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UNIVERSAL ADAPTIVE TRACKING
CONTROLLER FOR RIGID MANIPULATORS

Aricia MAZUR*

The problem of (semiglobal) joint space trajectory tracking of rigid manipulators
is considered. A new exponentially stable control algorithm is introduced. This
algorithm requires only the knowledge of the manipulator dynamics along a
desired trajectory. A set of m local universal adaptive controllers joined to each

" robot arm plays the role of generators of the ‘correction of control’. The proposed
universal adaptive tracking algorithm (UATA) has the following advantages:
(i) a balanced gain distribution in the feedback-loop, (ii) small overshoots and
(iil) a fast transient response.

1. Introduction

The aim of this paper is to propose an alternative approach to the tracking control
problem of rigid manipulators. Earlier solutions to this problem have been known
for many years (see e.g. Sadegh and Horowitz, 1990; Slotine and Li, 1988; Wen and
Bayard, 1988). There exist quite many tracking algorithms based on various levels
of knowledge of robot dynamics. In (Qu and Dorsey, 1991) it has been shown that
a control algorithm using the classical PD controller without information about the
robot model yields uniform ultimate boundedness (also known as practical stability) of
the tracking error, i.e. the error tends in a finite time to a bounded region around zero.
The basic disadvantage of this algorithm is a trade-off between the knowledge of robot
dynamics and large gains of the controller. Continuously, growing up requirements
regarding the quality of robot control imply a search for new control algorithms.
It appears that at least partial knowledge of manipulator dynamics is necessary to
preserve asymptotic (exponential) stability of the control algorithm. The knowledge of
the robot model along a desired trajectory is often used in tracking control algorithms
(Sadegh and Horowitz, 1990; Wen and Bayard, 1988).

In the mid 1980s a new approach to adaptive control for linear systems was
developed which is called universal adaptive control (Mareels, 1984; Martensson, 1985;
Morse, 1983; Nussbaum, 1983). The basic idea of universal adaptive control is to
achieve control objectives for an unknown system using only output data without
explicit parameter identification. Universal adaptive control has been prospering in
linear systems for some time. Recently, great efforts have been put forth to extend
this approach to nonlinear systems (Allgoewer and Ilchmann, 1995; Iichmann, 1993).
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In this paper, we propose to solve a tracking control problem for rigid manipulators
using universal adaptive control (Mazur, 1993; 1996). Due to good properties of the
universal adaptive control, we expect that the obtained universal adaptive tracking
algorithm will exhibit significant advantages: a balanced gain distribution in the
feedback-loop, small overshoots, and a fast transient response.

We have shown that this algorithm is semiglobally exponentially stable. The
control algorithm presented here consists of two parts: (i) a reference control, which
needs knowledge of the robot model along a desired trajectory, (ii) a correction term,
which is a collection of local universal adaptive controllers defined by Byrnes and
Willems (1984). Since each of the local controllers resembles a dynamic PD controller,
the introduced control algorithm may be considered as a dynamic version of the Wen
and Bayard algorithm (Wen and Bayard, 1988). We have proved stability of the
new algorithm using the Lyapunov function technique. Our Lyapunov function is a
modified function derived by Wen and Bayard (1988). We have proved the exponential
stability similarly to the procedure presented by Sadegh and Horowitz (1990).

A simulation study has been made for the IRb-6 manipulator limited to the
first three degrees of freedom. The new algorithm is compared with the Wen and
Bayard algorithm. The proposed universal adaptive tracking algorithm offers signifi-
cant improvements of the quality of control.

The paper is organized as follows. In Section 2, the problem formulation and
main result (Theorem 1) are presented. Section 3 is devoted to the proof of the
main result. In Section 4 a simulation study is presented and the universal adaptive
tracking control for the IRb-6 manipulator is developed. Section 5 contains some
conclusions.

2. Problem Statement and Main Result

In this paper, we consider the problem of joint space trajectory tracking of rigid
manipulators. We will present a control law which preserves the convergence of a
real manipulator’s trajectory to a desired trajectory. Throughout this paper we will
consider the standard model of an n-link rigid manipulator (Spong and Vidyasagar,
1989) given by the following equation:

M(z)z + C(z,2)z + G(z) = u (1)

where x € R™ represents the joint positions, € R* stands for the velocities of the
joints, and u € R" is a vector of control inputs (torques). M (z) is a positive-definite
nxn inertia matrix, the matrix C(z,%) of size nxn is defined via Christoffel’s
symbols and represents the Coriolis and centripetal torques, and G(z) € R* is a
vector of gravitational torques.

We define a universal adaptive tracking control law for the robot model (1) as

U = M(zd):'éd + C(Zd,.'i‘d)iid + G(:Ed) —kPyey — kPses (2)
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where P;, P, are positive constants and e;, es represent tracking errors of positions
and velocities, respectively, defined as follows:

e1(t) = (e11,-..,€145. . .,eln)T = z(t) — z4(t), e; € R® (3)
ea(t) = (ear, ... €2, ... e20)" = E(t) — Za(t) = é1, es € R™ 4)

The matrix k is diagonal and describes the gains of the local universal adaptive
controllers:

k(t) = diag{ki(t)}, i=1,...,n (5)

where k; is the gain of the local dynamic universal adaptive controller assigned to
the {-th manipulator joint. Each local universal adaptive controller is in the form
proposed by Byrnes and Willems (1984):

k,(t) = (P1615+P2621‘)2 :Plzeiﬂ+P226§i+2P1P261i62i, 1= 1,...,’11 (6)

In what follows, we will assume k;(0) > 0. It is easy to see that eqn. (2) consists
of two parts. The first part, which should ensure the robot motion along a desired
trajectory, is actually the reference signal, and the second part which can be regarded
as a correction, is in fact the universal adaptive tracking controller:

U = Uq + UBW, upw = —kPie; — kPses (7)

Now we are ready to present the main result of this paper in the form of the
following theorem:

Theorem 1. Consider the model of the manipulator dynamics given by eqn. (1) in a
closed loop with the control law (2). Let k(t) be a diagonal matriz of local universal
adaptive controller gains k;(t)

60 = KO) + [ "hdt, k() >0

where ki(t) is given by (6), and let z4(t) be a desired trajectory along which the
manipulator moves. Then, for any bounded desired trajectory and for any initial
conditions z(0),£(0), there exist k(0), Py, P> such that the position tracking error
e1(t) and the velocity tracking error es(t) defined, respectively, as

e1(t) = z(t) —zq(t), ei(t) e R”
ex(t) = £(t) — za(t), e2(t) €R"

tend ezponentially to zero while all the local universal controller gains ki(t) remain
bounded, i.e.

lim k;(t) erists and is finite

t—o00

for all i=1,...,n, where i is the the number of robot links.

A block diagram of the control system considered in Theorem 1 is shown in Fig. 1.
The proof of Theorem 1 is given in the next section.
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Fig. 1. Block diagram of the universal adaptive tracking algorithm
(the manipulator and controller in a closed feedback loop).

3. Proof of the Main Result

The proof is based on the Lyapunov theory and falls naturally into four parts. First,
we propose a Lyapunov function candidate and prove that it is positive definite.
Then, we present an important lemma which gives us the necessary estimate of the
time derivative of the Lyapunov function. Next, we compute the time derivative
of the Lyapunov function along the trajectories of the closed-loop system. Finally,
an exponential stability is proved for the presented algorithm applied to a robot
manipulator.

3.1. Positive Definiteness of the Lyapunov Function

Our proof of the exponential convergence of tracking errors e; and e, is based on
a standard Lyapunov technique along with a lemma by Wen and Bayard (Wen and
Bayard, 1988) exploited to estimate the time derivative of the Lyapunov function.
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We will use the following Lyapunov function that is a modification of the function
used in (Wen and Bayard, 1988):

1
V(t,e1,e2,k)= ——82 TM(x)es + 61 Trpie) +eel M(z)es + Zsekayal (8)

where k& = k(t), £ = 4 + e; and ¢ is a small constant. We will show that there
exists a € > 0 such that V is positive definite in e; and ey. For this purpose, we
underbound all terms of V and show that this underbounding is positive, if ¢ is
chosen properly.

First, some notation is introduced: A,,(M(z)) is the minimum eigenvalue of
the matrix M(z) and Ap (M (z)) stands for the maximum eigenvalue of the matrix
M (z), both computed for a fixed z. Now, a well-known property of quadratic forms
yields

S E M@er > ZeAm(M(@))es = Hm(M@)eall? (9)

Similarly, the second and fourth terms in the Lyapunov function can be underbounded
respectively by

—el TkPie, > 1,\ (kPy)|lex]? (10)

1 1
566{](7])261 Z 56)\m(kP2)”61”2 (11)

From the definition of the inner product we derive the following expression:
eef M(z)es = ellen|| | M (2)esl cos L(er, Mea) > ~ellea]| || M (z)ez| (12)

From the definition of the norm of a vector we get

IMesl| = /ef MTMey = \[ef M2es < /33 (M)]le2l]? = Mar(M)llea]]  (13)
After multiplying (13) by the term —el|le;|| we derive the inequality:
—ellesll | Mezll > —ellea |l llezl|Are (M) (14)
From (12) and (14) we get the following evaluation:

eel M(z)e > —eMnr(M(@)llea] [lez] (15)
Obviously, we have
Am(k(t)P1) = PLAm (k(t))

so eventually the above inequalities result in the following estimate:

Vibenenk) > PmME)eal? + 3PAnkO) e

+ e PAn(k@)llen ] = elles] lealhar(M(2))  (16)
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Observe that we can rewrite relation (16) as

2
Vibenent) 2 2n(M@) (el 30D s )

2 A (M (2)) 2

Clearly, since the gains of local universal adaptive controllers k;(t) do not decrease
as t — oo, the following condition is sufficient for the positive definiteness of V:

. [Pl/\m(k(t)) +ePoAm(K(t)) — ¢

PiR(k(0)) + ePydn ((0)) — 24 > 0 (18)
where
L (M)
A=max3 i) ~°

We can compute e for which inequality (18) holds. Since we have assumed ¢ > 0,
it is immediate that V is positive definite provided that

0 < e < PA(kO) + ¢p§xg,é(Ak(o)) AP\ (K(0))

(19)

3.2. Wen-Bayard Lemma

In this section, a stability lemma is presented that plays an important role in further
considerations. This lemma has been proved in (Wen and Bayard, 1988).

Lemma 1. For a dynamical system
ii:fi(xla”'awNat)y miERm; t20, v=1,...,N

let f; be locally Lipschitz with respect to 1,...,xxn, uniformly in t on bounded
intervals and continuous in t for t > 0.

Let us suppose that o function V : R(m+ne+-nx) o (Ry U {0}) — (R U{0}) is
given such that

N
V(.’L‘l,...,.’l?N,t): mePij(:vl,...,xN,t)xj (20)

ij=1
where, for each i =1,...,N, there exists & > 0 such that
fi|l$i||2 < V(‘Tla""zN:t) (21)

and the following inequality holds:

V(:Cl,...,ﬂ?N,t) < ~Z (Oéi - Z ’)’inéEj(t)

] e (@))? (22)

el J€l;
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where a,-,')qj,kij > 0,1, C I C {1,...,N}.
Let Vo = V(z1(0),...,25(0),0). If for each i € I
kij/2
a; > Z Yij (_) (23)
€Iz

then for all

kij /2
M€V o — Z Yij (Y‘O‘> (24)
JEIy; & i

the following inequality holds:

V(z1,...,zn,t) < ~Z>\il|$i|l27 Vi >0 (25)
1€l

In the remainder of this section, we shall show that the Lyapunov function (8)
satisfies the assumptions of Lemma 1, and hence inequality (25) holds. Next, we find
a number & > 0 which satisfies the condition

Ver,e2,k,t) > &lleal® ' (26)

From (17) we obtain

Vienenkt) > bhn@) (leall - 320D )
+ 3B em A i) - 2 TE e
> %{(P1+€P2)/\m(k(t)) 2}\M(M(x)}
= &l
> &llel?

The term §’1 is time-varying and depends on the position z, therefore we take

£ = %{)\m(k(O)) (PL+<Py) —*A) @)

Note that the condition & > 0 results from eqn‘s. (18)-(19). Next, we will find a
number & > 0 for which the following condition holds:

V(er,ea, k,t) > &allea|? (28)
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To compute &, we rewrite (16) as
1 1
Vien,ezkt) 2 sller®a+ SAm(M)lleall — eXar(M)]eal] flesl]
_ 1 eAM( ) €222, (M) )
= 3 (1ot - 200e) " Lo (3 ) s

gna0) [1 - ) o

v

e2A
A (K(0))(P1 + st)] ez

> %,\m(M) [1 -

A
MO (E, 1 epy el = &l

where the symbols o i A are respectively defined as

2

lea|? (29)

o = An(k)(P +eP), A =min )\, (M) (30)
Consequently,
A .
o= “ (31)

Am(k(0))(P1 +ePy)

The numbers &,€& > 0 can be chosen in such a way that the Lyapunov function
defined by (8) satisfies assumption (21) of Lemma 1. To use Lemma 1, we have to
show that assumption (22) holds for V' as well.

3.3. Time Derivative of the Lyapunov Function

In this section, we will find an overbound for the time derivative of V along solutions
of the closed-loop system obtained by substituting (2) into (1)

M(z)ér = ~AMZ4 — C(z,3)es — ACiy — AG — kPiey — kPyes
k= diag { eh + P2 62z + 2P1Pzeheg,}
€1 = ey (32)
T =Tq+e
T=1Iq+ e

where

AM = M(z) — M(zq), AC=C(z,&) - C(z4,%4), AG = G(z) - G(z4)
The time derivative of V' defined by (8) is equal to

V = egMéz + §6§M62 + eflrkPleg + Eekalel + EegMez

1
+eel Mey + eef Méy + el kPoes + €€l TiPye (33)
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After substitution of (32) into (33), we compute V along the solutions of the closed-
loop robot system:

V = el(~AMi4— Cey — ACig — AG — kPie; — kPyey) + %egMez

+ e{kPleg + %eficPlel + segMeg + EefMeg + sekageg
+ el (~AMi4 — Cey — ACiq — AG — kPye; — kPses)
+ —;-Eefichel _ (34)
By using the identities
M=C+C7, %egMeg = el Ce,
(34) reduces to
V= - egAM:'éd - egACid - egAG - enggeg + %ekalel
+ segMeQ + EC{CTeg — EefAMj&d - EefAC'j:d - EefAG
—ceTkPye, + leefichel (35)

2

Now, using the properties of the inner product and square forms, we can overbound
the right-hand side of eqn. (35) as follows:

—e; AMig < |leof| [|AMZ4|| (36)
-3 ACiq < |leol| |ACE] (37)
-5 AG < les|| |AG]| (38)
—el kPyey < —lleal*Am (kP) (39)
%e’{kplel < %||ell|2)\M(icP1) (40)
ce; Mez < elleo|*Ap(M) (41)
ee; CTey < €f|Cenl Jlez| (42)
—ce] AMEq < ellea|| [|AM ]| (43)

-—sefAC'z'd < ellea]| |ACz4] (44)
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—eeTAG < elle] [|AG]] (45)
—eeTkPre; < —¢ller]®Am(kP1) (46)
1 . 1 .

556“13261 < §5H61Hz)\M(kP2) (47)

To find more exact estimates of the right-hand sides of inequalities (36)—-(47) we
will assume that for all ¢ > 0 the desired trajectory and its first and second time
derivatives z4(t),Zq(t),Zqa(t) are bounded. By applying the mean-value theorem we
obtain, already known from (Sadegh and Horowitz, 1990), the evaluations of the
terms, in which the elements of the robot dynamics are present:

AMEqa|| < aslle ] (48)

|ACZ4|| < azlles]| + aslleafl, a1,a2 >0 (49)

IAG]| < aqlea| (50)

IC(z, 2)er|l < asllex|l + asllexllle2ll (51)
where a;,2 =1,...,6 are positive constants.

Before we start the evaluation of the sign of the time derivative of V, we have
to estimate the right-hand sides of expressions (40) and (47). A plausible evaluation
of (40) is as follows:

1 .
‘2-6"111]6P161 < _”61”2)\M(kpl “”61“ P1 Zk

After substitution of expression (6), which describes the dynamics of the universal
adaptive controller, into the above inequality, we compute

1 5 1 "
iekalel S 5“61”2131 Zkl

n

1
= "2‘“‘31HzP1 Z(P2elz + Pjeb; + 2P, Pyeqses;)

=1

n

1
Slleall*PL ) (Pel; + Piel; + 2P Pyleys] |exil)
2 =1

VAN

= %”81”2131(2 Zel. + Z €2Z+Z2P1P2|611H€21|)
=1

i=1

Now, using the relation

2ab < a? + b?
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we conclude that

1 ;e
EelT kPye

IA

_“el“zpl (P22611+P2 2621—*—2 elz+ 621))

= ledlPPy (2PP sl + 2P )

= Pllle]l* + PP} leal| ezl (52)

Similarly, we can evaluate expression (47)

1 ; 1 .
—2-66{’613261 S 56”61 ”2P2/\M(k)

1 g
§EH€1“2P2 ; ki

IN

ellex|P B> (PPllesll® + PEllesl|?)

= eP{Poller* + e P5llex||* 2| (53)

We apply the above inequalities to get an evaluation of V. Thus V can be over-
bounded by

V< - llezllz{sz\m(k) ~ a3 —sAM(M)}
e Pe{ PAm(k) - a1 — a2 — s}
+ lleall leall{os + az + a4 + eas + ca }
+llea||* { P} +eP Py}
+ llea|®lleal|® { PLP} +eP5}
+ eagllea| ez
To simplify further developments, we propose to introduce the following notations:
1 .
~2—{P2)\m(k'(t)) e E)\M(M(:E))} > A= 5( Py (k;((])) —a3 — EAl)
P (k(t)) — a1 — a2 —ag > B = P A (k(0)) —a1 —az —ag
T =a;+az+ a4 +eas+eag ’
E =P} +ePP;
D =P, P} +¢cP}

S =ceag
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where

A1 = max Ay (M)

Now let us transform V to the form (22) required by Lemma 1

V < —24|lesl® - eBllell” + Tlleal| [le2l

+ Ellesl|* + Dllex|*lle=ll* + Sllev | llez|®

—A|flesf) = = 5T 2 Alleo)® + Ellex ||
exll = o7 lleall eB— | lledl lle2ll* + Elles]

+ Dllel*llezll” + Sllel flezl®

Note that for A > 0 the first term is always negative, so that we can write

2

. T
v <= [eB = T3 | ledl? - Alleall + Bl + Dl Pllesl + e sl

Let B; =B — .. Then
V < =(Bi = Blles)* = Dlezll)llea|* - (4 ~ Slleall) e

so V satisfies assumption (22) of Lemma 1.
Let Vo = V(e1(0),e2(0), k(0),0). If the following conditions hold:

17 1%
B, >E24+Dyf2 (54)
& &

A> S\/E (55)
&

then, for each A; satisfying

0</\1<Bl—EE—D KO‘
& &

v,
0<M<A-S EE (57)
1

the following estimate holds:

(56)

2
V<=3 Aledl?, vt>o0 (58)

i=1
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3.4. Exponential Stability of the Tracking Control System

In this subsection, we will show that the Lyapunov function satisfying (58) implies
exponential stability of the universal adaptive tracking algorithm, if only the gains of
the local dynamic tracking controllers remain bounded. Expression (58) will also be
used to prove that the gains of tracking controllers ki tend to finite limits.

To prove the exponential closed-loop stability (i.e. the exponential convergence
of errors e; and ey to zero) we need to show that V' decreases exponentially to zero.
First, we overbound all the terms of the Lyapunov function V' given by (8):

SAM@E)es < ZllealP A (M (@)

}2‘62111’{11)161 S

SllenlPAse (k) < SllealPiha(k(6)

1 1 1
‘z‘felTszel < 56“61[12)\1\4(’61’2) < -2-5||€1||2P2>\M(k(t))

ee] M(z)ez = eller| | M (z)ezl| cos £(e1, Mez) < ellex || llezll A (M (2))

where

IM(@)eall = /el MTMez = \[e] M2es < |leal|Ane (M ()
Using again the relation
2ab < a? + b2

we get

A

@)l lleal < (Slerl) + (aeM@)leal)

82
llesl? + X, (M@

Finally, an upper bound for V' can be established as

V < D@l + PO el + S ler P

1
+ Xas (M(2)le2])” + e Padne (k(8)llea |
and after completing terms

V < el? (%PIAM(k(t)) + %EPQ)\M(k(t)) + %)

Hlleall? (3 (M) + 340 = mlleal? + el
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where

7 = max (%PO\M(k(t)) + 2ePoAu(k(E) + %)

T2 = max (%)\M(M(x)) + /\ir(M(w)))

This overbounding of the Lyapunov function is valid if «y; is bounded V¢ > 0. To prove
that 1 < oo, it will be shown that all local dynamic universal adaptive controller
gains satisfy k;(t) < oo for each t > 0.

The gain of the i-th controller is equal to

i
ki(t) = 0 +/ (P161i+P262i)2 dt
0
t
< +/ (2P]e}; + 2P}e3;) dt
0
< a0+ [ (2r2(34) reri(31) )
Y =1 =1
<

t t

k:(0) + 2P? / lle])? dt + 2P2 / lez | dt (59)
0 0

so we have to show that both integrals on the right-hand side of (59) are bounded.

But we know that for the time derivative of the Lyapunov function V inequality (58)
holds, so integrating both sides of (58) we get

V(t) - V(0) < —AI/O ||e1||2dt—)\2/0 llea]2 dt (60)

Clearly, (60) implies

0<V({t) < V(0 Al/ ||e1||2dt—/\2/ ez dt (61)

which means that both integrals in (61) are bounded, and hence k;(t) < co.

We have proved that all the gains of the local universal adaptive tracking con-
trollers have bounded limits. To get a time-invariant overbounding of the Lyapunov
function, it is sufficient to choose

.

=—Plzk(oo )+ EPQZIC EZ

Since k;(o0) is not explicitly known, we use (60) to obtain an effective estimate
for #;. From (61) we deduce

t t
/\1/ l|e1|]2dt+)\2/ lea2 dt < V(0) (62)
0 0 '
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Hence

[rara<Z2 [ japasf2 (63

Let us substitute now (63) into (59) to evaluate ki(oo) and then k;(co0) into v:

" (P1 +ePy) ;k (0) + (P, +ePy) (—i + 1;2) V(0) + 67:- (64)
By defining -y = max(v1,72), where 71,72 > 0, we obtain

V < y(llea? + lleall?) (65)
Inequality (58) can be rewritten as

V < =Mllerll® = dalleall® < =A(lewll® + flez]?) (66)
with A = min(A;, A2). After multiplying the inequality (65) by —A/y we obtain

Al +lesl?) < =2V = =¥, 20=3
which, along with (66), yields

V< —%V <0 (67)
ie.

Vieres,k,2) <V (e1(0), e2(0),(0),0)e ™" = Voe ™" (68)

Expression (68) implies that the Lyapunov function V' decreases exponentially.
Using this property of V, we can easily show that the errors e; and e; converge
exponentially to zero. Namely, by combining (26) and (68), we obtain the following
relation:

&illes® < Voe™™*

lea]l < \/ge—%w (69)

Analogously, we combine (28) and (68) to get

Expressions (69) and (70) establish the exponential convergence of e; and e
to zero. It is also of interest to examine the domain of attraction of the presented
control algorithm. The stability we are able to guarantee is called the semiglobal

Thus
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stability (Loria and Ortega, 1995). This kind of stability means that for any initial
conditions and any bounded desired trajectory it is always possible to find controller
gains to ensure the exponential convergence of errors to zero. Thus, with a suitable
choice of the controller gains, the domain of attraction can be enlarged arbitrarily. The
universal adaptive tracking algorithm given by Theorem 1 is stable, if inequalities (54)
and (55) hold. The term V(0,%(0),e1(0),e2(0)) on the right-hand sides of these
inequalities depends on the initial values of errors, which means that it depends
on the initial position z(0) and velocity #(0) of the joints. On the other hand,
conditions (54) and (55) depend on initial controller gains %;(0). It is easy to show
that the above inequalities are satisfied for a sufficiently large k;(0) for fixed initial
conditions of the joint trajectory. Conditions (54) and (55) also hold, if k;(0) are
small and P, and P, are sufficiently large. It is important to remember that P,
cannot be too large (P, should be greater than aPZ), otherwise £, decreases to zero,
so Lemma 1 does not hold any more.

4. Simulations

In this section, we will focus our attention on the comparison of the universal adaptive
tracking algorithm defined by (2) and (6) with the algorithm proposed by Wen and
Bayard (1988):

U= M(:L‘,i)."lj”d + C(:L‘d, Td)Tq + G(ﬂ?d) — Kpe; — Kyey (71)

Let us observe that these two algorithms differ from each other by the correction
terms. In the new algorithm, the correction term comes from a set of local dynamic
universal adaptive controllers. The gains of these controllers are time-varying and
their dynamics depends on parameters P; and P,. In the algorithm of Wen and
Bayard, the correction is generated by a PD controller whose gain is constant. To
ensure a stability of algorithm (71), large gains K, and K, are required as shown in
(Wen and Bayard, 1988). To compare the quality of control of both algorithms, we
use the following performance index:

T
j,:/ e2t)dt, i=1,...,n (72)
0

which is a square error computed during simulation for the i-th robot link. The final
time of simulations is taken as T' = 30s. Simulations have been carried out with the
use of the TUTSIM 0.7 software package. For simulations we have chosen the IRb-6
manipulator limited to the first three degrees of freedom (without wrist motions),
described in (Gosiewski et al., 1984).

4.1. Achieving a Fixed Value of the Performance Index

In this subsection, we compare the universal adaptive tracking algorithm (2), (6)
with the Bayard and Wen algorithm (71) for step and periodic desired (reference)
trajectories.
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For all the manipulator joints the step desired trajectory has been chosen iden-
tical, i.e. z14(t) = Z24(t) = z34(t) = 1rad. In practice, this trajectory is realizable
only for the first joint of the IRb-6 manipulator, but this is not important for the
theoretical results and simulations. Also the initial conditions have been assumed the
same and equal to z;(0) =0 and #;(0) =0, i =1,2,3.

The objective of the simulations is to examine the behaviour of the tracking errors
e1(t) and to check minimal values of controller gains required to achieve a prescribed
value of the performance index (i.e. j; = 0.1 for a desired step trajectory) for each
joint of the manipulator.

In Fig. 2, we present several graphs of the tracking errors of the Wen and Bayard
algorithm while assuming a step trajectory.

In Table 1, we show values of gains K, and K, needed to achieve the prescribed
value of the performance index j; = 0.1 for each link.

Simulations have been performed for two different initial values of the universal
adaptive controller gains, i.e. for small initial gains (k;(0) = 0.1) and for large initial
gains (k;(0) = 10). It has been shown that by enlarging the initial gains one can
improve the performance of the universal controller.

In Fig. 3, we present the profiles of the tracking errors appearing in the universal
adaptive tracking algorithm during tracking the step trajectory for j; = 0.1 and
k;(0) = 0.1, whereas in Fig. 5 we show the evolution of the tracking errors for k;(0) =
10 and j; = 0.1.

Local universal controller gains k;(t) corresponding to errors from Fig. 3 are
presented in Fig. 4. The gains corresponding to errors from Fig. 5 are shown in
Fig. 6. :

From the behaviour of tracking errors presented in Figs. 2, 3 and 5 we can deduce
that the transient response of the universal adaptive tracking algorithm (UATA) is
faster, leading to much smaller overshoots for all of joints than in the Wen and Bayard
algorithm. The last feature of UATA is particularly useful in obstacle avoidance.

Minimal gains needed in both algorithms to obtain the prescribed value j; = 0.1
of the performance index for each joint are collected in Table 1.

Tab. 1. Controller gains needed to obtain the value j; = 0.1 of the
performance index during tracking the step trajectory.

Algorithm “ Gains for 71 | Gains for j2 | Gains for ja
Wen-Bayard K, = 2000, K, = 1500, K, = 1500,
» = 100 K, =100 K, =100
UATA, k:i(0) =0.1 kiP1 =394, | koL =411, | k3P, = 246,
k1P, =16 koPy =16 k3P, =8
UATA, k;(0) =10 k1P, =202, | ko1 =202, | k3P =196,
k1P, =23 ks Py = 22 k3P, =22
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(c)

Fig. 2. Tracking errors of the Wen and Bayard algorithm for the
desired step trajectory and prescribed value of the perfor-
mance index j; = 0.1, 1 =1,2,3.
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Fig. 3. Tracking errors in the universal adaptive tracking algorithm
for the desired step trajectory with k;(0) = 0.1 and with
the performance index equal to j; = 0.1.
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Fig. 4. Gains of the local universal controller obtained while tracking
the desired step trajectory with j; = 0.1 and k;(0) = 0.1.
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Fig. 5. Tracking errors -appearing in the universal adaptive tracking
algorithm for the desired step trajectory with k;(0) = 10 and
with the performance index equal to j; = 0.1.
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(c)

Fig. 6. Gains of the local universal controller obtained while tracking
the desired step trajectory with j; = 0.1 and k;(0) = 10.
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From Table 1 it is clear that the UATA requires considerably smaller values
of gains (about ten times smaller) to track the step reference trajectory than the
algorithm of Wen and Bayard.

Simulations of a similar nature have been performed for the case of time-varying
(periodic) desired trajectory. These trajectories are different for each manipulator
joint and chosen as z;4(t) = sin(st)rad, 1 = 1,2,3 in order to excite nonlinear
dynamic couplings between robot links. We have set the following initial conditions:
z;(0) = #;(0) = 0, ¢ = 1,2,3. Similarly to the case of the desired step trajectory,
we have compared the two algorithms with respect to gains needed to provide the
fixed value of the performance index j; = 1073 and with respect to the behaviour of
tracking errors ey;(t).

In Fig. 7, we present the plots of the tracking errors appearing in the Wen and
Bayard algorithm during tracking the time-varying desired trajectory.

In Table 2, we show gains K, and K, needed to achieve the prescribed value
of the performance index j; = 10~% for each link.

Tab. 2. Controller gains needed to obtain the value j; = 1072 of
the performance index while tracking the time-varying de-
sired trajectory.

Algorithm H Gains for j; | Gains for j2 | Gains for j3

Wen-Bayard K, =1500, | K,=2500, | K,= 11000,
K, =100 K, =100 K, =100

UATA, ki(0) =0.1 || kyPy =572, | kaPr =704, | kaP; = 1340,
k1P, =11 ko Py =21 k3Py = 27

UATA, k;(0) =10 k1P =51, | koPy =105 | kaP, =224,
kiPr =11 koPr =21 k3P =21

Similarly to the case of tracking the step desired trajectory, simulations have
been performed for two different initial gains of the local universal adaptive tracking
controller, i.e. for k;(0) = 0.1 and k;(0) = 10.

Figure 8 presents the graphs of the tracking errors appearing in the universal
adaptive tracking algorithm during tracking the time-varying desired trajectory for
ji = 1073 and k;(0) = 0.1, and Fig. 10 shows the plots of the tracking errors for
ki(0) =10 and j; = 1073,

The gains k;(t) of the local universal controllers corresponding to errors from
Fig. 8 are presented in Fig. 9, whereas the gains corresponding to errors from Fig. 10
are shown in Fig. 11.

While tracking the time-varying reference trajectory the UATA revealed a faster
transient response than the Wen and Bayard algorithm. Additionally, the UATA
featured smaller overshoots as well as an exceptionally good damping of the transient
response at the third joint in comparison with the algorithm of Wen and Bayard.
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Fig. 7. Tracking errors of the Wen and Bayard algorithm for the
time-varying desired trajectory and for the value of the
performance index equal to j; = 1073,
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Fig. 8. Tracking errors of the universal adaptive tracking algorithm
for the time-varying desired trajectory with k;(0) = 0.1
and with the performance index equal to j; = 1073,
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Fig. 9. Gains of the local universal controllers obtained while
tracking the time-varying desired trajectory with j; =
10™% and k;(0) = 0.1.
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Fig. 10. Tracking errors of the universal adaptive tracking algorithm
for the time-varying desired trajectory with k;(0) = 10 and
with the performance index equal to j; = 1075,
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Fig. 11. Gains of the local universal controllers obtained while
tracking the time-varying desired trajectory with j; =
1072 and k:(0) = 10.
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Minimal gains needed to obtain the prescribed value j; = 10~ for each joint
of the performance index are collected in Table 2. We can observe again that the
UATA requires considerably smaller gains (about 30-40 times smaller) to track the
time-varying desired trajectory with a better transient response than the algorithm
of Wen and Bayard.

5. Concluding Remarks

In this paper, we have shown that in the case of the universal adaptive tracking
algorithm the knowledge of the manipulator’s model along the desired trajectory is
sufficient to ensure the exponential convergence to zero of both the position tracking
error e;(t) and the velocity tracking error es(t).

This type of stability is called the semiglobal stability, i.e. it is always possible
to adjust controller parameters k;(0), P;, P, > 0, depending on the initial conditions
z(0), #(0) and the desired trajectory, which enlarge arbitrarily the domain of attrac-
tion.

Moreover, we have proved that the universal adaptive controller gains k;(t) tend
to finite values, so they remain bounded during control.

The basic goal of simulations was to compare the UATA with the algorithm
given by Wen and Bayard. Both the algorithms share a similar structure, although
the latter applies constant gains.

Simulation results have shown that the UATA overperforms the Wen and Bayard
algorithm. First of all, the UATA reaches the same values of the performance index as
the Wen and Bayard algorithm starting from much smaller gains for both the step and
the periodic reference trajectory. The UATA algorithm has also other advantages: it
produces a fast transient response and small overshoots in the case of tracking the
step trajectory, and negligible oscillations when tracking the time-varying trajectory.
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