S Arsh + Y [BkRe (") + Cy Im (v ] oy 9)
k=1 k=1 p=Sheeain=

In (Gérecki, 1966a; Gorecki and Turowicz, 1966b) it was proved that the ex-
tremum of the extremal value of 7 determined by (12) from the necessary conditions
exists only when the characteristic equation (5) has only real roots. It was shown
that the extremum of the extremal value i, where k denotes the k-th derivative of
e(t), can be calculated from the equation

k
anT" + z(—l)ian—i‘rk—ik(k -1 (k—i+1)=0 (16)

=1
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which is a generalization of (12) and (13). Taking these results into account the
authors investigated the case when the characteristic equation had only real roots in
(Kobayashi, 1993).

Let s; be the roots of the equation

Zaksn_k =0 (17)
k=0

If eqn. (17) has n different real roots, then the general solution to eqn. (5) takes the
form

e(t) =) Ape™ (18)
k=0
where

Ay = zn:cj_lfn_j(k)(—l)j—l H(sv —s)7h k=1,2,....n (19)
j=1

w=1

gk

Here fi(k) for i > 0 denotes the i-th degree elementary symmetric function of n — 1
variables s1,...,8k-1,8¢41,...,5, and

fo(k) =1

f‘t(k) = Z(_l)ia’n—i+j Si7 1= 1,2,...,71— 1 (20)
j=1

The relations (19) and (20) have already been communicated in (Szymkat, 1983).

If eqn. (17) has multiple roots, then the relations (18) and (19) should be trans-
formed by the proper passing to the limit. In the particular case when s; = sy =
... =8, = s, we obtain

e(t) =€) Aptht (21)
k=1
and
k—1 ;
Ck_i_1(—1)181
e = _—_— =12,...
Ak ; ’I,’(k—Z—l)' 3 k 721 y (22)

The necessary condition for the existence of a local extremum of the solution (18)
is of the form

et)=0 (23)
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Let us assume that eqn. (23) has at least one nonnegative root. The set of all
roots is at most countable. We denote by 7; its elements and thus obtain

e'(rn)=0 (24)
Problem 1. The values £'(r;) are functions of the variables s1,...,58n:
e(m:) = Xi(s1, .-+, 5n) (25)

and possess partial derivatives. We want to find the solution of the system of equations

0X;
asi -

0, j=1,2,...,n (26)

Equation (26) represents a necessary condition for the existence of a local extremum
of (25).

Problem 2. The values 7; are functions of the variables si,...,sn:
7i = Ti(81,- -+, 8n) (27)

and possess partial derivatives. We want to find the solution of the system of equations

T,
63j -

0, j=1,2,...,n (28)

Theorem 1. Under the assumption s; # s; for i # j a necessary and sufficient
condition for the existence of the solution to (26) is

n [[Ar=0 (29)
k=1

i.e. ;=0 or Ay =0 for some k, | <k < n.

Proof. For the proof we refer the reader to (Gérecki and Turowicz, 1966a) and
(Kobayashi, 1993). |

Theorem 2. If 51 = sy = ... = s,, then a necessary and sufficient condition for the
eristence of the solution to (26) is

TiAn =0 (30)
Proof. See (Goérecki and Turowicz, 1966a) and (Kobayashi, 1993). [ |

Remark. For Theorems 1 and 2, if 7, =0, then ¢; = 0. Conversely, if ¢; = 0, then
7; = 0 for some 1.
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Theorem 3. Under the assumption s; # s; for i # j, a necessary and sufficient

condition for the ezistence of the solution to (28) is

n n n 1
TiHAkHSk(TﬁZ—SI)»O (31)
k=1 k=1 k=1
where
. 1 _ OGn-1
et Sk an
L€ T;=ap-1/an or Ay —0 or 7, = 0.
Proof. See (Gérecki and Turowicz, 1966a) and (Kobayashi, 1993). [ |
Taking into account that s; = —1/T}, where T} represents a time constant, we
conclude that the minimum extremal time equals the sum of time constants.
Theorem 4. If sy =sy=...=s, =3, then a necessary and sufficient condition for
the existence of the solution to (28) is
Anti(n+s7) =0 (32)
Theorem 5. If the condition (31) is fulfilled due to
Apn—1
- 33
o= e (33)
then we have
Co C1 Ca Cc3 C4 Cn—2 Cn—1
Qp—2 _an—l an O O O 0
An—3 0 —Qp_1 2a, 0 0 0
Ap—4g 0 0 —Gn_1 3a, 0 0 =0 (34)
aq —0n-1 (n—2)a,
ap 0 0 —Q0n—1

a1k = Ck—1, k=1,...,n
a;1 = Qp—i, i=2,...,n
Qi = —Qp—1, 1=2,...,n

Giit1=(t—1an, i=2,....n—1
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The other elements of the determinant (34) are equal to zero.

Proof. See (Kobayashi and Shimemura, 1981). |
Theorem 6. If s; = sg = -+ = 8, = s, and the condition (32) is fulfilled due to
T = L (35)
s an

then we have

n—1 Con—1—i n—i—1 j—l( i

¢ ay n n—j—1i) _
E :F a1t § : 41 =0 (36)
i=0 n—1 j=0

Proof. The condition (36) has been proved in (Kobayashi, 1993) in a somewhat
different form. It is possible to obtain it from (34) by using the relations

n—k
ak:n"_k(::)( On ) , k=2,3,...,n (37)
Gn—1

which are true in this case. | |

Using (35)—(37) we may calculate

k-1
e(m) = E—nz

n k-1 ni fa k—i—1
k—i—1 n—1
- - 38
prinr: (k—z—-l)!z!( an ) (38)

The necessary and sufficient conditions for the existence of the solution to the
system (26) is the zero value of a certain determinant whose elements are very compli-
cated algebraic expressions. The same refers also to the system (28). Reducing these
determinants to simple forms involves very long and tiresome algebraic calculations.

Because of the large volume of the paper (Gérecki and Turowicz, 1966a) it was
possible to publish it only in 1966, in spite of the fact that most of these results
were obtained in 1960 and presented at the first IFAC Congress which was held in
Moscow (cf. (Gérecki and Turowicz, 1966a)). In (Kobayashi and Shimemura, 1981)
it was shown that it was also possible to transform some determinant with rather
complicated elements to the simple form (34).

In view of the mathematical results obtained in this paper, the following technical
problems can be treated:

a) The problem of cancellation, as quickly as possible, of the transient error by
using adaptive control systems (Kobayashi and Shimemura, 1981),

b) Determination of the standard optimal processes achieving extrema of the tran-
sient error at extremal time 7;,

¢) Determination of the shortest time at which the transient error attains its ex-
tremal value and
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d) Optimization of the control system by reducing its order via the condition
Ar =0 (Kobayashi, 1993).

Further results concerning the relations between the extremum of the error e(r)
and the value T were obtained in (Gérecki, 1966b).

Theorem 7. The relation between the extremum of the error e(t) and the time of
its occurence T is as follows:

n n-—-1 n n—1

e HZ D2 e =TI (-0, ety (39)

u=0 k=1 #=0
n#0

where fr(k) denotes the fundamental symmetric function of the r-th order for n — 1
variables Sy,...,8k—1,8k41,...,5n, T =0,...,n—1, and fék) =1.

Applying Vieta’s formulae (40) to the relation (39)

[P =1
(k)
fi =81+8+-+Sk1+Spp1+ -+ 8, =a; — s
k) (40)
2 =3132+3133+---=a2—slsk—323k...snsk

N

it is possible to express (39) as a functlon of the coefficients a;. For example, for
n=2,

a 1
e(r) = :t\/c(z) + icocl + Ec? e~T/2 (41)

and for n =3

(E”(T)) ? + (6”(7‘)) 2a25(7') + €"(T)arase® (1) + a2e®(r)

2
= [Cg + 2C2010‘1 + C2C%(a% + 0:2) + C%C(]ag + czcgalag + 62C160(3a3 + alag)

+ c3(a1as — a3) + cfco(ag +aja3) + 20§c1a2a3 + cgag] e T . (42)
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3. Solution Method

In the papers (El-Khoury et al., 1994; Gérecki, 1965) it is shown that the linear

system
d—E(Q = Ae(t), t=>0
dt (43)
e(0)=c
where
[ 1 0 ]
0 0
A= . (44)
0 0 0 1
L —Qn, —Qp-1 —0Gp-2 ... 01 ]
ag é 1
Co
C1
e0)=1 . (45)
Cn—1

can be transformed to the nonlinear system

52395-’;-0,1 as az . Gp—92  Qn—1 1
d
-1 Ezgé—l‘ 0 0 0
0 -1 e ... 0 0 |ex=—aner  (46)
d
L 0 0 0 -1 Ez—d';; i

which describes the relation between only two components of the vector e(t), namely
the scalar function e(t) = e, and its first derivative e (t) = 2.

Introducing the nonlinear operator

d
q=ce2 - (47)

we can rewrite (46) in the explicit form

[q”'l +a1¢g" 2 + asq" 4t ap—2q+ an_l] €9+ ane1 =0 (48)
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The explicit formula for the n-th power of the operator ¢ is very complicated (Gérecki
and Turowicz, 1968, pp.228-230). It is easy to calculate this power directly for a

particular n. The powers of the operator g for n = 1,...,5 are respectively as
follows:
dEg
=gg—2 49
qg=¢2 dey (49)
d des 2 »

2 _ — (1) 2.(2)

g° =eg & {52 dsl} ) [62 ] +e5es (50)

3 W] 4 42,02, _3.(3)

q° =& [52 ] +4eses ey +ehes (51)

4 W1 4 112[: 01,0 4 73,00 4 48[ @], 4@

q =z—:2[52 ] +11£2[52 ] €y + Tepey '€y +452[52 ] +e5e5 7 (52)

@ =e [egl)] ’ + 26¢2 [egl)] 35§2) + 32¢3 [Egl)] 2653) + 34e3 [552)] 2551)

(53)
+ llagegl)sg‘i) + 15535%2)5(23) + Egsgs)

The analytical solution of the nonlinear equation (48) is known only for n = 1.
The general solution for a degree higher than one is proposed using an approximation
technique.

For n =1, from the relation (46), we have

d
52ﬂ +a1e5 4+ ase; =0 (54)
dEl

with initial conditions £;9 and eqq. Setting
€2 = ye; (55)

and substituting (55) into (54), we separate the variables and, after integration, obtain

€ Q2
2 Y1—y2

— Y2

€1

€10 y

— — Y
€1 _ leqg (56)
€ - Y
10 €2 y1—v2

=~y

€1

€10 y

— -

€20

where y; and y, are the roots of the equation

Y +ay+ay=0 (57)
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We deal with the extremum of the error €1 when
€9 = 0 (58)

Taking into account (57) and (58) in the relation (56), we finally obtain that the
extremal value of the error is

a.

PR, .5 W
Ja? — 24/a%—4a,
e = \/GZE%O + E%O + a1€10€20 2a2e10 + (a‘l +4/a1 40'2)520 1
e =
@2 2az2e10 + (01 —/a? - 40,2)520

(59)

For n > 1, we will use a polynomial approximation whose unknown coefficients
can be estabhshed on the basis of the agreement between the initial conditions of the
exact and approximate solutions. We consider the following differential equation:

dme d"~le de

dre o "=0 60

dt"‘+a1dt"—1+ +a 1dt+(l (60)
which corresponds to eqn. (43) with the initial conditions (45). We need to calculate
the initial conditions for eqn. (46) using the initial conditions (45).

The relation between the n-th derivative of eqn. (60) and the (n—1)-th derivative
of eqn. (46) is given by the Leibniz formula. We observe that

dEz

LA : (61)

dey _ 3
des g‘?}_ 6(11)
dt

d

2
a 2 2
Lo, d [(de) 4 [ (”] PP [P] e [
de? de, /) da B 5 (62)

S| K

1

are, 14 e !

de? T ey den—1

_1[wd el | (-t def) dn2(e5 1)
Tep | dtnt 1 dt  dtn—2

n—2 d2sgl) d”_s(r-:;l) _ldn~1€gl)
+( 9 ) I ——aw—_-s——+...+52 W]’ n>2 (63)
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Using the relations (48) and (61)—(63) we can write the initial problem in the following
vector form:

- - [ i
(9] !
egl) e /e
: = (64)
6gn-——2)
n—1_(n—1 .
L €2 152 ) d L
4. General Approximation Method
The approximate solution of eqn. (46) is proposed in the form
€2a(e1) = aos?_l + als?_2 + ot Qpoo€1 + not (65)

with the same initial conditions as for eqn. (46).

From the same initial conditions of eqns. (46) and (65) we obtain the set of linear
equations to determine the unknown coefficients aq, ..., an_1. Denoting by

e0)=¢, i=0,1,....n~-1 (66)

the initial conditions of (43), we can rewrite eqn. (65) in the following matrix form,
taking into account the initial conditions (66):

- - - -

€2aq C”f—l C?_z .. C o0
1
esy) (n—1)e2 (-2 ... 1 0 o
: e . (67)
£(n=2) (n—2)lg '
e A
LV ], Le-Dg™ 0 0 0 1
Now we require that
( €2a 1 [ €2 |
ek e
= (68)
n— n—1 n— n—1
L €24 lféa : deg LE2 15& : deg

By substitution of (64) and (67) into (68) we obtain the set of linear equations for
unknown coefficients ;. Setting e, = 0, which is a necessary condition for the
extremum, we obtain the extremal values of the error €1, (from the polynomial (65)).
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In order to improve the accuracy, we can differentiate eqn. (46) and take as the
approximation a polynomial of a higher degree than that in (65).

We illustrate this method with the example of a differential equation of the third
order, which cannot be solved in exact analytical form.

5. Example

We consider the system (43) in the form
€1 0 1 0 €1 e1(0) Co
g l=| 0 0 1 ex |» | &0 | =] a (69)
,€.3 -Qa3 —a —ai €3 63(0) Co

Equation (46) takes the form

62'&'—‘ +a as
£1 4 |e2=-ae (70)
-1 —_
&2 dEl

which can be explicity written as

d’ey deg\2 dey

2 —

€2 dsf +52(agl') +a152a—€:+a262+a3€1-—0

e2(co) =1 (71)
dea) _

dgl o - C1

As the first approximation we take the polynomial of the second order
€30 = QOET, + C1E1aO2 ' (72)

with the same initial conditions as in eqn. (71). Taking into account (67) and (68),
we can write

C1 2
cs Co Co 1 (e 7]
o =2 1 0| a (73)
2 2
c 2 0 0
—-2 —ajcy — agc1 — a3Co “ @2
C1
From the set of equations (73) we obtain
1 /¢
Qg = —'—5(— + aicy + ascy + a3(20)
201 C1
2
ca  CofcC
o = =2 + _g(_z_ + ai1co + aze1 + agCo) (74)
C1 cl C1
CoC2 2

2 sc
0 2
Qg = — — (— +ajco + azc1 + agco)

1 2¢ \¢;



662 H. Gérecki

Setting €2, = 0 in (72) we can calculate the extremal values of error from the equation

el +ae1g +az =0 (75)

If we want to obtain a better accuracy, we can differentiate eqn. (71) with respect
to €; and obtain

(3¢, de, d?e, d?e, dea\3  sdeg\2 de
0 (82 (2] 0
e g a Tt g alg) teg te
52(60) =G

§ dez_ (76)
dEl C1

3
d2e —a3Cp — a2¢1 — a1y — —=

[ de} cf

As the polynomial approximation we assume

e2q(e1) = aosfa + alefa + (€1q + a3 (77)

The relation analogous to (73) takes the form

CO CO C() 1 ao
cofer || 3¢ 2 1 0 o (78)
D 6cp, 2 0 O as
r 62 0 0 0 o
where
3 2
r=— (C_z) - 462]) —ag — agc—2 - a1 (C-Q) —aipcy (79)
C1 C1 C1

Setting €24(e1) = 0 we can calculate approximate extremal values of the error £1.

In Fig. 1 the exact extremal values (A) of the equations of the third order and

their approximate values (B), (C) obtained by means of the above method for different
initial conditions are shown.
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15

! al=1 c1=5

a2=2 c2=1
a3=2 c3=2

0.5

),
\

2

08

\
al=1
a2=6

06 a3=2 cl=0

04

€, o2

€

1 F
’\ al=1
a2=2
a3=2} ¢i=0
c2=1
c3=2
0.5

1)
I . \C\A

LA

81
Fig. 1. The extremal values of error £; for the third-order equations:
(A) approximation of the extremal value by using the second-
order equation, (B) approximation of the extremal value by
using the the third-order equation, (C) the exact extremal
value of the error ;.
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6. Conclusions

In the paper the review of results concerning extremal values of the transient errors
is given from a general point of view. The limits of extrema and the time of their
occurrences are determined. A method of determining these extremal values is also
proposed, which does not require the knowledge of the roots of the characteristic
equation. Moreover, the knowledge of the time 7 is not necessary, either.

The method gives directly a good approximate relation between extremal values
and the coefficients of the differential equation in an analytical form. Some numerical
examples are also presented.
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