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A ROUNDING TECHNIQUE TO CONSTRUCT
APPROXIMATION ALGORITHMS FOR
KNAPSACK AND PARTITION-TYPE PROBLEMS'

MIKHAIL Y. KOVALYOV*

A technique to develop e-approximation schemes for mathematical program-
ming problems is described based on the examples of knapsack and partition-
type problems. The technique consists in the application of the dynamic pro-
gramming algorithm to a relaxed problem constructed from the original one by
rounding the values of the objective function and variables. The technique is
applied to construct fully polynomial approximation schemes for some single
and parallel machine scheduling problems with batch set-up times.

1. Introduction

The paper deals with the construction of e-approximation schemes for NP-hard
extremum problems. Let F* denote the optimal value of an extremum problem and
let F7 denote the value given by an approximation algorithm H. Assume F* > 0.
An algorithm H is said to be the e-approzimation algorithm for this problem if
|F* — FH| < ¢F* for all problem instances. A family of algorithms {H.} defines
an e-approzimation scheme if, for any € > 0, H, is an e-approximation algorithm.
If the e-approximation algorithm H, has the time requirement which is polynomial
in the problem instance length in binary encoding and in 1/e, then {H.} is a fully
polynomial approzimation scheme (FPAS).

The concepts of e-approximation schemes and FPAS were introduced in (Garey
and Johnson, 1976). Within the framework of the theory of N P-completeness, these
schemes were considered by Garey and Johnson (1979). A number of e-approximation
schemes and FPAS have been constructed for knapsack and partition problems (see
e.g. Gens and Levner, 1980a; Gens and Levner, 1980b; Ibarra and Kim, 1975a; John-
son and Niemi, 1983; Karp, 1975; Lawler, 1979; Magazine and Oguz, 1981; Magazine
and Chern 1984; Martello and Toth, 1985; Sahni, 1975; Schrader, 1983;) and for some
scheduling problems which can be formulated as a knapsack problem or a partition
problem (De et al., 1992; Gens and Levner, 1981; Hall and Posner, 1991; Horowitz
and Sahni, 1976; Ibarra and Kim, 1975b; Ibarra and Kim, 1978; Kovalyov et al., 1989;
Sahni, 1976). The existence of FPAS for some classes of combinatorial problems has
been studied in (Korte and Schrader, 1981; Paz and Moran, 1981).
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Some general techniques to develop FPAS for combinatorial problems have been
described in (Sahni, 1977) based on the example of a maximum 0-1 knapsack prob-
lem. One of these techniques consists in rounding the objective coefficients. In this
paper, we generalize this technique in order to solve more complicated mathematical
programming problems with separable objective functions and multivalued variables.
The first idea is to round the separate parts of the objective function. This idea
permits us to develop FPAS for problems with more complicated objective functions
than linear ones. The second idea is to consider the rounded values for the variables,
which allows us not to be limited to the 0-1 problems. It should be noted that, to
the best of our knowledge, all the existing FPAS except those based on the results
of this paper are constructed for the 0-1 problems. We describe our technique based
on the examples of the problems which we call the generalized minimum (mazimum,)
knapsack problem and generalized minimum (mazimum) partition problem.

The remainder of the paper is organized as follows. In the next section, we
formulate a generalized minimum knapsack problem and develop an e-approximation
algorithm K. to solve it. The family of algorithms {K.} constitutes an FPAS if
appropriate lower and upper bounds for the optimal value of the objective function are
established. An FPAS for the maximization problem is also presented. In Section 3,
we formulate and study generalized partition problems to which the same approach
is applied.

In terms of the above problems, a number of machine scheduling problems with
batch set-up times can be modelled. Classical knapsack and partition problems cannot
be used in this case because they do not provide the adequate modelling for set-up
times and batch sizes.

Two batch scheduling problems, namely, the single machine problem with agree-
able job release dates and due dates to minimize the weighted number of late jobs,
and the unrelated parallel machine problem to minimize the maximum completion
time, are studied in Section 4.

It should be noted that, recently, scheduling with batch set-up times has met
with a growing interest (see e.g. Albers and Brucker, 1993; Cheng and Kovalyov,
1993; Kovalyov et al., 1994b). A motivation for this line of research comes from
real-life situations in scheduling flexible manufacturing systems, computer scheduling
and project scheduling where an important assumption is that the jobs (mechanical
parts, computer tasks, project tasks) are processed and delivered to the customer in
batches and a set-up time is needed between each two consecutive batches. We refer
the reader to (Potts and Van Wassenhove, 1991) for practical examples and a review
of the results obtained in the batch scheduling area.

Most of the batch scheduling problems are NP -hard. Therefore, it is unlikely to
find an optimal solution for any of these problems in polynomial time. In this case,
the development of fully polynomial approximation schemes seems to be an accept-
able approach to solving these problems. Other appoaches include the development
of heuristic algorithms and efficient enumerative algorithms. A number of such algo-
rithms for knapsack and partition-type problems can be found in (Martello and Toth,
1990). For most recent results see (Lai, 1993; Martello, 1994).



A rounding technique to construct approximation ... 791

2. Generalized Knapsack Problems

Let nonnegative nondecreasing real functions f;(z), ¢ = 1,...,n be defined on the
set R of real numbers and let a real function G(z,...,%,), nondecreasing in each
argument, be defined on the set R* = Rx...xR In this section, we study the
generalized minimum knapsack problem (KMIN) which may be stated as follows:
Minimize

n

F(z) =) fi(z:)

i=1
subject to
G(z) = G(gl(xl), .. ,gn(zn)) >A (1)
; €R;, i=1,...,n (2)
where R, CR, i =1,...,n are some closed sets and A is a real number.
If R, i =1,...,n are discrete sets, then this problem can be interpreted as

follows. Suppose that items of n types have to be packed in a knapsack. The items
of each type i are packed in batches. The possible batch sizes z; for type 7 are given
by the set R;. The capacity occupied by z items of type ¢ is given by the function
fi(2). The cost of all chosen items is specified by the function G(z1,...,z,). The
objective is to minimize the total capacity subject to the condition that the cost is
not less than a given value A.

Let us denote by z* = (z},...,2%) an optimal solution to the problem KMIN.
It is evident that z* exists if and only if G(z') > A, where 2’ = (z},...,2},) and z!
is the maximal element of the set R;, ¢ = 1,...,n. Without loss of generality, assume
that z* exists and the numbers V' and U are known such that 0 < V < F(z*) < U.

We now formulate the rounded problem KR. Write § = €V/n and let |a| denote
the largest integer not greater than a. The problem KR is to minimize

o) = st
subject to (1) and
T € {zi(O),zi(l),...,xi([U/ﬁj)}, i=1,...,n 3)
where z;(1) is the largest element z € R; satisfying | f;(z)/6] = I, if any.
We now establish a relation between the original problem KMIN and the rounded

problem KR.

Theorem 1. Any ezact algorithm for the problem KR is an e-approzimation algo-
rithm for the problem KMIN.
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Proof. Consider an optimal solution z° to the problem KR. By definition, it satisfies
the constraints (1), (3) and, therefore, (1), (2). To prove the theorem, it remains
to show that the existence of z° follows from the existence of z* and F(z°) <
(14 €)F(z*).

Assume that z* exists. Then there is a solution z’' to the problem KMIN
such that z; is the largest element from R; which satisfies the relations | fi(z!)/6]| =
Lfi(z})/6), i=1,...,n. We haveat least 2 = z} for i =1,...,n. Since x| > z¥ for
i =1,...,n by definition and the function G(z) is nondecreasing, we have G(z') >
G(z*) > A. We see that if z* exists, then there is at least one solution satisfying the
constraints (1), (3), i.e. z° exists. We now show that F(z°) < (1 + €)F(z*). The
following chain of relations establishes this inequality:

F(@%) =) fi(z?) <8 | fi(a?)/8] +né

i=1 =1

<6 |fila})/6) +nb < F(z*) +né < (1+€)F(z*)
=1
This completes the proof. [ |

We now describe the dynamic programming algorithm K. to solve the problem
KR. In this algorithm, an upper bound for the optimal objective value f(z°) is used.
Let U be an upper bound for F(z*),i.e. F(z*) < U. Then an upper bound for
f(z°) can be established as follows: f(z°) < f(z2*) < F(z*)/6 < U/6. To express
more clearly the relation between g; and G, we define G(z) = Y_7_, gi(z:), where
gi(z), i =1,...,n, are some nondecreasing functions. We compute recursively G;i(f)
which is the maximum value of G(z) subject to the condition that the values for the

first j variables zi,...,z; are determined and EleLfi(zi)/ﬂ = f. Formally, we
have

Algorithm K.

Step 1. (Initialization) Set G;(f) =0 if f =0, j =0 and G;(f) = —o0, otherwise.
Set j = 1.

Step 2. (Recursion) For f =0,1,...,|U/§], compute
65() = max {611 (£ - Ls(@)/81) + (25)

where z; € {2;(0),...,z;(f)}. If 7 <n, then set j = j+ 1 and repeat Step 2;
otherwise, go to Step 3.

Step 3. (Optimal solution) The optimal objective value is selected as
min {f|Gn(f) > A,f =0,1,...,1U/6]}

and the corresponding optimal solution z° is found by backtracking.
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It is not difficult to see that the time complexity of the algorithm K. is
O(Y 7, Umin{U/§,|R;|}/6), or equivalently, O(3_7_;nU min{nU/(V), |R;|}/(eV')).
If each |R;| is bounded by a constant as e.g. in a 0-1 knapsack problem, then
the time complexity of this algorithm can be estimated as O(n*U/(eV)), other-
wise O((n®/€?)(U/V)?). These time complexities can be decreased to O(n?/e +
n?log(U/V)) and O(n®/e? + n?log(U/V)), respectively, using the Bound Improve-
ment Procedure presented in (Kovalyov, 1995). Thus, if the value of U/V is bounded
by a polynomial in the problem instance length in unary encoding, then the family
of algorithms {K.} with the Bound Improvement Procedure incorporated in it con-
stitutes an FPAS for the problem KMIN.

A similar approach can easily be applied to the following maximization problem
KMAX:
Maximize F'(z) subject to (2) and

G(z)< A (4)

In this problem and in other problems considered below, we assume that lower
and upper bounds for the optimal objective function value are known. For both the
bounds, we use the same notation V and U, respectively, and assume that ¥V > 0
and § = €V/n. There is no ambiguity, since those problems are considered separately.

The rounded problem for KMAX may be stated as follows:
Maximize f(z) subject to (4) and

zi € {x;(O),x;(n,...,x;(LU/(SJ)}, i=1,...,n

where z!(l) is the least element = € R; satisfying | fi(z)/é] = [, if any.

The algorithm K, is easily modified to solve this problem. In Step 1, oo is
substituted for —oo; in Step 2, min is substituted for max and, in Step 3, max is
substituted for min. This modified algorithm K. is an e-approximation algorithm
for the problem KMAX. Its time complexity remains unchanged.

3. Generalized Partition Problems

In this section, we study the generalized minimum partition problem PMIN which
may be stated as follows:

Minimize
T(y):maX{ZfiL(yiL)|L:1,...,M}
=1
subject to
y,-LE{O,l,...,'qi}, i=1,...,n, L=1,....M (5)
M
Z'yu:=qi, i1=1,...,n (6)

L=1
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where f;1(z) are some nondecreasing nonnegative real functions, i = 1,...,n, L =
1,..., M.

This problem can be interpreted as follows. Suppose that items of n types have
to be packed into M bins. The total number of items of type i is equal to ¢;. If z
items of type i are packed into the L-th bin, then they occupy fir(z) units of its
capacity. The objective is to minimize the capacity of the maximal filled bin. This
partition problem is dual to the bin-packing problem where each bin has a limited
capacity, the number of bins available is unlimited and the objective is to pack all
items so as to minimize the number of bins to be used.

To develop an e-approximation algorithm for the problem PMIN, we formulate
the following rounded problem PR:

Minimize
t(y) = max { ZLfiL(’yiL)MH L= 1,---,M}
=1
subject to
(yil,..,,yiM)EQi, z'=1,...,n (7)
where @; is the set of solutions (u,...,uar) of the following systems determined
for all different M-tuples (r1,...,7n),71 € {0,1,...,|U/8|}, L=1,..., M:
LflL(uL)/6J =TL, L= 17 .- ')M (8)
ur €{0,1,...,¢}, L=1,...,.M (9)
M
> up =g (10)
L:l

We now show that the problem PR can be formulated in O(Mn(U/8)M) time.
It is clear that |Qi| < (U/6)M for i = 1,...,n. It remains to show that, for each
tuple (r1,...,7), the system (8)~(10) can be solved in O(M) time.

Given (r1,...,7p), denote by ay, and by, the minimal and maximal values of ur,,
respectively, satisfying the relations |fir(ur)/6] =rp and uy € {0,1,...,¢}. It is
evident that if there is no solution to these relations for some L = 1,..., M, then there
is no solution to (8)-(10). Assume that there is a solution for each L = 1,..., M.
Calculate ar and by for L =1,...,M and rewrite the relations (8) and (9) so as
to have

uLE{aL,aL-I—l,...,bL}, L=1,....M (11)

The system (10), (11) can evidently be solved as follows. If Zﬁ’[:l ar > ¢

or Z]{[:l by < ¢i, then the system (10), (11) and hence (8)-(10) have no solution.
Assume that

M M
ZaLSQiSZbL‘ (12)
L=1 L=1
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Find K, 1 < K < M, such that

K-1 M K M
G< > ap+ Y b, G2 ar+ br (13)
=1 L=K =1 L=K+1

Here Zf;ll arp =0if K=1 and ZiszH by =0 if K = M. Due to (12), such an
index K exists. Define uy as follows:

u,=ay, L=1,...,.K-1, wy=b,, L=K+1,...,.M

Clearly, 224:1 uy, = ¢;. Furthermore, the relation a; < up < by, follows from (13).
Thus (u1,...,up) is a solution to (8)—(10).

It is clear that the above procedure of solving the system (8)—(10) runs in O(M)
time if the equation f;1(2) = C is solved in a constant time, and the values Zle ar

and Zﬁ'f: xbr, K=1,..., M are calculated in advance. Since the number of differ-
ent tuples (r1,...,75) does not exceed (U/§)™, the problem PR can be formulated
in O(Mn(U/6)M) time.

We now establish a relation between the original problem PMIN and the rounded
problem PR.

Theorem 2. Any ezact algorithm for the problem PR is an e-approzimation algo-
rithm for the problem PMIN.

Proof. Denote by y* and y° optimal solutions to the problems PMIN and PR,
respectively. To prove the theorem, it is sufficient to show that the existence of °
follows from the existence of y* and T(y°) < (1 + €)T'(y*).

Assume that y* exists. Then there is a matrix y' such that for any ¢ =
1,...,m, (Y-, Yips) is a solution to the system

Ufir(yin)/6) = L fir(yip)/8), L=1,...,.M
M
yiLe{Oula---aQi}, LZ].,...,M, Zy;qui
L=1

We have at least that (yJ;,...,yfy) is a solution to this system. Thus Q; # @ for
i=1,...,n,ie y° exists. ’

We now show that T'(y°) < (1+€)T(y*). Recall that § = eV/n and V < T(y*).



796 M.Y. Kovalyov

The following chain of relations holds:

T(y°) < Smax { Y Lfir(f)/6)| L=1,..., M} +n

< 6 max { DU in) /8| L=1,..., M} +n8 ST(y") +n6 < (14 T (")

and thus the proof is complete. | |

We now present a dynamic programming algorithm to solve the problem PR. It is
easy to see that if T'(y*) < U, then #(y°) < U/6. This upper bound for #(y°) is used
in our algorithm P, for the problem PR. The algorithm P. proceeds by computing a
sequence of sets Sp,S1,...,S,. Each S; is a set of different M-tuples (T4,...,Tu).

Each element of S; corresponds to a set of variables yir, t=1,...,5, L=1,...,. M
for which the constraints (7) are satisfied and Tp = Y7_, | fir(vir)/6] < U/S, L =
1,..., M. A formal description of this algorithm is as follows:

Algorithm P,
Step 1. (Initialization) Set Sp = {(0,...,0)}.

Step 2. (Generation of Si,...,S,) Define S; = 0. For each (T1,...,Ty) € Sj_1
and (yj1,...,y;m) € Q; evaluate T} = Ty, + | fir(y;)/6]. If T, < U/§ for
L =1,...,M, then add (T},...,T},) to S;. If the same tuples appear in
S;, store only one of them. If j < n, then set j = j+ 1 and repeat Step 2.
Otherwise, go to Step 3.

Step 3. (Optimal solution) An M-tuple from S, with the minimal value of
max{Tr|L =1,...,M} corresponds to an optimal solution which can be found
by backtracking.

We now establish the time complexity of the algorithm P.. It is evident that
the procedure for generation of the set S; requires O(M|Q;]|S;-1|) time. Since for
each (T1,...,Tuy) € S; we have Ty, < U/é for L = 1,...,M, it may be concluded
that |S;| < (U/6)M for j =1,...,n. Thus the time complexity of P. does not ex-
ceed O(Mn(U/6)M), or equivalently, O((U/V)M MnM+1/eM) By using the Bound
Improvement Procedure (Kovalyov, 1995), this time complexity can be reduced to
O(MnM+1[eM 4 MInM+110g(U/V)), ie. the family of algorithms {P.} with the
Bound Improvement Procedure included forms such as an FPAS if M is fixed and
the value of U/V is bounded by a polynomial in the problem PMIN instance length
in unary encoding.

A simple modification of the algorithm P, can also be applied to solve the
following generalized maximum partition problem PMAX:

Minimize
n
min { Y flwa) L=1,..., M}
=1
subject to (5) and (6).
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The algorithm P, is an e-approximation algorithm for this problem if an M-tuple
with the maximal value of min{Tr| L = 1,...,M} is selected in Step 3 of this
algorithm.

4. Single and Parallel Machine Scheduling with Batch
Set-Up Times

In this section, we consider some problems of nonpreemptive scheduling n groups
of jobs on one or several unrelated parallel machines. It is assumed that each group
i consists of g; > 1 identical jobs. Each job of group 4 requires for processing a
nonpreemptive time p;r > 0 if it is assigned to machine L. For each machine L, a
set-up time s;; > 0 is needed immediately before a job of group ¢ is processed if
it is processed first on the machine or immediately after a job of another group. In
the case of a single machine, we use notations p; and s;, respectively. Each machine
can handle at most one job at a time. Implicit in a schedule is a partition of a group
into batches; all jobs of a batch are scheduled jointly. A schedule specifies batch sizes,
indicates which batches are scheduled on which machines and defines a processing
order for the relevant batches on each machine. The following two particular problems
are studied.

4.1. Single-Machine Scheduling to Minimize the Weighted Number of Late
Jobs

In this problem, the groups of jobs are processed on a single machine. It is assumed
that for each job of group ¢, a release date 7; > 0 and a due date d; > 0 are given.
The values r; and d;, s =1,...,n are agreeable: r; < r; implies d; < d;. A job of
group i is called late if it is completed after the due date d;; otherwise it is called
early. A penalty w; > 0 is paid for each late job of group 4, i = 1,...,n. The
objective is to minimize the total weighted number of late jobs > ., w;zi, where z;
is the number of late jobs of group ¢.

Assume that the groups are numbered so that r; < rip1 and d; < diyy, @ =
1,...,n — 1. In this case, it is easy to show that there is an optimal solution where
early jobs are processed first in the increasing order of the group indices and then
late jobs are processed in an arbitrary order. Hence, the problem reduces to that of

finding the values z;, 1 = 1,...,n, minimizing
n
> wizs (14)
=1
subject to

Gj(z) = max {rk'y(qk —zk) + i (Si’Y(Qi — ;) +pi(q — -731'))}

1<k<) i
1=

IA
U
<
<
1l
l—-‘
S
—
—
(=)
~—
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xiE{O,l,...,qi}, i=1,...,n (16)

where ¥(z) =0 if =0 and v(z) =1 if > 0.

The constraints (15) ensure that each early job is completed before its due date.
It is evident that these constraints are equivalent to

G(z) = min {d; - Gj(2)} 20 (17)

It easy to see that the problem (14), (16), (17) is a special case of the problem
KMIN. To solve this problem, we use the algorithm K, modified for the function
G(z) given by (17). Let G;(f) denote the minimal value of the function G,(z)

subject to the condition Zle |w;zi/8] = f. The formal description of this algorithm
is as follows:

Modified Algorithm K,
Step 1. (Initialization) Set G;(f) =0 1if j=0,f =0 or G,(f) = co otherwise.
Step 2. (Recursion) For f =0,1,...,|U/§] compute

G;(f) = min { maX{Gj—l (f - ijﬂfj/ﬂ) +857(q; — z;) + pi(g; — =),

2065 =) + 55706 = 2) + (0 = )} 25 € {25012, (1)

If G;(f) > dj, then set G;(f) = co. If j < n, then set j = j + 1 and repeat
Step 2; otherwise go to Step 3.

Step 3. (Optimal solution) The optimal solution is given by
* :min{f’Gn(f) <0, f:O,l,...,LU/é‘J}

This algorithm has the same time complexity as the algorithm K., i.e. O(n3/e2+
n®log(U/V)) if the Bound Improvement Procedure (Kovalyov, 1995) is incorporated
in it.

4.2. Parallel-Machine Scheduling to Minimize Maximum Completion
Time

We now consider the problem where each job of any group can be completely pro-
cessed by any parallel machine L, L = 1,..., M. The objective is to minimize the
maximum job completion time. For this problem, it is evident that there exists an
optimal solution where all jobs of the same group assigned to the same machine are
processed jointly in a single batch and the sequence of batches on each machine is
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arbitrary. Denote by y;; the number of jobs of group i assigned to machine L,
i=1,...,n, L=1,...,M. Then the problem reduces to that of minimizing

max{ Zn: (siL'y(yiL) +piLy,'L) l L=1,... ,M}

=1
subject to
yiLE{O,l,---,Qi}, 1=1,...,n, L=1,....M

M

ZyiL=Qi, t=1,...,n

L=1

This problem is a special case of the problem PMIN. To solve it, we can use
Algorithm P,. It should be noted that, in the case of identical machines, i.e. when
Sip =8, pir =pi, t=1,...,n, L=1,..., M, we can easily determine the bounds
V and U for the optimal objective function value such that V =Y ., (s; +piq;)/M
and U =30 | (Ms;+pig;) < MV. In this case, the time complexity of the algorithm
P, will not exceed O((Mn)M+1/eM).

Other examples of scheduling problems to which a similar approach has been
applied can be found in (Cheng and Kovalyov, 1993; Kovalyov et al., 1994a; 1994b).

5. Conclusions

In this paper, a technique to develop e-approximation schemes for mathematical pro-
gramming problems is presented. The technique is based on the application of a
dynamic programming algorithm to a rounded problem constructed from the original
one by means of rounding the objective function and values of variables. The tech-
nique is described based on the examples of knapsack and partition-type problems. In
terms of these problems, a number of batch scheduling problems can be formulated.
Two of them are considered in the paper. In these problems, there are several groups
of jobs to be scheduled for processing on parallel machines. Jobs of the same group
may be combined to form batches. A machine set-up time is needed whenever there
is a switch from processing of a batch of one group to a batch of another group. For
the single machine case, the objective is to minimize the weighted number of late
jobs and, for the M-machine case, the objective is to minimize the maximum job
completion time. Fully polynomial approximation schemes are developed for these
problems.

We believe that the presented approach can be applied to construct efficient
e-approximation schemes for other NP-hard mathematical programming problems.
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