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AN INDIRECT MODEL REFERENCE ADAPTIVE
CONTROL ALGORITHM BASED ON
MULTIDETECTED-OUTPUT CONTROLLERS

KosTas G. ARVANITIS*

The use of sampled-data multidetected-output controllers for model reference
adaptive control of linear systems with unknown parameters is investigated.
Multidetected-output controllers contain a sampling mechanism in which the
system output is detected many times over one period. Such a control allows us
to assign an arbitrary discrete-time transfer function to the sampled closed-loop
system and does not make any assumptions on the plant but controllability and
observability. An indirect adaptive control scheme based on these sampled-data
controllers is proposed, which estimates the controller parameters on-line. By
using the proposed adaptive algorithm, the model reference adaptive control
problem is reduced to the determination of a fictitious static state feedback
controller, due to the merits of dynamic multidetected-output controllers. The
known techniques usually resort to the direct computation of dynamic controll-
ers. The controller determination reduces to the simple problem of solving
a linear algebraic system of equations whereas in known techniques a matrix
polynomial Diophantine equation is usually needed to be solved. Moreover,
persistent excitation of the continuous-time plant is provided without making
any special richness assumption on the reference signal.

1. Introduction

In the last 20 years, much research has been reported on the use of digital controll-
ers in controlling continuous-time linear systems. In (Chammas and Leondes, 1978a;
1978b; 1978c; 1979a; 1979b), a certain type of periodically varying gain controllers
is proposed. This type of controllers detects all the plant outputs once in the sam-
pling period Ty and changes all the feedback gains N times in Tp. In (Araki and
Hagiwara, 1986), the multirate-input controllers (MRIC’s) are introduced. MRIC’s
differ from the controllers proposed in (Chammas and Leondes, 1979a) in that they
change the 4-th plant input N; times in 7, with uniform sampling periods. In
(Greshak and Vergese, 1982; Khargonekar et al., 1985) another type of periodically
varying controllers is proposed, which is different from the controllers reported in
(Araki and Hagiwara, 1986; Chammas and Leondes, 1979a) in that the plant output

* National Technical University of Athens, Department of Electrical and Computer
Engineering, Division of Computer Science, Zographou, 157 73, Athens, Greece,
e-mail: karvan@control.ece.ntua.gr



668 K.G. Arvanitis

is detected N times in Tp. The intersample-data controller is proposed in (Mita
et al, 1987), where instead of changing inputs frequently, a specific set of inter-
sample output data is used for control. Multirate-output controllers (MROC’s) are
introduced in (Hagiwara and Araki, 1988; Hagiwara et al., 1990). Such a type of
controllers changes the plant inputs once in Tp and detects the 4-th plant output N;
times in Ty with uniform sampling periods. Finally, the use of generalized sampled-
data hold functions (GSHF) in controlling linear systems has been investigated in
(Kabamba, 1987). The difference between the classes of digital controllers mentioned
above and GSHF comes from the fact that in the latter case not only the controller
gain but also the hold function involved is needed to be designed. A special class
of GSHF are the multirate GSHF, first proposed in (Arvanitis, 1994), which incor-
porate some of the features of MRIC’s. All the foregoing types of digital controllers
have successfully been applied in solving many important control problems, such as
pole assignment (Al-Rahmani and Franklin, 1989; Araki and Hagiwara, 1986; Cham-
mas and Leondes, 1979a; Greshak and Vergese, 1982; Hagiwara and Araki, 1988;
Hagiwara et al., 1990; Kabamba, 1987), optimal control (Chammas and Leondes,
1979b; 1978c; Hagiwara and Araki, 1988; Mita et al., 1987), exact model matching
(Arvanitis and Paraskevopoulos, 1993; Kabamba, 1987; Paraskevopoulos and
Arvanitis, 1994), decoupling (Kabamba, 1987), strong stabilization (Hagiwara et al.,
1990; Mita et al., 1987), simultaneous stabilization (Kabamba and Yang, 1991), loop
transfer recovery (Hagiwara et al., 1990), noise rejection (Kabamba, 1987), robust
controller synthesis (Kabamba, 1987; Khargonekar et al., 1985), H>-control (Arvani-
tis and Paraskevopoulos, 1994; 1995b), adaptive stabilization (Ortega et al., 1988),
model reference adaptive control (Arvanitis, 1994; Arvanitis and Paraskevopoulos,
1995a; Ortega and Kreisselmeier, 1990), adaptive decoupling control (Arvanitis, 1995;
1996a; 1996b), etc. Some practical issues concerning the above-mentioned types of
digital controllers are investigated in (Er and Anderson, 1991; Hagiwara and Araki,
1988; Hagiwara et al., 1990).

Based on the previous research, it is well-recognized that digital control provides
various advantages over conventional time-invariant feedback controls, such as the
classical state feedback, dynamic compensation or state observers. The main of them
are:

(a) Digital controllers designed along the lines reported in (Arvanitis, 1994; Araki
and Hagiwara, 1986; Chammas and Leondes, 1978a; 1978b; 1978c; 1979a; 1979b;
Greshak and Vergese, 1982; Hagiwara and Araki, 1988; Hagiwara et al., 1990;
Kabamba, 1987; Khargonekar et al., 1985; Mita et al., 1987) can be used in the
cases where the state vector is not accessible for measurements and consequently
for feedback, providing almost the same (and in some cases exactly the same)
ability to adjust to the desired characteristics of the closed-loop system.

(b) As a consequence, they can be considered as an alternative to dynamic compen-
sators and particularly to state observers. They provide more design freedom
than the state observers while usually they do not introduce exogeneous dyna-
mics (additional state variables) in the control loop, as it happens in the case of
observers. Even in the case of MROC’s, the exogeneous dynamics introduced is
smaller than the dynamics introduced by an observer.
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(c) They are always stable controllers whereas estimator-based controllers may be-
come unstable when considered as dynamical systems. Even in the case of
MROC'’s, it is possible to choose appropriately the transition matrices of the
controllers themselves, thus providing that they are stable controllers.

(d) They have the ability to assure satisfactory robustness to the closed-loop system.

(e) They do not require many on-line computations. The computational complexity
involved in the design procedure is almost the same as that involved in conven-
tional time-invariant controllers.

(f) Finally, in digital control much more complex logic in control actions can be
implemented by making use of the recent advances in computer technology.

As mentioned above, in several recent papers (Arvanitis, 1994; Arvanitis and
Paraskevopoulos, 1995a; Ortega and Kreisselmeier, 1990), digital controllers and espe-
cially GSHF and MRIC'’s, have been used succesfully in the study of model reference
adaptive control problem (MRAC). The MRAC is one of the most attractive adap-
tive schemes proposed in the literature concerning the area of adaptive control of
dynamical systems with unknown parameters. Its basic idea, originaly proposed in
(Whittaker et al, 1958), is to force the system under control to behave like a gi-
ven reference model. Many important contributions have been made and a great
number of papers reported on the subject, wherein several techniques are used to
treat the problem, see e.g. (Arvanitis, 1994; Arvanitis and Paraskevopoulos, 1995a;
Goodwin and Chan, 1983; Goodwin and Sin, 1984; Goodwin et al., 1980; 1986; Kreis-
selmeier and Anderson, 1986; Kreisselmeier and Narendra, 1982; Landau, 1974; 1979;
Monopoli, 1974; Ortega and Kreisselmeier, 1990; Sastry, 1984; Sastry and Bodson,
1989) and the references therein.

In the present paper, the model reference adaptive control problem for line-
ar time-invariant systems is treated using an approach based on the design of
multidetected-output controllers (MDOC’s). MDOC’s can be considered as a spe-
cial case of multirate-output controllers, originally proposed by Hagiwara and Araki
(1988), in order to realize equivalently a stable state feedback controller in the case
where the state vector cannot be available for feedback. To the best of our knowledge,
there are no results in the literature concerning the use of this kind of sampled-data
controllers in order to achieve model reference adaptive control for linear systems. The
only available, partially relevant results, are reported in (Arvanitis, 1994; Arvanitis
and Paraskevopoulos, 1995a; Ortega and Kreisselmeier, 1990), where the GSHF and
MRIC approaches have been extended to the model reference control of linear time-
invariant systems with unknown parameters. The technique presented in the paper
in order to solve the discrete model reference adaptive control problem of continuous-
time linear single-input, single-output time-invariant systems, is based on an indirect
adaptive control scheme. The proposed technique makes use of a modified version
of the fundamental result of (Hagiwara and Araki, 1988) concerning the equivalence
between MDOC’s and static state feedback, of some ideas reported in (Ortega and
Kreisselmeier, 1990) regarding the introduction in the control loop of a signal pro-
viding persistent excitation of the continuous-time plant, and of the new approach to
exact model matching reported in (Paraskevopoulos et al., 1992).
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The motivation to use MDOC?s in order to control linear continuous-time systems
is manifold. Foremostly, MDOC’s as a special case of MROC’s maintain all benefits
of digital controllers, as mentioned above, over conventional feedback techniques.
Moreover, control using MDOC’s does not produce any serious drawbacks interwoven
with other types of digital controllers in which the plant inputs change their values
rapidly (see (Hagiwara and Araki, 1988) for details). In particular, as regards the
model reference adaptive control problem treated in the present paper, it is also
pointed out that the technique based on MDOC’s has also the following advantages
over the known techniques:

(a) It is not based on pole-zero cancellation and thus it is readily applicable to non-
stable invertible plants and to reference models having arbitrary poles, zeros and
a relative degree.

(b) It offers a solution to the problem of ensuring persistency of excitation of the
continuous-time plant without any special requirement on the reference signal
(except boundedness).

(¢) It reduces the solution of the problem to the solution of a simple nonhomogeneous
algebraic matrix equation, while known techniques resort to the computation of
dynamic controllers through the solution of Diophantine equations.

(d) Finally, it reduces the original problem to that of the determination of a fictitious
static state feedback controller. Thus, using the present technique, gain controll-
ers are essentially needed to be computed rather than dynamlc compensators, as
in other techniques.

2. Preliminaries and Problem Formulation

Consider the continuous-time linear time-invariant single-input, single-output (SISO)
system described in the state-space by the following equations:

x(t) = Az(t) + bu(t), y(t) = cTx(t) (1)

where z(t) € R" is the state, u(t) € R is the input, and y(¢) € R is the output of
the system. As regards the system (1), we make the following two assumptions:

Assumption 1. The system (1) is controllable, observable and of known order n.

Assumption 2. There is a sampling period 7o € RT such that the descretized
system (exp(ATyp), fo exp[A(Ty — A)bd), eT) is controllable and observable.

Except this prior information, the matrix triplet (A, b, ¢T) is arbitrary and
unknown.

We apply the following sampling mechanism to system (1): we connect a sampler
and a zero-order hold with period Ty which can be selected as suggested in (Er and
Anderson, 1991), to the plant input such that

u(t) = w(kTy) for te [kTO, (k+1)TO)
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while the plant output y(t) is detected at every T* = Ty/N such that
y(kTo + pT*) = cT€(kTy + uT*), p=0,1,...,.N—1

where £(-) is the discrete state vector obtained by sampling x(t) and N € Z* is
the output multiplicity of the sampling.

Now, consider the dynamic output feedback control law of the form
u ? + :ni = Lou(kTy) — kT3(KTp) + gw ?ﬂ + :i 2)

where the vector 4(kTp) is composed of the sampled data of the output in the interval
?5: (k + SH& and has the form

y(kTo)
y(kTo + T™)

y[KTo + (V= 1)77]

Controllers of the form (2), will be called multidetected-output controllers
(MDOC’s). They constitute a special case of the well-known dynamic multirate-
output controllers (DMROC) (Hagiwara and Araki, 1988; Hagiwara et al., 1990) in
the case of SISO systems.

The following two lemmas will be useful in what follows.

Lemma 1. With regard to the sampling mechanism given above, the following basic
relation holds:

HE[(h + :i = 4(kTy) — du(kTp) for k=0,1,... (3)
where H € RVN*™ and d € RN have the following forms:
_ et A .
T A\wz.v OSGZ
" -1 R
eT Abzlv cThy_,
H= . od=]| )
cTA1 cThy |
with
. . =T
A = exp(AT"), b; H\ exp(ANbdX for j=1,2,...,N (5)
0

Proof. The proof of Lemma 1 can be obtained as a special case of the results reported
in (Hagiwara and Araki, 1988). |
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Lemma 2. If we choose N > n, the matriz H has full column rank.

Proof. The proof of Lemma 2 can also be obtained as a special case of the results of
(Hagiwara and Araki, 1988). |

The model reference adaptive control problem treated in the present paper is as
follows: we are given a discrete-time linear reference model M of the form

2{y"(kTo) } = M(2)2{w(kT)} (6)
where Z{-} denotes the usual Z-transform, M(z) is the discrete transfer function
of the desired reference model, having the form

bnz™ + by 12™ 4 - 4 b b
M(z) = m2 + O0m_12 + + 012 + 0, m<n 7)
2"+ an_12" 1+ - tagz+ag

while y*(kTp) is the output of the reference model and w(kTp) is an arbitrary uni-
formly bounded reference sequence. Find a dynamic controller of the form (2), which
when applied to the system (1), achieves discrete-time asymptotic model i.e.

1. lim [y(kTo) —y*(kTo)| =o.
2. All signals in the control loop are bounded.

To solve the above problem, we apply an indirect adaptive control scheme. In
particular, we first solve the model matching problem, namely the exact matching
of the system (1) to the model (7). This is done in Section 3 and the corresponding
control strategy is given in Fig. 1. Next, using these results, the exact model matching
problem is solved for the configuration of Fig. 2, where a persistent excitation signal
is introduced in the control loop for future identification purposes. This is done in
Section 4. It is remarked that the motivation to modify the control strategy as in
Fig. 2 is that it facilitates the derivation of the indirect adaptive control scheme
sought. The derivation of this scheme is presented in Section 5, where also the global
stability of the proposed scheme is studied.

3. Solution of the Exact Model Matching Problem for Known
Systems

In this Section, we present a solution to the exact model matching problem, via
MDOC's, for the case of known systems. This is done by making use of some of the
results reported in (Hagiwara and Araki, 1988; Paraskevopoulos et al., 1992). More
precisely, we first establish here the basic idea of equivalently realizing a desired state
feedback via MDOC’s, which is summarized in the following result.

Theorem 1. Provided that the pair (A,cT) is observable and that the output multi-
plicity N is selected such that N > n, for almost every period Ty we can make the
control law of the form (2), equivalent to any state feedback control law of the form

w(kTy) = = FTE(kTo) + gw(kTo) (8)
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Fig. 1. Control strategy in the non-adaptive case.

by choosing properly the MDOC pair (L., wﬂv such that
K'H=fT and l,=k"d (9)

Proof. The proof of Theorem 1 can be obtained as a special case of the results of
(Hagiwara and Araki, 1988). [

On the basis of Theorem 1, it is clear that in order to solve the exact model
matching problem using MDOC’s, one has essentialy to refer to an easier problem,
i.e. to the design of a state feedback law of the form (8), which equivalently solves the

~

exact model matching problem for the system with matrix triplet (® = 4%, b =

%oﬂo eAbd), cT). Thus, in what follows, we will deal with this problem, recalling
some basic results reported in (Paraskevopoulos et al, 1992), regarding the state
feedback exact model matching problem.

3.1. Solution of the Static State Feedback Exact Model Matching Problem

The system (1) can match the model (3) under the control law (8) iff

nﬂANN - P+ m%ﬂvlmm = M(z)
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Fig. 2. The structure of the adaptive control system.
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or equivalently iff

%EI@V "= EANVT+@R&|@VL$ (10)

where
y=g7' and ¢ =~f" (11)

Let M(z) = M~(z) and z" ™M(z) be the (n — m)-delay inverse of M(z) and
define

~ -1,
L*(2) = 2™ M (2)eT A& - av b (12)
Then the relation (10) yields
|H N
L*(2) =7+ 97 (I - .& b (13)

From the definition of the o-delay inverse of a rational function M (z) it can be seen
that the maximal positive power of z in the rational function L*(2) is n —m — 1.
Then expanding the rational functions L*(z) and (2I — ®)~! in the formal power
series of z in the relation (13) yields

N\|3+3+HN3|31H + -+ .N.\IHN + .N\o + .N.\HNIH + .N\lem + ...
=y +9Tb T @b+ - (14)

Equating the coefficients of the same powers of z in (14), we obtain the following
system of algebraic equations:

.H\!QAHOv i=1,2,...,n—-m-—1 AHmv
v =Ly Cmv
T b=L;, k>1 , (17)

The relation (17) can be truncated to its first 2n equations (Ho and Kalman, 1966).
Hence the relations (15)—(17) can be rewritten as

L_j=0, j=1,2,...,n-m—1 (18)
QHH\O AHQV
PTI = AT (20)

where

mu? L b i .vsl& (21)
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and
AT=[L1 Lyl LG_l] (22)
Equation (20) has a solution iff

II
rank = rankII (23)
AT

On the basis of the Cayley-Hamilton theorem, eqn. (20), yields
pTs = A7 (24)

where S is the controllability matrix of the pair (@, b) and

J\Tz[Ll Ly | - Ln]

Since the pair (®, b) is assumed to be controllable, eqn. (24) admits the solution
$pT = A5 (25)
Furthermore, from (19) it is obvious that
g=I7 | (26)
Finally, combining (11) and (26), we obtain

T =713 s (27)

3.2. Computation of the Admissible MDOC’s

So far, we have established that the MDOC pair (Iy,k7) is related to the vector T
via the relations

KH=fT  1,=kTd
Since g is derived in (26), it only remains to determine the controller pair (I, kT).

To this end, let E be the N x N nonsingular matrix having the form

E=| ... (28)



An indirect model reference adaptive control algorithm based on ... 677

where
EN—n+1 e
EN—-n+2 €9
Ey = .+ , Eo= ] and &.HT:.OHQ:.& (29)
en eN—n ——— j-th position
- Also, let
. H
H2EH=|---- (30)
H,

where the matrices @H € R™*™ and @w € RIW-n)xn gre defined as

et ] )
. - N -1

P G I I I o
ﬁ nﬁ.ﬁwL | ﬁ oﬂA%«ivL |

Using the above definitions, we may determine kT by mere inspection, having
the following form:

kT = Tm;emLPL . o|p (32)
Furthermore, I, takes on the form
Ly = TmQHmLPL L 0]Bd (33)

3.3. Computation of Stable Dynamic and Static MDOC’s

Relations (32) and (33) provide the possibility to determine the dynamic MDOC
parameters kT and I, in the case where [, (which corresponds to the transition
matrix of the MDOC) is not prespecified to have any desired value. In the case of
this additional requirement (in which case we set I, = lu sp), in order to compute the
vector kT of the MDOC, it is necessary to make the following additional assumption
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concerning the system (1):
Assumption 3. For the system (1), the following relationship holds:

A b
rank =n+1 (34)
cl 0 ‘
Note that the relation (34) is equivalent to the following two statements:
(i) The system (1) is nondegenerate (Davison and Wang, 1974),

(ii) The system (1) has no invariant zeros at the origin (McFarlane and Karcanias,
1976).

We now establish the following result:

Theorem 2. Let ( A, cT ) be an observable pair and assume that (34) holds. Then,

for almost every sampling period Ty, the matriz [ H ! d] has full column rank
if N is selected such that N > n+ 1, where n 41 is the observability indez of the
observable matriz pair

o ,[cTO] (35)

Proof. The proof of Theorem 2 is given in Appendix A. | |

On the basis of Theorem 2, the MDOC vector k7, can be computed as follows:

Case N=n+1: In this case, the matrix [ H d ] is a square nonsingular
matrix. Hence k7 can be computed according to the following
relationship:

- : : -1
kT = [Lo_l,\TS_l : lu,s,,”H : d] (36)

Case N>n+1: In this case, k7 can be obtained as follows: Denote by S§* the
N x N nonsingular matrix of the following form:

EN—n €1
S EN-—n4t1 e

S =|.-1. , where ST = _ and S; = ] (37)
S5 : :

EN EN_n—1
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Let also H* be the following matrix:
A is[H fd]=] -0 . (39)

where the matrices Hf € RTDx(m+1) and HF € RW-—1x(n+1) are defined on
the basis of the following relationships:

cT m\m:lﬁv - nﬂmzt cT A,%Zv - n%mz
PR B PP L S Ll
cTA-1 cTb, ! Ax?tv - Thpyo

Using these definitions, it is plausible to determine kT by mere inspection to
have the form

1T 1 ¢ ~ T "
K= || L' s L, |(B7) f oS (40)

Remark 1. It is interesting at this point to observe that the above-mentioned analysis

for the case where [, is desired to take a prespecified value [, s;, provides us the

following two important capabilities:

(a) The capability to choose [, in such a way as to place its eigenvalues inside the
unit circle, a fact that directly means that the corresponding dynamic MDOC,
considered as a dynamical system, is a stable controller.

(b) The capability to choose [, so that it will take the zero value, a fact which means
that the corresponding MDOC is static and has the following configuration:

u ? + ci = —kT4(KTo) + gw ? + :ni

4. Solution to the Exact Model Matching Problem Appropriate
for the Adaptive Case

In order to obtain a solution to the exact model matching problem which will be
more appropriate for application in the case of systems with unknown parameters, we
slightly modify the control stategy of Fig. 1, as it is shown in Fig. 2. In particular, we
introduce in the control loop the persistent excitation signal v(¢), which is defined as

o) = W, a"® =), av-a ()]
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Here, g(t) is the T*-periodic vector function with elements having the form
Gi(t) = q;, for te {uT*,(p+1)T*), i=0,1,...,N—1, p=0,1,...,N—1 (41)

where

1 if p=1
Qip = (42)
0 if p#i

It is pointed out that v is unknown. We remark that the additive term v(t) = ¢7 (t)v
at the input of the continuous-time system is used only for identification purposes and,
as will be shown later, it is selected such that it will not influence the exact model
matching problem.

We will now establish the following results:

Theorem 3. If N is chosen such that N > n, the closed-loop system can be expressed
i the form

g[(k + 1)To] = (e- BfT)E(kTo) + bgw(kTo) + B*v
k>0 (43)
y(kTo) = cTE(kTy)

where B* is the n x N matriz of the form
B* = [AN—lB* AN-2p* 3*]

and

-
b = / exp [A(T* - A)]bd)\
0

Proof. In order to show that the closed-loop system can be written in the form (43),
we start by discretizing the system (1) with sampling period Ty to yield

(k+l)T0
¢ [(k + 1)T0] = BE(KTy) + / exp {A[(k +1)Tp — )\] }bu()\) dx  (44)
kTo
Observe now that u(t) = r(t) + q¥(t)v and r(t) = r(kTy), ¢ € [kT, (k + 1)Tp).
Hence the relation (44) yields

(k-l—l)To

E[(k + 1)T0] = BE(KTo) + /kT exp {A[(k +1)Tp — A] }b dAr(kTo) + Tv (45)

where

(k4+1)To
= / exp {A[(k +1)Tp — ,\] }qu()\) dx
kTy
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If N is chosen such that N > n, then according to the results of Section 3 one can
~fTE(kTy) + gw(kTy), with f7 = k"H and k”d = 1,. Hence the
relation (45) equivalently yields .

£[(k+ )T] = (@ - bsT)€(T0) + bgw(kTy) + Tw

It only remains to prove that T

681
take q.QnM._OV

(46)
= B*. To this end, the (¢ + 1)-th column of the
matrix T, denoted by T';y1, for ¢ =0,1,..., N —1, can be expressed as
To
it u\ exp Tﬁ - é bg;(\)d\ for i=0,1,...,N—1 (47)
0
Substituting (41) and (42) into (47) yields

exp

N-1 o(ut+1)T*
Tiy1= MU \
p=0 JAT*

Tﬁ - 3 bgi (A)d\ for i=0,1,...,N—1 (48)
The relation (48) may further be written as

N-1 T*
L= 3 aowep { ANV - 1- w1} [
p=0

exp TG - y%:;

2 ~ ~
= M Q@..~<|m>mlw b*
£=1
Making use of the relation (42), we get
H.I‘H - \WZI&IMMw*

Clearly, T' = B™*. This completes the proof. |

Theorem 4. Let the n xn matric S* be defined as follows:
§* = T@T:w* An-2j m;

Then, for almost every sampling period Ty, the matriz S* is nonsingular.

Proof. The proof of Theorem 4 is given in Appendix B.

|
Now, let A be the N x N nonsingular permutation matrix with the property
A~! = AT and having the form

> ]

a=[aria]
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where
A= [€N—n+1 EN-n42 €N]
Ay =€en_y
Az = [EN—n—1 EN-n-2 €1 ], €5 = GJT

Furthermore, let

Bipas[s i o]
where
Q*:[AN—”;* AN-2jx An-{-li)*]

Since the MDOC gains k¥ and I, can be computed as in Section 3, it only
remains to determine an appropriate vector v which guarantees that the exact model
matching problem will not be influenced by the vector . In other words, v € ker B*,
or B*v = 0. An obvious selection of such v obtained also by mere inspection is the
following:

v=a| L ' (50)

The general form of v is

7
v=B;| " (51)

PN-n

where Bj is the N x (N — n) matrix whose columns are linearly indepedent
N-dimensional vectors which are orthogonal to the rows of B* and where Pj,
J=1,2,...,N —n are arbitrary real parameters.

Let us note that the vector v, even though it does not affect the discrete mod-
el matching problem, provides persistent excitation useful for identification of the
system, as will be shown in the next section.
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The introduction of the reference signal v(t) in the control loop greatly facilitates
the estimation of the plant parameters in the case of unknown systems. For this
reason, the control strategy of Fig. 2 is more appropriate than the control strategy
of Fig. 1 for the achievement of the indirect adaptive control scheme presented in
Section 5.

5. Control Strategy for the Adaptive Case

The control scheme presented in Section 4 has the corresponding scheme in the case
where the system is unknown. For the case of unknown systems, the control strategy
is largely based upon the computation of the MDOC gains wﬂv l., g and the vector
v from suitable estimates of the parameters of the plant with updating taken every
kTy, k = 0,1,... and results in a globally stable closed-loop system whose output
follows assymptotically the output of the desired model.

5.1. System Identification

The system (1), when descretized with sampling period 7 = T*/(2n + 1), takes on
the form

m?\ + :L = ®.£(vr) + bou(vr), ylvr)=clé(wr), v=0,1,... (52)

where

&, = exp(Ar), b, = \ " exp [A(r -~ n)]bax (53)

Iterating equation (52) 2n + 1 times and observing that u(v7) is constant for v7 €
[mT*, (m+1)T*), m =0,1,..., we obtain

£[tm+1)T*] = ®r-&mT*) + br-u(mI*) .
m=0,1,.

y(mT*) = cT&(mT™)

where

2n
$r.-=A=8""  br.=b"= M ®°h, (54)
p=0

We also note that the matrix @ and vector b can be written as

N—-1 A (2n+1)N-1 .
p=AN=9PON b= Abr= > ¥, (55)
p=0 p=0
Furthermore, as can be shown, the vectors mc., j=1,2,...,N may be expressed as

b; = —®;b; (56)
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where
. 3T
®; = exp(—AjT™), b; = / exp( AX)bd) (57)
0
The matrices ®; and b; may also be written as
. (2n+1) -1 3 (2n+1)5-1 .
«bjz{[qy] J} ;b= Y @b, (58)
p=0
Introducing (58) in (56) yields
X (2n41)5) 1 (ent1)j-1
bj:_{[cpT] J} S @b, (59)
p=0

From the above analysis, it is clear that the matrices ®, 13, A and I;j (which
are the only matrices involved in computing the multidetected-output controller gains
kT, I, and g) can be computed on the basis of the pair (@, I;T). Moreover, when
fixing the coordinate system such that

0 0 0 ~-an B
1 0 0 —ap1 Bn-1
=0 1 0 —ans |, b=| B, [00 .. 01] (60)
[ 00 1 - | | B
only o; and f3;, 4 = 1,2,...,n are considered as the unknown parameters. Note

that the relations (52) and (60) are equivalent to the following difference equation:

y(vr) + Zaiy(m' —pT) = Zﬂiu(u'r -p7), v=0,1,... (61)
p=1

p=1

The relation (61) can now be used for the identification of the parameters of the
unknown system. To this end, the relation (61) can be written in the following linear
regression form:

y(vr) = 7 (vr)0
where
o wr) = [ —ylvr—-171), ...

, =yt —n1), u(vr —7), ..., u(vT —N7) ]

and

Bz[aiy ceey O, ﬁla ERR ,Bn]
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Define

Y(kTo) = [ y(kT), 4Ty = 7), ., y((k=1To) |

Z(kTp) = T%&J? STy —7), ..., ¢((k - :@L
and

by = TE&? ., Gn(KTo), Bu(kTo), ..., PQH;L
Clearly, we have the relation

YT(kTy) = 27 (kTp)0

We now choose the recursive algorithm for estimation of 8; as

~ - T —1
B = i — [af + Z(KTy) 27 (KTy)|

« Z (kKTp) ?e?g? - M\QEV_“ a>0 (62)

5.2. Algorithm for Adaptive Controller Synthesis

On the basis of the estimated parameter vector 6 obtained from (62), as well as
on the basis of relations (54), (55), (59) and (60), one can take the estimates need-

~ ~ ~ A A

ed for the computation of the matrices A = A(f), & = ®(), b = b(#) and

~ ~ ~

b; = b;(6), which are involved in the algorithms presented in the previous sections.
Moreover, since the matrices II, H and the vector d can be constructed on the

~ ~ A ~ A PN

basis of the matrices ®(8), b(6), A(6) and b;(0), provided that the matrix triplet
(®7-(8x), br-(8x), €T) is minimal and that relations (15) and (23) hold for any
possible value of 6, we can obtain the following results sought:
kT = kT(0r), 1. =1.(0:) and g = g(bs) (63)

Consequently, the procedure for the synthesis of a model reference adaptive
MDOC, for each case considered in Section 3, consists of the main steps given bellow:
1. Case of nonprespecified I, and N>n:
Step 1. Choose the sampling period 7 such that 7=Tp/(2n+ 1)N =T*/(2n +1).
Step 2. Update the estimates using (62).
Step 3. Use (60) to compute the matrices ®., b, and cT.
Step 4. Use (55) to compute the matrices ® and b and (54) to compute the matrix A.

Step 5. Use (26) and (27) to implement the equivalent fictitious static state feedback
controller parameters g and fT.
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Step 6. Find the matrices S and §° using the relation (49).
' Step 7. Form the matrix H and the vector d, using the relation (4).

Step 8. Use (28) and (29) to compute the matrix E as well as (31) to compute the
matrix H;.

Step 9. Implement the dynamic MDOC sought using (32), (33) and (50) or (51).

2. Case of prespecified I, and N=n+1:
In this case repeat Steps 1-7 of Case 1 and furthermore:

Step 8. Implement the MDOC sought using (36) and (50) or (51).

3. Case of prespecified I, and N>n+1:

In this case repeat Steps 1-6 of Case 1 and furthermore:

Step 8. Use (59) to compute the vectors l;j.

Step 9. Use (37) to compute the matrix S* as well as (39) to compute the matrix H;
Step 10. Implement the MDOC sought using (40) and (50) or (51).

5.3. Stability Analysis of the Adaptive Control Scheme

With regard to the stability of the proposed adaptive scheme, we next give the fol-
lowing fundamental theorem.

Theorem 5. The regressor sequence ¢(vr) is persistently ezciting, i.e. there is a
6 > 0, such that

(2n+1)N
Z(kTo)ZT(kTo) = Y. $(kTo — v7)¢T (KTy — v7) > 61 (64)
v=0
Proof. The proof of Theorem 5 is given in (Ortega and Kreisselmeier, 1990). |

Since the regressor sequence is persistently exciting, the difference 6 — 6,
where 6 contains the true values of the parameters, converges to zero. This guaran-
tees convergence of the controller parameter estimates to their true values, uniform
boundedness of &(kTy), y(kTp), Yk = 0,1,... and y(¢) and assymptotic discrete
model. Moreover, the adaptive scheme ensures exponential convergence of the esti-
mated parameters, since

Opsr — 0= [ 1+ a7 Z(kTo) 27T (KTo) ] ( 0,0 ) (65)

The relation (65) together with (64) ensure that 0, — @ exponentially as k£ — oo
(see (Kreisselmeier, 1989) for details).
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6. Simulation Example

In this section, the proposed model reference adaptive control algorithm is tested
through an illustrative simulation example. The simulation results that follow are
obtained with the use of the “mdmrac” procedure, which was coded for this purpose
in MATLAB 4.2¢ for WINDOWS. In the example, we address the same continuous-
time plant utilized in (Kinnaert and Blondel, 1992), i.e. the unstable second-order
system of the form

s—10

H(s) = s(s—1)

which has a non-minimum-phase zero at s = 10. The plant is discretized by using
a zero-order hold and a sampling interval of Tp = 0.02s, that yields the following
discrete-time plant:

0.0182z — 0.0222
22 — 2.0202z + 1.0202

H(z)=

having a pole at z = 1, an unstable pole at z = 1.0202 and an unstable zero at
2 = 1.2221. The reference model is selected to be the second-order system of the form

0.05462 — 0.0667
22 — 1.8462z + 0.8542

The poles of the model are conjugate with values z = 0.9231 & j0.046. The
reference signal w(t) is a unit square wave with period of 12s.

M(z) =

The output multiplicity of the sampling is selected as N = 4. Thus the sampling
period has the value 7 = 1ms.

In the case where [, is not prespecified, the parameters of the admissible MDOC,
as computed by (32) and (33), are

kT = Tv 0 234.9080 — mwm.m@ﬂ_“ |=-12434, g=3

In the case of a static MDOC (I, = 0), the parameters of the admissible MDOC,
as computed by (40), are

%HT — 4986 10182 IS@&, g=3

while in the case where [, is chosen such that I, = 0.5 (the case of a stable dynamic
MDOC), the MDOC gains can be computed using (40), to yield

wen? — 6991 14182 LEL“ g=3

In the case of an unknown plant, the simulation was performed using the proposed
modified recursive least-squares algorithm. The nominal vector € was of the form

T
6 = H ~2.0010 1.0010 0.0010 |o.oSi
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The identification algorithm was initialized with the following parameter vector:
. T
By = [ 1111 ]

and with a = 0.2. Simulation results are given in Figs. 3-20. Figures 3-8 represent
simulation results for the case of non-prespecified ,. In Figs. 9-14, simulation results
are given for the case of static MDOC. Finally, Figs. 15-20 represent results of the
simulation in the case of a stable dynamic MDOC, where I, = 0.5. Note that similar
results can be obtained in the case where @, or a, take other values, e.g. a = 0.5 or
0.9 and

@0:[4443]T or éoz[-2421]T or éoz[—z —2 —2 —2]T

From this example we can see that-the proposed model reference adaptive control
algorithm based on MDOCs has a good performance even if it is applied to non-
minimum-phase plants. We remark at this point that the square wave w(t) with
period of 12, used as the reference signal, provides sufficient excitation to the plant.
So in this case the excitation signal v(t) is useless. In the case where v(t) is added
in the control loop, simulation results show that, in the case where v is evaluated
by (50), the convergence of the identification algorithm is ameliorated. It is worth
noticing that in this case the excitation signal v(t) causes a static steady-state error of
approximately 15%. However, this static error is eliminated by evaluating v through
(51) and by appropriately selecting the arbitrary parameters Pri, 1=12 (eg. p1 =
0.5 and py = —0.45).

7. Conclusions

A new indirect adaptive scheme has been derived for model reference adaptive con-
trol of continuous-time linear time-invariant single-input, single-output systems using
multidetected-output controllers. A simulation has been presented to demonstrate
this adaptive controller. The approach proposed to solve the model reference adaptive
control problem has, from both the theoretical and the practical point of view, advan-
tages in comparison with the related known techniques. From the theoretical point of
view, the model reference adaptive control problem is reduced to the determination of
a fictitious static state feedback controller, due to the merits of multidetected-output
controllers. The known techniques do not possess this flexibility and they resort to
the direct computation of dynamic controllers. Moreover, the present technique does
not rely on pole-zero cancellation and it is readily applicable to nonstably invertible
plants and to reference models with arbitrary poles, zeros and a relative degree. Fi-
nally, in the present technique, persistency of excitations of the plant under control
is provided, without making any special assumption on the reference signal, except
boundedness. From the computational point of view, the controller determination
reduces to the simple problem of solving a linear algebraic system of equations. In
the known techniques, matrix polynomial Diophantine equations are usually needed
to be solved.
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Fig. 9. Closed loop system output ya versus reference model output e in
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Fig. 10. Controller output u(k) in the case of I, =0 (static MDOC).
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Fig. 11. Estimates of &1(k) versus ctinom in the case of I, =0 (static MDOC).
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The present approach may be extended to solve other important problems in
the area of adaptive control, such as adaptive pole placement, adaptive LQ optimal
regulation, decentralized adaptive control, etc., and for other types of systems, such as
time-varying periodic and non-periodic linear multivariable ones. Adaptive schemes
including robustness considerations are currently under investigation.

Appendices

A. Proof of Theorem 2

We will first prove that the matrix pair (35) is observable if the pair ( A, T ) is
observable and the relation (34) simultaneously holds. To this end, let

A= |20 ero[a o] (A1)
00

We next build the observability matrix Q of the pair ( A*, ¢*T ) which, as can be
shown, takes on the form

The matrix Q may further be written down as a product of two matrices Q

and @, ie. Q =Q @, where

AT c
Q= ......
T 1 0
0 c ATe (AT)=1¢
Qo = | et
1 0 0 0

Let us now check the rank of the matrix Q. As is shown in (Gantmacher, 1959),
the following matrix rank inequality holds:

rank @ + rank @, — ¢ < rank (Q @) < min {rank@l , rank@z}
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where ¢ is the common dimension of @; and Q. Observe now that in our case
rank@Q =n+1, rank@ =n+ 1, min Tw:w@kmuw@w =n+1l, g=n+1
Hence, rankQ = rank (1 @) = n + 1 and the matrix pair (35) is observable.
Let us note that on the basis of (A1), the matrix ﬁ H Hl can be written as

c*Texp A - \»*.Zu:v

ﬁm &_ B n*ﬂmﬁuAlb*AZICH*v

T exp A - m»*miv
Multiplying both sides of (A2) by exp (A*Ty) yields

O*H

ﬁm .L oo Ab*ﬂov _ c*T exp Ab*ﬂ*v
c*Texp AK#*A,Z - Cmiv

It is now easy to find a series of elementary transformations = (with det = # 0)
defined as follows:

T

ESEIEICYIE T {exp (4r1) - 1}

(1]

T ﬁ@% A\»*H*v - NVZI_ ]

Due to the fact that the matrices = and exp (A*Tp) are nonsingular, in order

to prove Theorem 2, it is now sufficient to prove that the matrix

(1]

ﬁ H NL exp Ab*ﬂou : (A3)
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has full column rank if we choose N > n+ 1. To this end, dropping appropriate rows

of the matrix Z[ H | d]exp (A*T), we obtain the following square matrix:

C*T

Q- T {exp (A*T*) - I}

T {exp (A*T*) - I}
The matrix € has the same rank as the matrix

C*T

«T *e | *
Q- c {exp(AT) I}/T
cT {exp (A*T*> - I} /T*"
As the sampling period Tj tends to zero, the matrix 2* tends to the matrix
C*T
) C*TA*
Q=
C*TA*n

and the determinant of Q" tends to the determinant of Q, which, due to the fact
that the pair (A*, c*T) is observable, takes a non-zero value. This means that the
determinant of the matrix of the form (A3) takes also a non-zero value for sufficiently
small values of Ty. Due to the fact that the determinant of the matrix (A3) is an
analytic function of T, we conclude that this determinant takes non-zero values for

almost all sampling periods Tp. Consequently, the matrix [H d] has full column
rank for almost all sampling periods Tj.

B. Proof of Theorem 4

Observe that
. ) NT*
A =exp (ANT*), b= / exp (A/\)bd/\
0

and the matrices S* and

A

U=[b Ab A"—lz}]
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are interrelated according to the following relationship:

0 0 0 1
00 10
§*=UE, E= .
10 ..00

Hence, if U is nonsingular for almost every Ty, so does S *. Now, define
(T*) = detU

Since y(T*) is an analytic function of 7%, in order to prove that (T*) # 0, it is
sufficient to prove that ¥(*)(0) # (0) holds for some positive integer k. To this end,
we proceed as follows:

First, observe that, by the formula about the differential of a determinant, we
obtain

E:HJHME:E»}Q w?v Tw&?v ?i&?; cw:
Y : :

1=

where the summation is carried out for A; > 0, > ., A; = k. Since

i1\ ) _ 0 if k=0
? Jv Te=0 ?FLT:&ETJ if k>1 (B2)

we obtain

«det | AM7Ip P oAMTIp Lo 1AM (B3)

where the summation is made for

Nzl > A=k (B4)
=1
We next focus our attention on the ko-th derivative, where
. n(n+1
ko=) j= ||Al|ml|v (B5)
Jj=1

The determinant in (B3) does not reduce to zero if the A;’s satisfy

NEN (#]) (BS)
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and from (B4) and (B5) we have

. _n(n+1)
;M === (B7)

From (B6) and (B7) we obtain the following set

{Al,Al,...,An}z{1,2,...,n} (B8)

This means that, for k = ky = n(n + 1)/2, the summation in (B3) needs to be made
for A, i=1,2,...,n, given by (B8). Next, denote by o the permutation

_ 1 2 ... n
o1) o(2) ... a(n)

and let A\; = o(4). Let also S be the symmetric group of permutations o. Then the
summation in (B3), for k = k = n(n + 1)/2, can be written as

ko! O (s ‘
(ko) () — Mo o) _ (5 — 1)°®
T = 2 a(z’)!g{l (- 170)
xdet[A”(l)‘lb DA oL A"(")‘lb} (BY)

The relation (B9) can be rewritten as

fy(ko)([)) = ﬁ% {ngn(a) H {,L-a'(i) —(i— 1)0(1‘)}}

o€S =1
xdet[b D Ab . A"—le (B10)
Observe now that
> sgn(o) 1I {z’”(i) - (i- 1)”(")} =det® (B11)
o€S =1
where
11—t e 1" — Qn
2! — 1! 2 —1n
e = _ ) (B12)

nt—(m-1! - " —(n-1)"
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Introducing (B11) in (B10) yields

ko! : : :
(ko) —_ 0 : : : n-1
4 §|:wu:._§®%ﬁ7 oAb AT (B13)
Observe also that
I 1
NH Mw Le.o9n n
det® =det | | =n (@-p) =]t ®B14)
: : 1<p<gsn i=1
n' n? n"
Introducing (B14) in (B13), we obtain
&E@nwo_%ﬁT PAb o ELL (B15)

Since the system (1) is assumed to be controllable, we finally obtain
70)(0) £ 0 (B16)
This completes the proof.
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