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ON THE APPROXIMATE SOLVING OF CONTROL
PROBLEMS FOR SYSTEMS DESCRIBED BY
VARIATIONAL INEQUALITIES WITH
NONLINEAR OPERATORS

OLESYA VLADIMIROVNA SOLONOUKHA*

In this paper an approximate solution of some extremal problem is constructed.
The system is described by a variational inequality (VI), where the operator
is of uniformly lower semilimited variation. For this purpose, we carry out the
change of the initial problem for the family of auxiliary problems: the inequality
is converted into an equality by adding a penalty term to the utility function
L(u,y), and the control space is extended. At each step we find the optimal
control, which is an approximate solution of the initial problem. If there are
some assumptions on the differentiability of the system operator and the utility
function, then we can deduce the optimality conditions for the approximate
problem. As examples, we consider some free-boundary problems on Wz} (),
p 22

1. Introduction

Recently the interest in the variational inequalities with partial derivatives has been
increasing. This is due to internal problems as well as to application requirements.
The theory of variational inequalities has emerged as a powerful and effective tech-
nique to study a wide class of free-boundary problems, equlibrium, nonlinear opti-
mization problems, etc. The variational inequalities have a wide spectrum in various
branches of both pure and applied sciences, and in particular, in economics and en-
gineering (Dafermos, 1992; Duvaut and Lions, 1972).

There are many works where the system is described by variational inequalities.
In many of them the authors consider variational inequalities a with strong monotone
operator which have the unique solution. Nevertheless, many mathematical models
use operators with weaker conditions which assume non-uniqueness. Moreover, many
algorithms use auxiliary conditions regarding the operators, functions and sets, e.g.
the system quasilinearity (Tseng, 1992), the system differentiability (Tseng, 1991),
the set polyhedrality (Pang, 1990) or compactness (Taji, 1993). Therefore, future
studies of this problem are still needed. In this work, we study the variational in-
equalities where the operator is of uniformly lower semilimited variation. The results
are obtained under the assumptions utilized for the proof of solvability (Ivanenko and
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Melnik, 1988), and the system differentiability is used to find the optimality conditions
only.

To construct an approximate solution, we change the initial extremal problem
for an auxiliary problem, where the control space is extended. This auxiliary problem
consists of the operator equation and of a new utility function with a penalty term.
Analogous methods were used for solving linear variational inequalities (Glowinski
el al., 1976), where a quadratic penalty function was constructed and for solving
an extremal problem in (Barbu, 1993), where the separation of the penalty made
it possible to construct an extremal problem for a linear operator equation. We
consider the problem in which the operator is essentially nonlinear, i.e. we cannot
construct a quadratic penalty function or extract a linear operator equation, etc. But
by some properties of the new utility function, however, at least one solution of each
approximate problem exists. The sufficient properties of this function are proved on
the compactly embedded space V;* C V{*. Such solutions are approximate for the
initial problem.

Futhermore, the aim of Section 5 is to show that under additional conditions on
the differentiability of the operator and the utility function (analogous conditions are
used to obtain optimality conditions for known functions) we can obtain the optimality
conditions for the auxiliary extremal problem, i.e. the new penalty function is not
weaker than the one analysed earlier.

The theory is suitable, in particular, for free-boundary problems, as will be shown
in Section 6.

2. Problem Formulation

We consider the optimal control problem for a system described by the following
variational inequality:

(awy)e-v) > (re-y) veeK 1
L(u,y) — inf (2)

Let V1 be a reflexive Banach space and V; be a Hilbert space (‘state spaces’)
such that Vi C Vo C V*, where V}* is the dual of Vi, V is the dual of V. We
identify V* with V4. Let us assume that these injections are dense and continuous.
The duality pairing on Vi x V{* will be denoted by (-,-). We identify it with the inner
product on Vy. Let U denote a space adjoint to some Banach space or to a separable
and normed space. Let K be a weakly closed convex subset in Vi, U be a weakly
closed limited subset in U and f € V}*. Moreover,let L: UxV; - R=RU {+0c0}
be a weakly lower semicontinuous function, ie. if U 3 u, — u weakly-(*) in U,
V1 3 yn — y weakly in Vq, then lim,,_, L(tn,yn) > L(u,y). Here and subsequently,
we use the following terminology:

Definition 1. An operator A:V; — V{* is called

a) radially continuous if Vy € D(A) and V&, h € Vi thereis an ¢ > 0 such that
the function [0,e] 5t — (A(y + t£),€) is continuous;
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b) demicontinuous if for every convergent sequence {y.} the sequence {A(yn)}
converges weakly;

c) strongly monotone if Vy; € Vi(||yillv, < R, 1 =1,2) thereis a d > 0 such that

(A) - Alwa)y v = 92) 2 dllys — ol

Definition 2. An operator A4 : U xV; — V{* is called

a) coercive if there exists yo € K such that

(AGw9),5 - 0) 2 7(lylv ) Iyl (3)

where y(s) — oo as s — 00;

b) the operator of uniformly lower semilimited variation if Vy; € Vi(lly:llvy <
R, i =1,2) the inequality

(Aw31) = Awa), 31 —12) > inf Co(Rolln = wally) Yue U (9)

holds, where [|-]|’ is a compact seminorm with respect to ||-||, Cy : Ry xRy — R
are continuous, and Yh, R > 0 we have 1C(R,7h) — 0 as 7 — 0;

¢) uniformly locally limited on X if Vy € D(A) and Vu € U (such that |lully <
| < 00) there are k; > 0 and ko > 0, such that |[|A(u, £)||x < k2 as [ly—§|| < k.

Let us orient A : U x V3 — V;* by the following requirements:
i) A is coercive;

ii) Yu € U the operator A(u,-): Vi — V{* is radially continuous, and Vy € V; the
operator A(-,y):U — V}* is continuous; moreover, if U 3 u, — u weakly-(x)
in Uand D(A) 3 y, — y weakly in Vi, then (A(un,¥),yn —¥) — 0;

iii) A is of uniformly lower semilimited variation.

Consequently, the existence of solutions to (1)—(2) is proved and A has the property
(M): if U 3 up, — u weakly-(x) in U, D(A) 3 yo — y weakly in Vi, A(un,yn) —
d weakly-(x¥) in V;* and lim, , (4 (un,yn), n) < (d,y), then d = A(u,y) (see
Ivanenko and Melnik, 1988).

We consider the space V; such that the injection V; C V5 is dense and compact.
The injection V;* C Vi* is then dense and continuous. Moreover, we set ||-||3, = |||z
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3. Preliminaries

We shall use the following results:

Proposition 1. Let X be a reflezive Banach space and A:U x (D(A) C X) — X*
such that A(u,-) : D(A) — X* is a radially continuous operator Yu € U, A(-,y) :
U — X* is continuous and limited, and Yy; € D(4), (i = 1,2,|lyillx < R) the
following estimate holds:

<A(u,y1) — A(u,92),91 — y2>X >—inf C, (R, llyr — yzl\x) YueU (5)

Then A is uniformly locally limited on X* and, if there exist K C X and M CU
such that ||y|lx < k1, llullu <1 and (A(u,y),y)x < k2V(u,y) € K x M, then 3C >0
such that Y(u,y) € K x M the estimate ||A(u,y)||x« < C holds.

Proof. Suppose, contrary to our claim, that for some y € D(A) there is a sequence
Yn such that y, — y strongly in X and

sup || A(u,Yn)|lx — 00
flullv<t

Tt follows from (5) that for every w € X such that y + w € D(A), and for some
R >0, we have

(A yn) = Aty +0), 9 —y—w) 2 = inf O (R, v v~ wllx)

<A(”ayn):yn - y>X - <A(u,yn),w>X — <A(u,y + W), Yn— Y — w>

x
> — inf Cu(R, llyn —y —wlx)
Thus
<A(u,yn),w>x < <A(u, Yn),Yn — y>x
+ <A(u, Y+w),yn =y — w>X + inf C, (R, lyn —v - wllx)

Let us suppose that a, = 1+supt|u|]m<l 1A, y)llx=llyn —y — wl|x, an > 1. By
multiplying the previous inequality by a;', we obtain

L<A(u,yn),w> < 'L{<A(Uayn):yn - 7J>X

On X (67

+(Aluy + )=y =)+ inf (Rl =y —uilx) |

Since y, — y strongly in X, we have ||y, — ¥ —w||x — ||w||x . The sequence a;!
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is limited. Then the last inequality is followed by

a—;<A(u,yn),w>X < al_n{ llelg o (R: lyn —y — w”X)

v

+ 14 g+ )by +o = vnllx +1} < N
where N is independent of u. Hence

al—n<A(U,yn),w>X <N

Similarly, for (—w) we have
1
EZ<A(’“’; yn)7 _w>X <N,
Since w € X is an arbitrary element, we obtain

lim
n—oo

- <A(u,yn),w>X| <o Ywe X
Then from the resonance theorem it may be concluded that
[l A(u, yn)l

where h is independent of both u € U and n, i.e.

X+ SNan

4G, ya)llxe < N(1+ sup [ Au,4n)

llellust

v)

Let no be such that Nlly, —yllx < 1 for n > no. We thus get
1
IA(e, yn)llx- S N+ 5 sup [|A(u,4n)llx-
lullu<t

1A, yn)llx+ < 2N < 00

This contradicts the fact that supj,j,<i |4(u,yn)llx+ — oo. Since A is locally
limited in X, it follows that 3¢ > 0 and 3M, > 0 such that ||A(u,&)||x- < M V¢ €
X, ll¢llx <€, Y||lullu < I. By the definition of the norm and properties of A we have

1 1
lA@Wlx- = sup 2(A(w,y)¢) < sup —{ Alu,9),v
llfllxss€< >X 1]l x<e € < >X

+ (4w ),6) — (4w &,y) + inf Co(R, 1y - ﬁllx)}

<

M | =

(k:2+M€E+M5k1+k}2)=M<OO
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where
i) <A(u,y),y>XSkz
i) [(408),6) | <A@l
i) (4 ,v) | < 14w Elx-lyllx < Mok
iv) inf O (R, ly - €llx) < ks

since the functions C,(R,T) are continuous and ||y||x < ki, ||¢]lx < e, U is limited.
Thus ||A(u, y)l|x+ < M ¥Y(u,y) € K x M , which completes the proof. ]

x|l€llx £ M.e

Proposition 2. Let us assume that conditions (i)-(iii) of Section 2 hold and (u,y)
is a solution to (1). Then A(u,y) € V' for f € V.

Proof. Let J:Vy — V5* be dual. We can show that 3e; > 0 such that VYe12e>0
the inequality

<J(y€ - y) + SA(uayE)Jé - y6> > 0 V£ €K (6)

is solvable in K. Since V5 is a reflexive Banach space, an equivalent norm exists such
that V3 is a strongly convex space (Lions, 1969). Therefore, the dual function J :
Vo — V3 is strongly monotone and demicontinuous (Lions, 1969). J(-—y) +eA(x, )
is coercive, since Yu € U

(I =) + A1), 5 — 90) > (el ) el

+®(llye = vlla ) lve = vollv = 00 a5 Juellys — oo

where ® : R — Ry is a nondecreasing function, & generates J, ®(0) = 0 and
®(s) — 00 as s — oco. Also J(- —y) + eA(u,-) is a radially continuous operator
of a uniformly lower semilimited variation. Therefore Ve > 0 the inequality (6) is
solvable. Since A is coercive, the solution of (1) is limited, |lyljy, < k. Since
J(-—y) +€A(u,-) is coercive, there is a limited solution to (6), lvellvy < k2. Hence

6<A(u,ys),y - ys> > <J(y — Y)Y ye> =lly — w3,

Moreover,

<A(u,y),ys - y> < <A(u,ys),ys - y> + inf G, (R, llye — ylfvz,)

<~ My ~ wlf, + inf Co(R,llye — vllv,)
ie.

e =9I, < (Alw )y - 2e) — inf Co (R lye — vllvs)

< <f:y - ys> - 1}25 C_v (R’ llye — y“V2)
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Thus

e lye = wllva < Ifllva = llye — wlly; inf C, (R, lye — y”w)
If llye —yllv, =0 as e — 0, then

ly- = Iy, inf C. (R, llye — yt]vz) —~0  ase—0

and since C,(R; ) are continuous, we see that e~!(y—y,) islimited in V3. Otherwise,
we can choose a subsequence {e,} such that ||y, —y|lv, > Ca. Since for any v € U
continuous functions C, are limited on the bounded interval [Ca,C)], there is a
maximum C,(R, |lye — yllv,) < Cs, ie.

G
C

< 0

e lye — yllve <Iifllvy +

The sequence {y.} is limited. If J(y —y.) = eA(u, ye), then A(u,y.) is limited
in V3*. Otherwise, since A is locally limited, there are § and ¢ € int K such that
[ ACu, Ollv; < M V€ € Bs(¢), Bs(€) ={€ € K : || —€llw, <6} I {y.} C By,

-~

then {A(u,y.)} is limited. Otherwise, we can choose ¢ € Bs/2(€) and consider
¢ € Bs/2(0) such that ¢ + ¢ € D(A). Then

(A9, ¢) < (Alw,y0), 50— €) + (Alw,C+),C+E~.)
+inf Co(RIC+HE~vellvs ) < (T =), ve = €) + (A, ¢+, ¢+ € v
+ il O (B NS+ = vl ) < &7y = gelvallye = €l

+ | A, ¢+ £)|

v IC+€ = vellvs + inf Cu (R IC+€ = ellva) < N < o0

Consequently, {A(u, y.)} is limited.

We can choose subsequences satisfying

Ye,. =Y weakly in V
AU, Ye,,) = d  weakly-(+) in V!

"But V; C V; is compact, and so
Ye,, — Y strongly in V5

It still remains to prove that A(u,y) = d € V,*. By property (iii) the following
estimate holds:

(Alw3e) = 40, 0,9. - €) 2 - inf Oy (R, e €l
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Set £ = (1 — A)y + Az, where z is an arbitrary fixed element of V;. Then

—<A(u,ys),ye - y> + <A(u,€),yg -y =Nz - y)>

< MA(w,ve),y =) + inf Cu (R, My - allv,)
Letting € — 0 yields
MA@ 6,y -2) <A(dy—z)+ inf Co (R, Ally - allv;)
and consequently
(A&~ dy—a) < tw 5 inf Co(R A = 2l,) =0 Veev;
Since z is arbitrary, A(u,y) =d by property (M), and the proof is complete. [ |

4. Main Construction

Let us isolate some equation from the variational inequality.

Lemma 1. Suppose that the problem

A(w,y) = f+o (7)
F(v) = sup (v,y() —€) + I (3()) =0 (®)

where By = {£ € K : || — yllv, < 1}, and Ik is the indicator of the set K (without
loss of generality we can set F(v) = oo if By is empty), has a solution for any
arbitrary fized w. Then the pair (u,y) is a solution of (1) if there is a v such that
(u,y,v) is a solution of (7)-(8).

Proof. Let (u,y) be a solution of (1). Then (v,y — &) = (A(u,y) — f,y — &) <0 for
any arbitrary £ € K and Ix(y(v)) =0, i.e. F(v)=0. Consequently, (u,y,v) is the
solution of (7)-(8).

Let (u,y,v) be a solution of (7)~(8). Then F(v) = 0, SUPgep, (v,y — &) =0
and Ik(y(v)) = 0. Thus y € K. Suppose that 3¢ € K such that (v,y — £) > 0. Let
& =A+(1-A)y, A € (0,1). Then (v,y—8&\) = (v,y— A~ (1-A)y) = (v, \y—\¢) =
A(v,y — £). Hence the sign of the function (v,y — £) remains constant along each ray
outgoing from y. Since K is convex, any arbitrary ray intersects the unit ball with
the centre at y € K. If (v,y — §) > 0, then 3¢, € K such that (v,y — &) > 0.
We obtain the contradiction with (v,y — ¢) < 0. Consequently, (u,y) is the solution
of (1). [ |

Remark 1. We selected such B; so as to obtain F(v) < oo if [lyll, < oo and
llvllvy < oco. Moreover, if K is bounded, we can consider in (8) Supge g (v,y — €).
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We can show that the function F' possesses sufficient properties for the solvabi-
lity.

Proposition 3. F(v) is a coercive, lower limited, weakly lower semicontinuous
function on V.
Proof. Since A is coercive and A{v,y — &) = (v,y — £3), where &, = A{+ (1 — Ny,

there is a €\ such that

F) 2 sup (v,y—¢€) = (v,y - &) 2 (Awy) - £y - &o)lly - &olly!

£€EB:

Vf) - 00

> ellyllzt (A y) - £y - &) > e(v(lyln) - IIf]

as ||y|ly; — co. Hence F(v) — oo as ||y|lv; — oo.

We consider the behaviour of v as ||y}ly; — oo:

lellv; il = (v,9) = (4w, y) = £,9) > e(vwllvoliyliv, ) = 1 f vy e

Since V1 C V¥ is continuous, there exists C > 0 such that ||y|lv, < C|ly|lvy. There-
fore, ||v|lv; — oo as |lyllv, — o0.

Now let us assume that ||yflv; < k1, F(v) < k2 and |jv|ly; — oo. Since F(v)
and ||y|lv, are limited, we obtain that (v,y) and |y|v, are limited. Moreover,
lullu < I since u belongs to a bounded set. Hence [v|lv; < oo by Proposition 1.
This proves that F(v) is coercive.

Furthermore, F'(v) is lower limited. Indeed, if y ¢ K, we have Ix(y(v)) = 1
and supgep, (v, — &) > (v,y(v) —y) =0, F(v) > 1. If y € K satisfies inequality
(1), then (v,y(v) — &) <0VE € K and Ik(y(v)) =0, F(v) =0. On the other hand,
3¢ € K such that either (v,y — &) > 0 or Ix(y(v)) =1, ie. F(v) > 0. We obtain
F(v) > 0.

It still remains to prove that F' is weakly lower semicontinuous. Let v, — v
weakly-(*) in V5*. By the solvability theorem (Ivanenko and Melnik, 1988) Vv, 3y,
such that {y,} is limited. Then we can choose a subsequence such that y,, — y
weakly in Vi. But V; C Vf is compact. Thus y,, — y in V5. Then

lim sup <1}m,ym —§> = lim <vm,ym> + lim sup <vm,——£> = <v,y>

m—oo (€8 m—oo MmO eeB;

+ lim sup <vm,-—§> > <v,y> + sup <v,—£> = sup <v,y— §>
M= ceBy £eB, ¢€B:

Let us assume that y(v) ¢ K. Because K is closed, there is a neighbourhood U, C V;

of y, where Uy N K = 0, and 3N such thatVm > N, y., € Uy, ie. Ix(ym) = 1,

im0 Ix (Ym) = Ik (y) = 1. In the other case y € K, i.e. Ix(y) =0 < Ix(ym) Vm.

Thus lim, ., F(vm) > F(v) and F is weakly lower semicontinuous. This completes

the proof. |



742 0.V. Solonoukha

Remark 2. If K is a cone, the variational inequality is equivalent to the system

(A@wy).€) = (£,6) VeekK

<A(u, y),y> = <f,y>

and we can use a more suitable penalty function, e.g.

F(v) = |(v,30)] + Ix(y(v))
The properties of this function can be proved analogously to Proposition 3.

Remark 3. The statement remains true, if we carry out the change of the indicator
Ik for some weakly lower semicontinuous function 3 such that S(v) =0 if y(v) € K

and B(v) >0 if y(v) ¢ K.
We introduce the new function

1
LE(u,y,v) = L(uvy) + EF(U)
where L(u,y) is the initial utility function. Let us consider the new problem:

Alu,y)=f+v 9)

Le(u,y, i 1
(u 4 'l)) - vel}}l,quU ( O)

Proposition 4. Under the above conditions, Ve > 0 the solution of (9)-(10) exists
for every f € Vi*. '

Proof. By the properties of the operator A(u,-) Vu € U, Yv € V* 3y € V4 such
that Au,y) = f +v.

To prove that L.(u,y,v) is lower limited, it suffices to show that L{u,y) is lower
limited. Let us suppose the contrary, i.e. that there is a sequence {un,¥yn,vn} such
that

L(un,yn(vn)) <-n Vn

By assumption {u,} is limited; {y,} is limited, because the function Lc(u,y,v) is
coercive. Then we can choose weakly convergent subsequences

Ym — ¥ weakly in 3
Uy — & weakly-(x) in U
Since L is weakly lower semicontinuous, we obtain

L(@,9) < lim L(um,ym) < —00

m—00
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But this is impossible because we have L : UxV; — R = RU {+0o0}. Hence L is
lower limited. Since F(v) > 0, L{u,y)+1F(v) > L(u,y). Thus, L. is a lower limited
function.

Since F(v) is coercive, the function Le(u,y,v) is coercive. Furthermore, L, is
weakly lower semicontinuous because both I and F are weakly lower semicontinuous.

Hence, for the function L, a minimizing sequence {¥n,Yn,vn} exists, and
{yn}, {vn} are limited by coercivity of Le, {un} is limited by assumption. Also
{A(un,yn)} is limited by Proposition 1. By reflexity of Vi, V;* and U we can
choose weakly convergent subsequences

Ym — Yy weakly in

U — ¥ weakly-(+) in V'

Um — U weakly-(x) in U

A(Um, ym) = & weakly-() in Vy
But V; CcV; is compact. Thus

Ym — Y strongly in V;
Hence

Jim (A, ym), 4 ) = lim <vm+f,ym>-=<ﬁ+fyz7>

m—00
Since the operator A has property (M), we obtain A(%,7) = f + 5.

Suppose that this solution is not optimal, i.e. 3(u,y,v) € U x K x V5 such that
Le(u,y,v) < L.(4,7,9). Let d be the least lower bound of function L,. Then

Le(U,y,v) < Ls(ﬂ,f"/\a 5) < lim Le(umaym1vm) = lim Le(um)ymzvm) =d
m—oo

m—0o0
Thus, we obtain the contradiction, and the proof is complete. |
Since the problem (9)—(10) has a solution, we can prove the approximate theorem

and thus obtain the method of approximate solving (1)—(2).

Theorem 1. Let Ve > 0 the triple (e, ¥e,ve) be a solution of
A(”a y) =fe+v

Le(u,y,0) = L{u,y) + = (sup (v.y(0) =€) + I (y<v>)> - _nf

£€B; vEVZ"‘,uEU

where fo € V3 and ||f - fellvy < e Then we can choose subsequences
{ue, b {Ven}, {ve, } such that u., — @ weakly-(x) in U, y., — § weakly in Vi,
Ve, — U weakly-(x) in V3, and (@,7) is a solution of (1)-(2).
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Proof. By Proposition 2, Vf. there is a v € V5, such that for any arbitrary fixed
u € U thereis a y € Vi such that L.(u,y,v) = L(u,y). Then there is a minimizing
sequence {ue,Ye, Ve }. Since L, is coercive and the set U is bounded, this sequence is
limited. Hence we can choose weakly convergent subsequences

ue, — U weakly-(¥) in U
Ve, — ¥ weakly-(x) in Vj
ve, = U weakly-(x) in V5
Moreover, f., — f strongly in V}*. Since Vi C V; is compact, we have
Ye, — Y strongly in V5
Hence

lim (Afwe,,9e,)¥e, ) = lm (ve, + for e, ) = (94 £,7)

en—0 £n—0
By property (M) A(%,%) = f +7.

Since U is weakly closed, we have u € U. It still remains to show that (v,{—y) >
0 and y € K, i.e. F(v) = 0. Let (u1,y1,v1) € Ux K xV3* be an arbitrary triple
which satisfies inequality (1). Then (without loss of generality e, = ¢) we have

Le(ue, Ye,ve) < Le(u1,y1,v1) = L<u1,y1(v1))
and
F(ve) < E(L(ul,yl(v1)) — L(ue, Ye,ve) < eC
where C is independent of e. Since L is weakly lower semicontinuous,

li_mLe(us,ya,Us) > lim L(ue,ye,ve) = L(%, )

e—0 e—0

and

F@®) < lim F(v.) <0

—

™
(=]

Since F(v) > 0, we have F(¥) = 0. Hence § € K and satisfies the variational
inequality (1).

Suppose that this solution is not optimal with respect to the utility function L,
ie. 3(u,y,v) € Ux K x V5 such that L(u,y(v)) < L(@,y). But {(ue,ve,v:)} is a
minimizing sequence. We write lim, ,; L. (u,, ye,v:) = d. Then

L(u,y(v)) < L(@,y) < lim L. (ue, ye,ve) = d

e—0

We obtain the contradiction. The theorem is proved. [ |
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Remark 4. It follows from the theorem that Vf € V}*,if (u,y) is a solution of (1),
then there is a v € V' such that A(u,y) =v+ f.

Remark 5. Let the initial problem make it possible to localize the approximate
problem on the closed set K’ C Vi, i.e. we can deduce that A(u,y) — f € K', when
(u,y) is a solution of (1). Then we can consider the approximate problem on the
control set U x K’ and all the statements remain true.

5. Optimality Conditions

Set F1(v,y) = supgep, (v,4(v) — €), and let us show that we can infer the optimality
conditions for the function L. (u,y,v) = L(u,y)+e 1F(v) = L(u,y) + e H(Fi(v,y) +
Ix(y(v))), if the system operator A and the utility function L, possess some relevant
differentiability properties.

Let (u,v) be an optimal control of (1)—(2). Then
L.(u,y,v) < L, (wu,y(wu,wv),wv) V(wy, wy) € U x Vo

By construction this inequality may be written as follows:

L(u,y) < L(wu,y(wu,wu)> (11)
F,9) < Fi (w,y(wy,0.)) (12)
Ik (y(v)) =0 (13)

Since Fj is linear with respect to ¥ and v, Fj(v,y) has Giteaux partial derivatives
DyFl(:U:'U)hy = <’U,hy>, DvFl(yav)hv :S%p <hvay_€>
Moreover, if L is subdifferentiable, then (11)—(13) become

<6Lu(u,y),wu - u> + <5Ly(u,y),wy - y> >0
<v7wy —y> +812p <wv -,y —€> >0

Ix (y(v)) =0

If A and L satisfy stronger conditions, we can modify the last formulas. Let in a
neighbourhood V C U x V; the operator A and the function L satisfy the conditions:

j) A:U xV; — V5 has continuous Géteaux partial derivatives

DyA:V = L(U,Vy), DyA:V — L(V1,Vs)
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ji) L:U xV; — R has continuous Gateaux partial derivatives
D,L:V - V) D,L:V U
jii) Y(u,y) € V the operator [DyA(u,y)]™! exists and is limited with respect to wu.
For convenience we introduce the operator A(u,y,v) = A(u,y) —v. It is easy
to see that DyA(u,y,v) = DyA(u,y), DyA(u,y,v) = DyA(u,y). Moreover, we have
D,A(u,y,v) = —1. Consequently, the conditions of the implicit function theorem are

satisfied. Hence Vh = (hy,hy) € U x V¥ the formulae for y' are

Y (1, 0)hy = — [DyA(u,y)]—lDuA(u,y)hu

-1

y' (u,v)hy = [DyA(u,y)} e
Hence it follows from (11)—(13) that the optimal control (u,v) is estimated as follows:
<DuL(u»y)qu - u> + <D’UL(“: y)sy;(wu - "U,)> + <DyL(usy)>yL(wU - ’U)> Z 0
(DoFi(9,0), w0 = ) +(DyFa(y,0), valwe = 1)) +(Dy Fi(y,0), 3 g — v)) 2 0
I (y(v)) =0
Substitute y., and y! into the previous inequalities. Then
(DuL(u,y),we = ) = (D, L, 1), Dy A, 1)) Du Alu, ), — )
+(DyL(u,9), Dy A, )]~ (wy — v)) > 0
(DoF(y,v), 0, = v) = (DyFi(y,), [Dy A, )] DuA(u, ) (ws — w)
+ (DyFi(y,0), D, A, )} (wo = 0)) > 0
I (y(v)) =0
Moreover, let us introduce the state P = (P, P,) € V4 x4 such that

DyA(u,y)Py = DyL(u,y), DyA(u,y)P, = DyFi(v,y)

Then the inequality is written as follows:

<DUL(u,y) — Dy A(u, y)* Py, wy — u> + <Pu,wv - v> >0
<D,,F1 (y, )Py, wy — 11> - <DUA(u,y)*Pv,wU - 1)> >0

Ix (y(v)) =0
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6. Examples

The examples below are model steady-state problems of the thermal conductivity
theory (with nonlinear Fourier law), of the elasticity theory (with inhomogeneous
medium) and of the nonlinear viscoelasticity theory. In the linear case these models
were described partially by (Duvaut and Lions, 1972).

Let us consider the Sobolev spaces W,}(Q), where p > 2, Q is a bounded domain
in R*, T is the boundary of , Vz € I' the vector of the external normal v is defined,
AUXWHQ) - W), pl+gt=1, Dy=(&,...,25), U={ue L,(Q):
lullp,@) < M}, Vi = WAQ) x Wp/U(T), Vi = W H(Q) « Wy /UT), V5 = Ly(D),
K= {y € WA(Q) : yp > 0}

We can show that the function B(v) = Bdist(y(v), K) (8 > 0) is weakly lower
semicontinuous. Let v, — v weakly in L,(T"). Then y, = y(v,) is a limited sequence.
Without loss generality yn, — y weakly in W) () (otherwise we can choose a weakly
convergent subsequence). Moreover, since the limit is unique and A has property (M),
y = y(v). Hence y, — y strongly in L,(I"). Consequently, since K is closed, the
function ﬁ is weakly lower semicontinuous and we can carry out the change of Iy

o~

for 8 (Remark 4).

Example 1. Let us consider the operator A(u,y) = A(y) + B(u), where B(u) =
~u, u € Ly(®), A@y) = - Ty o5 (155 P2 5E) + cllyhys ¢ 2 Lp(Q) — Ly (9)

Oz; T;
is nonnegative with ¢' = p/(p — 2); —E%’; = -3 1|—L p=2 %1 We consider the
problem:
A(u,y) = f(z)
9y 9y
>0, 2| >o, 29
in‘ =7 Ovalr — yaI/A r

L(u’y) = ”y - zd”ip(n) + ”u“%q(g) — &gf(‘]

In variational inequality form, this problem is as follows:

owy-92 [ (f@) +u@)w-9ds, VEeK (14
Q
L{u,y) - inf (15)
where a(y,y — &) = [o X0, |2 P22 288 4z + [ o(lyl)y(y — &) dz, K = {y €

W;( )yr > 0} Let us show that the method is applicable in this case.
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Evidently, A(y) is radially continuous, B(u) continuous. For any arbitrary
Y5 € Wy (), llysllwae) < R, 5 = 1,2, we have

_/i:3< Qa_yl—)(_)dx+/2":6(
Q& ox; ox; LI Q= ox;

+/QC(ly1|)y1(y1 —yz)dw~/90(lyzl)yz(y1 —y2)dz

p—2 ayl

Ay |P™
- ox; )(yl v2) dz

83:1-

o
8:1;,-

. |0y [P% 01 Oy — Y2)
> 4 — )2 oY1 9\y1 — Y2)
- ~/QJr£H12 C(iyj I)(yl y2) dIL' * /g; ; Bxi afEi 89;1 dJI
= |0y [P7° Oy2 3(?/1 3y1 =2 oy,
- /9 ; oz; oz; / Z o, (y1 —y2)dl
S Oy2 P2 0y
+A;5; T gy~ ) AT > = max 1Dy, 1l = vl

— (R lyr = vl 1, ()
By the trace theorem, [|Dy,l|.,(ry < clDy;liz, ) < cR (see Lions and Magenes,
1969). Moreover, ||-||,(r) is compact with respect to || ”W‘”"(F) (see Ladyzhenskaya,

and Uraltseva, 1973). Thus, A is a radially continuous operator of uniformly lower
semilimited variation.

If c¢(lyh)y > c(z)|y|P~2y, where c(z) > 0, then we can show that A is coercive
(Congbao, 1994a; 1994b). Otherwise, a(y,y) > [, o0, [am‘ [Pdz = ]|Dy||L (@) —
2 1DY]7, o) = 00, and L(uw,3) 2 lly = zulf, g, — o0 a5 [y}, q) — co. This
means that the problem is coercive. Consequently, the problem is solvable and we
can construct the new extremal problem

o)

Alwy) = @), go| =v (16)
1 .

Le(wy,) = L) + = ([ ol dr + By, o) = _jn - (7)

where K' = {v € L,(I')lv > 0}, ¥y~ = min(y,0). Since the system satisfies the
assumptions of Proposition 4, the solutions of (16)— (17) exist for all € > 0 and by
Theorem 1 we can find subsequences such that y. — ¥ weakly in Wl(ﬂ), Ue — T
weakly-(*) in L,(T'), i.e. y. — 7 strongly in L,(R2) as € = 0, (@,7) is a solution of

(14)-(15).

Example 2. Let the operator A(y) be the same as in Example 1 and assume that

the control is U 3 u = (p,1)), where ¢ € W,}/”(F), P € Ly(T), ¢ >0, ¢ >0. We
consider the problem

A(y) = f(z)
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ylr = o, aayy > -, (Hcp)(% +¢)|F =

L(w,y) = ly = zallyy ey + 6. .y = i

In variational inequality form this problem is as follows:

alry-92 [ (fo)+u@)u-6ds, VK (18)
L(u,y) — 111615 (19)

where K = {y € W)(Q)Jyr > —¢}. Then the system satisfies Proposition 4 and
Theorem 1. Consequently, we can construct the extremal problem

0
A(y) = f(z), —5% LY (20)
Le(w,9,9) = L(u,y) + SF(0) = _jnf (21)

where F(v) = supgec [ o(y—€) A0+ (y+¢) "y and K = {v € Ly(D)fo > —}.
A solution to (20)-(21) exists for all £ > 0, and by Theorem 1 we can find subse-
quences such that y. — 7 weakly in W) (Q), u. — @ weakly-(%) in W,}/p(I‘) x Lg(T),
U, i.e. yo — ¥ strongly in L,(Q) as € — 0, (4,7) is a solution to (18)—(19).

Remark 6. Analogous results can be obtained for the operator

ay |P7% o
el y)+c<1y|>

Oz,

.9
Aly)=- la—wz (g( ) p
on M(®) = {y(z),z € N : d(y(z)) € Wy ()}, see (Laptev, 1994).

Example 3. Let u € Ly(©2) and assume that the operator is of the form

Z i(z,y, Dy) + ao(z,u,y, Dy)
where 6—‘19— = — Y7, ai(z,y, Dy). Let us consider the free-boundary problem:
A(u,y) = f(z) (22)
dy dy
>0 > 0 —| =
yIF 78 ) yaI/A r 0 (23)

L(u,y) = ly - zd||€v1}(g) + “u”qu(Q) - ig{] (24)
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Let the functions a;, 1 = 0,n, satisfy Caratheodory conditions, i.e. they are measur-
able with respect to all arguments and continuous with respect to y, Dy and u for
almost all z. Suppose for simplicity that 2 < p < n and the functions a;, i+ = O, n,
satisfy the following conditions:

a) 366 > 0 such that V0 < § < 6y and for some positive functions C,C; : (0,8p] —
Ry we have

lai(z,y, )| < [P~ + 8ly|” + C(6)h(z), i=T,n
lao(z,wu,y, )] < S(IEI™ + [y|™) + e1|u|*™! + C1(8)ho(z)

where c¢,c; > 0, r =n(p—-1)/(n—p) -1, h € Ly(Q), 7o = p— 1+ p/n,
ry =np/(n—p) =1, ho € Ly(Q), s’ = np/(np — n + p);

b) the ellipticity condition:

/ﬂ; (ai(ﬂ?,yaf) - ai(m,y,l/))(gi —v;)dz >0

c) the coercivity condition: for almost all z € Q and Vu € U we have
Z ai(x: y’g)gl + G’O(z’ u, Y, g)y > C0|§|p - 6g($)|y'p - 62(6)g1 (II:)
=1
where ¢g >0, g1 € L1(2), g € Ly/p(), C2(0,80] — Ry is limited.

Then the operator satisfies the conditions of Propositions 3 and 4 (an analogous proof
can be found in (Laptev, 1994)), and we may construct the new extremal problem:

0
Awy)=J@), | =v (25)
1 - .
Le(w,yv) = Lw )+ 2 ( [ ol dT+ By, 0)) — _jnt  (26)

where K’ = {v € Ly(T") : v > 0}.

The solutions to (25)-(26) exist for all € > 0 and by the approximate theorem
we can find subsequences such that y, — 7 weakly in WI}(Q), ue — ¥ weakly-(*) in
Ly(T), i.e. yo — 7 strongly in L,(Q) as € — 0, (@,7) is a solution to (22)~(24).

Remark 7. Since L is coercive, we can consider an unbounded set U and all the
statements remain true.
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7. Conclusions

In this paper a solving framework for the extremal problem with a variational in-
equality is constructed. For this purpose, the variational inequality is converted into
the equation by adding an adequate penalty term to the initial utility function (some
of these equations are well-known in others theories). This idea was used, in parti-
cular, in (Glowinski et al., 1976) for a monotone operator and in (Barbu, 1993) for
subdifferential part of a variational inequality. In this paper we propose other penalty
functions. By the penalty method weakly convergent subsequences are constructed.
The limit of these subsequences is a solution of the initial problem. The main ad-
ventage of this method consists in using assumptions of the problem solvability proof
only (Ivanenko and Melnik, 1988). Of course, for a slender group of systems, there
exist more suitable methods (Liu and Rubio, 1991; Noor, 1991; Tseng, 1991; 1992),
which allow us to calculate the next approximation and its error. Using this method,
we cannot calculate them. Such a possibility appears under the assumption that in
some neighbourhood the system operator A and the utility function L possess some
differentiability properties, as has been stated in Section 5. Hence these conditions
are not stronger than in the majority of known problems, and we do not reduce the
information concerning the initial problem with respect to other penalty functions.
This means that the method is applicable to a wider class of problems. Moreover, if
we have some sequence of solutions to the optimization problems, we can reconstruct
it by minimization of L. and find the direction of weak convergence. For most prac-
tical problems there are models in Sobolev spaces W;(Q) Then we can consider e.g.
problems in L,(2), and the sequence of approximate solutions converges strongly in
L,(92) to the solution of the initial problem.
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