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AN EXAMPLE OF NON-EXISTENCE OF A CONE
APPROXIMATION TO THE SET OF FEASIBLE STATES
FOR AN OPTIMAL CONTROL PROBLEM'

ULbpis RAITUMS*

The paper considers optimal control problems for linear elliptic systems with a
standard set S of admissible controls o. In the case where the principal part of
the operator depends on controls, it is shown that the set Z(S) of all solutions
u(co) of the state equations with o € S cannot be approximated, in general, by
cones, i.e. for a given og € S there is, in general, neither element A nor family

{oc} C S such that u(o.) = u(og) + €h + o(€) as € — 0.

1. Introduction

In a major part of investigations concerning the necessary optymality conditions as
well as in the sensitivity analysis for optimal control problems an assumption has
been made on the families {o.} of admissible controls that the corresponding states
u = u(g) possess the property

u(oe) = u(oo) + €h + o(e) D

as € — 0, see e.g. (Warga, 1972) for the case of ordinary differential equations.
The same scheme has been employed for partial differential equations (Lions, 1968;
Raitums, 1989).

As it appears now (Raitums, 1994) many results of this kind were due to the fact
that the validity of the necessary optimality condition in the form of the Pontryagin
Maximum Principle (or analogues of this Principle) implies the relaxability via
convexification of optimal control problems under consideration. In turn, proper-
ty (1) is a direct result of the convexity of the set of admissible operators and of the
Implicit-Function Theorem.

On the other hand, until now there has not been any clear idea of the type of
necessary optimality conditions for optimal control problems governed by systems of
partial differential equations with the main part of the differential operator depending
on controls from a nonconvex set.
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In this paper, we give a simple example of an elliptic system of equations
divA(@)Vu=divf, #€QCR", u=(us,...,un) € [Hg(ﬂ)]" @)
with a standard set of admissible controls
S = {UELz(Q) | o(z)=0or 1, xEQ}

such that for some o¢ € S there does not exist a family {o.} C S such that proper-
ty (1) holds with a non-trivial element h.

Roughly speaking, our example shows that the set Z(S) of all solutions to (2)
with ¢ € S has some properties which are similar to those of the set S itself.
We believe that this fact will be helpful to explain the difficulties which arise in the
investigations of optimal control problems for systems of partial differential equations.

2. Notation and Preliminaries

Let © be a bounded domain in R™ with a Lipschitz boundary 0} and let D be a
strictly interior subdomain, D C Q. We introduce the following spaces:

o L = [L2(Q)] is the space of nxn matrix-functions f = (f%), i,j =
1,...,n, with square-integrable elements. We will denote by fi, i=1,...,n

the rows of a matrix-function f.

e H = [H&(Q)]n is the Sobolev space of vector-functions u = (u!,...,u")

whose components belong to Hg ().
o G:= {fe L | f=gradu for someuEH}.
We will denote by P the operator of the orthogonal projection of L onto G.
The notation |Q| means the Lebesgue measure of a set Q.
In the sequel, we shall need the following result:

Lemma 1. (Necas, 1965) Let Q be a bounded Lipschitz domain in R™. Then there
exists a constant c(Q) depending only on Q such that for every a € Lo(Q) with

/ada::O
Q

lallz,@) < e(©)  sup /a“fu de (3)
D ueH, [[ull<1 ; a

we have

Since P is the operator of the orthogonal projection of L on G, the elliptic
system (the number of equations is equal to the dimension of the space)

div AVu=divf, z€ (4)
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with respect to u € H is equivalent to the equation
PlAVu - f| =0 (5)

In what follows, we will often use the form of eqn. (5) instead of (4).

Let D be a strictly interior subdomain of 0 and
S = ?mEQ | o(z)=0or 1if €D, o(z)=0 if am:f&

denote the set of admissible controls. Let ¢ € Cg°(f2) be a function such that
ste)=1if zeD,and fo=(f},....f), fi(z) =grad (zis(2)), i =1,...,n.
Consider the family of elliptic systems
div (1+0())Vu=divfo, s€9, weH (6)
or, in our notation, the family of equations

w? +0)Vu — i =0 | (7

depending on o € S. The solution of eqn. (7) corresponding to a chosen o € § will
be denoted by u(o).

Our basic result is as follows:

Proposition 1. For the family of equations (7) and for oo = 0 neither non-trivial
element h € H nor family {o.} C S exists such that

u(o.) = u(og) + eh + o(e)

where

llo(e)ll =

€

—0 as e—0

3. Proof of the Basic Result

We begin by modifying the result of Lemma 1.

Lemma 2. Let E be the identity matriz in R™™ and let {03} C S be a sequence
such that

Por,E—0 in L as k— o0

Then or — 0 in La(R)) as k — oo.
Proof. Lemma 1 implies that for every a € L(Q?) with

\ama”o
Q
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we have
lallz,(q) < allPaE|L

where the constant ¢; depends only on ¢(?) and =.
Since for every constant ¢ € R

PcE =0

we conclude that

Jk—!é—|/ﬂakdm P[(ak—-l—é—lfgakdx)E]

=c||PorEllr -0 as k— o0

<a
L, () L

From this and from the definition of the set S (the functions oy € S are equal
to zero outside the domain D) the statement of the lemma follows. |

Let us suppose that for ug = u(op) (with o¢ = 0) there exist a nonzero element
h € H and a family {o:} C S, 0<t < tg, such that

u(ot) = ug + th + oft)
From the relationships
P[(l + o) V(o) — fo — 0] —0
and
P[Vug — f5] =0
it follows that
PloiVuo] + tP[o;Vh] + tPVA + P[(1+0)o(t)] =0 8)
Since P is bounded, we see that
Plo:Vug] -0 as t—0
This, together with Lemma 2 and the fact that Vug(z) = F in D, implies
otz @ =0 as t—0
On the other hand, from the convergence g; — 0 as ¢t — 0 it follows that
Plo;Vh]| -0 as t—0
Thus, from (8) we obtain
Plo:Vuo] +tPVh = o(t) (9)

where |[o(t)||m/t — 0 as t — 0.
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The element PVh is equal to Vh and, therefore, is not equal to zero. The
functions o; are equal to zero outside the set D, but in D we have Vug(z) =
E if z € D. Hence, the relationship (9) gives

Plo.E] = —tVh + o(t) (10)

Set

1

WMI_ o:dz

a; ‘=0t —

Then from (10) and Lemma 2 we have
tlhlle —o(t) < lladllz.@) < et + o(t)
This means that for some subsequence {a:, } C {a:} we obtain
e o) = dte +o(te), k=1,2,... (11)

with some constant d > 0.
Hence, by virtue of (10) and (11),

ﬂﬁ% TT& I@e (12)

where (tx) —» 0 as tx — 0.

The sequence {as, /tx} is bounded in Lo(Q) and, without loss of generality,
we can assume that this sequence converges weakly in L,(2) to some element by €
Ly (D).

Since o; are the characteristic functions of subsets of D and o; — 0 strongly
in Ly(9) as ¢t — 0, simple calculations give

€
e X T )
where x.’s are the characteristic functions of sets with measure equal to € and

€= &w?w + QOSO_NV

Hence

W ~0 weakly in Ly(Q) as t — 0
k

i.e. @o =0.

The operator P is weakly continuous. Therefore, by passing to the limit ¢; — 0
in the relationship (12) we obtain

Vh =0 A \

that contradicts the assumption that h # 0. [ ]
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4. One-Dimensional Case

The statement of Proposition 1 can be, in some sense, illustrated by the following
one-dimensional example.

Consider the family of two-point boundary-value problems
(cy)' =f, O<z<1
y(0)=y(1)=0
where, by definition,

9
y_aac

(13)

and
sES = {(r €Ly(0,1) | o(z)=o0_ or a+}

with 0 < o_ < 0.
For the solutions of these boundary-value problems we have the explicit formulae

y'(0)=§[f—0(0)], c(a)=/01§dz(—/01§da:)

If the function f is not equal to a constant in sets with nonzero measure, then
the set {y'(¢) € L2(0,1) | o € S1} has the structure which is very similar to the
structure of the set S, itself. It is clear that for a fixed oy € S;, there are no families
{o:} C S1 such that

-1

oy = 09 + ta + o(t)

with some nonzero element a € Ly(0,1).
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