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OPTIMAL CONTROL OF FAIR
DISCRETE-EVENT SYSTEMS

YongHUA LI*

In this paper, we formulate and solve a class of optimal control problems
for discrete-event systems modelled as finite-state automata. The controlled
discrete-event system is considered optimal if the performance index consisting
of a behaviour gain and a control cost is maximized, plus that the controller
satisfies a structural constraint. A hybrid computational algorithm is devised
to reduce the solution space for the optimal controller design. An example is
given to illustrate the results.

1. Introduction

Recently there have been several studies on optimal supervisory control of logical
Discrete-Event Systems (DESs). Passino and Antsaklis (1989) discussed the following
problem: for a given system G and a set of marking states, find a minimal cost path
that leads from the initial state to the set of marking states. Sengupta and Lafortune
(1991) studied another optimal control problem in which both the control cost and
the trajectory cost are considered, employing the traditional idea of linear quadratic
(LQ) control for linear time-invariant systems. Kumar and Garg solved an optimal
control problem, in which the cost function was the sum of a positive gain (desired
behaviour) and a negative cost (undesired behaviour as well as the control cost), by
using the technique of network flow (Kumar, 1991; Kumar and Garg, 1995). Li (1991)
used the A* algorithm to deal with the optimal control of a class of DESs. A hybrid
computation algorithm for finding the optimal state feedback control for a class of
optimal control problems was given in (Li, 1993).

Our point of view regarding the optimal control of DESs is that in formulating
optimal control problems for DESs a trade-off between the gain (the reachable closed-
loop performance) and the cost (the control effort in order to reach such a closed-
loop performance) should be made in order to keep consistence with the minimally
restrictive control by Ramadge and Wonham (1987). Toward this end we will follow
the ideas of Kumar and Garg (Kumar, 1991; Kumar and Garg, 1995). However, our
treatment of the optimal control problem will be different in the following aspects.
First, instead of enumerating desired and undesired states, we explicitly impose a
closed-loop behaviour specification (without loss of generality, we restrict ourselves
to the predicate control problem (Lin et al., 1988)). Second, instead of assuming the
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“one-time cost”, we explicitly impose a structural constraint on the controller (that
is, the controller should be global, see Section 2), and we require that all the closed-
loop system state trajectories are fair, a concept that we will formalize in Section 2.
Third, we use a hybrid algebraic/computation approach instead of the network flow
technique in finding the optimal controls.

This paper is organized as follows. In Section 2, we formulate the global predicate
control problem and formalize the concept of fair-in-state. In Section 3, we construct
the performance index. From this index, we find the optimal control from elements in
the solution space in the global predicate control problem. In Section 4, we propose a
hybrid computational procedure to find the optimal control. We include an example to
illustrate the design procedure in Section 5. Finally in Section 6, we give a conclusion.

2. The Global State Feedbacks

Let G = (%,Q,8) be the controlled plant, where ¥ is the finite set of events, Q =
{q1,92,...,qn} is the finite set of states, § : Q x ¥ — Q is the state transition map,
which is partial (Hopcroft and Ullmann, 1979). We leave the initial state unspecified.
Instead, we generalize the state transition map to §;: @ xZ* —» Q (j = 1,2,...,N)
such that 6(g;,s) is defined for s € £*, where * is the Kleene closure. The lan-
guage generated by G; = (X, Q,6,q;) is denoted by L;(G) = {s|s € £*,6,(g;,s) is
defined}, where G; is a realization of G when the initial state is g;. The event set %
is decomposed into two disjoint subsets ¥ = £, U X,. Events in ¥, are controllable
while events in X, are uncontrollable. The active event set $(q) representsall ¢ € &
such that 6(o,q) is defined for a state ¢ € Q. A subset v of £(q) is called a control
pattern at q if £,NX(q) Cy C X(g). Let T be the set of all control patterns. Then
T = {y|v € 2%}, where 2% is the power set of £. The DES G equipped with T' is
called the controlled DES. Control of DES G is realized by repeatedly changing the
control patterns according to the observation of the operation history of the system.
The switching of control patterns is made so as to guarantee that the resultant closed
loop system operates at a prespecified permissive region. Such a permissive region
can be specified either as a desired closed-loop language or a predicate (Ramadge and
Wonham, 1987a; 1987b). In this paper we focus our attention on the predicate-
type specification. It has been shown that for this kind of specification a state feed-
back control is sufficient to realize the control task (Lin et al, 1988; Ramadge and
Wonham, 1987b; Ushio, 1989). It has also been shown that state feedback control is
superior to the supervisory control (event feedback) for predicate-type specification
in the sense that even the initial state is uncertain inside T(P) (T(P) = {q|q € Q,
P(q) = 1}), and the same state feedback controller can accomodate the related control
task (Ushio, 1989).

Let f:Q@xX — {0,1} be a state feedback control. For a given G, ¢ € Q, an
event o € X(g) is said to be enabled by f if f(g,0) = 1. Otherwise, if f(g,0) =0,
then o is disabled byf. According to the definition of control patterns, Vo € £, N
%(q), f(g,0) = 1. The closed-loop system G7,ie. G under control of f, is another
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automaton Gf = (2,Q/,67) such that @ C Q and

5 (0,0) = { 6a.0) i flgo)=1

undefined otherwise

The state feedback control f is said to solve P if Qf c T(P). It has been
shown that there is a state feedback control f which solves P if and only if the
system starts at ¢ € T(P) and P is control-invariant with respect to f (Ramadge
and Wonham, 1987b; Ushio, 1989), i.e.

P<uwlpl(P) VoeZX
where

1 if 6(g,0) is defined and 6(g,0) € T(P)
wip, (P)(qg) = or 6(g,o) is undefined
0 otherwise

wipf (P)(q) = wips(P)(@) V f(g,0) Vg€ @

and f(g,0) is the usual negation operation in Boolean algebra. It has been shown
(Ramadge and Wonham, 1987b) that P is control-invariant with respect to f if and
only if P is Z,-invariant, i.e.

P < wlps(P) VYo € ¥,

A state feedback control f, is said to be more permissive than fp for P if
£5(q,8) < fa(g,B) Vg€ Q and B € (g). For a given control-invariant predicate
P there is a unique maximal permissive state feedback control f* that solves P
(Ramadge and Wonham, 1987b).

As shown by Li (1991), even for a control-invariant predicate, not all states
specified by this predicate are reachable from the given initial state, i.e. R(L(G;‘c )) C
T(P) with respect to g; where R(L(ij)) = {q| 3s € =*,6(g;,5) = q}-

In order to characterize the controllability of predicate, i.e. a predicate for which
all specified states can be reached from the initial state, a set of states Re(Gj, P) is
recursively defined as follows (Li, 1991):

1. gj € RG(GJ"P);

2. If ¢; € Re(G;,P), 6(gi,0) is defined and 8(gi,o) € P for o € &, then §(gi,0) €
Re(GjaP);

3. Every state in Re(Gj, P) is obtained as in (1) or (2).

With a little abuse of notation, in the sequel Re(Gj, P) also denotes a predicate
defined on Q. Vg € Q, Re(G;,P)(q) =1 if g is reachable from g; via legal states
specified by P.
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Definition 1. (Li, 1991) Given DES G and a predicate P defined on Q, P is
controllable with respect to G; if '

P < Re(Gj, P) Awlp,(P) Vo e X,

The following theorem relates a state feedback control f and a controllable
predicate P.

Theorem 1. (Li, 1991) Let P be a predicate defined on Q and g; € T(P). Then

there is a state feedback f such that R(L(G;)) =T(P) if and only if P is controllable
with respect to Gj.

However, even with a controllable predicate P (with respect to G;), if the system
starts at ¢; € T(P), ¢; # ¢;, then it is not necessary that all the states in T(P) are
reachable from ¢; under the same control f as given in the above theorem. In
order to solve this problem, a concept called the absolutely controllable predicate is
introduced in (Li, 1995).

Definition 2. (Li, 1995) Suppose T(P) = {e1,92,...,qm}. The corresponding
predicate P is called absolutely controllable if

P < AX Re(Gi, P) Awlp,(P) VYoe3,
Remark 1. It can be verified that a predicate P is absolutely controllable if and
only if P is control-invariant and the states in T(P) are mutually reachable.
In order to characterize the absolutely controllable predicate, a class of automa-

tons is defined as follows.

Definition 3. A DES G = (%,Q,6) is called strongly connected if Vg;,q; € Q,
ds,t € &% s.t. §(qi,s) = ¢q; and 6(g;,t) = q;.

Definition 4. A state feedback f is called global if and only if GY is strongly
connected.

In the sequel we abbreviate the Global State Feedbacks to GSF.

Definition 5. A DES is said Fair-In-States if it is strongly connected.

Actually, for a strongly-connected DES, given any state trajectory s, =
qa'¢®...q", we see that Vg; € Q, as n — oo, ¢; appears on the state trajectory
infinitely often, provided that the underlying transition probablity from one state to
any other state is not zero.

With the above notations, the following problem is formulated (Li, 1995):

Global Predicate Control Problem (GPCP): Given any G and predicate P
defined on Q, find a GSF f such that R(L(GY)) = T(P) Vg; € T(P).
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The following result gives the necessary and sufficient condition for the solvability
of GPCP.

Theorem 2. (Li, 1995) For a given DES G and a predicate P defined on Q, the
GPCP is solvable if and only if P is absolutely controllable.

In order to deal with the connectivity of the state space, we give the definition
of the set of coreachable states in G with respect to P and ¢; € T(P).

Definition 6. (Li, 1995) The set of coreachable states in G' with respect to P and
g;j € T(P), denoted by Cre(Gj, P), is defined recursively as follows:

1. g; € Cre(Gj, P);

2. If ¢ € Cre(Gj,P), and 3o € ¥ such that ¢° = §(¢¥,0), ¢¥ € T(P), then
v € C’I‘E(Gj,P);

3. All states in Cre(G;,P) are obtained as in steps (1) and (2).

As shown in (Li, 1995), for a given predicate, the state space of the controlled
DES can actually be partitioned into equivalence classes with respect to the reach-
able/coreachable relations. Consider a DES G and a predicate P defined on Q.
Two states ¢;,q; € Q are said to be satisfying the relation AC(P) if any one of the
following conditions holds:

1. qi, qj gT(P)a
2. ¢i,q; € T(P), and (g: € RG(G]',P)) A(g € CT&(GJ‘,P)).
Proposition 1. (Li, 1995) AC(P) is an equivalence relation.

Remark 2. The relation AC(P) associated with a given predicate P actually par-
titions the state space into different equivalence classes. Since no control-invariant
property is concerned, any equivalence class may not correspond to a global state feed-
back. Fortunately, according to (Li, 1995), it is always possible to find the maximal
elements corresponding to every equivalence class of states partitioned by AC(P).

Based on the above discussion, for any predicate P, we can first partition the
state space of G into different equivalence classes, i.e. Q@ = Q1 UQ2...U Qac(p)-
For any specific equivalence class, we can find the set of absolutely controllable state
subsets contained in it. Consequently, the corresponding global state feedback can be
constructed.

The following result characterizes the number of possible GSF’s.

Proposition 2. We have 219 > [AC(P)|x2/Q@ul > wIACP9IQ - ypere
|AC(P)| is the number of elements in the equivalence class AC(P), and Qmax =
max;-,..|ac(pP)| Qi

The proof consists in using the induction method. We omit it here.

Our interest here is, what is the optimal GSF if a performance index is given
along with the GPCP? This is the topic of the next section.
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3. The Optimal GSF

3.1. Performance Index

Our interest is to find a trade-off between the behaviour gain E; and the related
control cost E,. This is essentially the same as in (Kumar and Garg, 1995). First,
let us construct the performance index E.

3.1.1. Choice of F;

For our problem as mentioned above, the minimally restrictive control in the sense of
Ramadge and Wonham is the state feedback f such that |Qf| is the largest while
the predicate control task is realized.

In order to accommodate this observation, let
Q7]
Ei= ) Ki(g)

j=1,feF

Here Q7 is a subset of Q, K : Q — RT U {0} is a mapping, and F is the set of all
state feedbacks.

3.1.2. Choice of F,

The criterion for determining FE, is to consider the control cost for every disabling
action issued by the state feedback f. Formally, it is defined as

|Z] 1=

By =) Ks(ljoj) = ) 1;Ka(0y)

5=1

where [; is the number of times the event o, is disabled, and

K( ) —OO(Nj<0 ifajEEc
o) =
2 —00 otherwise

where NV, is a negative real number.

Remark 3. In our performance index, the “gain” E; corresponds exactly to the
activities that the system can perform. Recalling the results in (Lin, 1991), max-
imizing E,, i.e. to let the closed loop system behaviour be as large as possible, is
equivalent to let the system run the fastest when certain fairness condition of the
system is satisfied. So our formulation here can be considered as a trade-off between
the system operation speed and the control cost while the given supervisory control
task is realized. Notice that the fairness condition in (Lin, 1991) is different from the
FIS condition we stated above.

The optimal control problem can now be framed as follows.
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Optimal State Feedback Control Problem (OSFCP): For a DES G and a
predicate P, find a state feedback f such that

1. f is a GSF that solves P;
2. E = Ey + E, is magzimized with respect to G*.

In the above problem, (1) is the logic specification for the closed-loop system as
well as the structural constraint for the related controller. The logic specification is the
control task the controller is supposed to realize. The structural constraint on f (i.e.
it is a GSF) is employed mainly to clarify the “one-time cost ” as assumed in (Kumar
and Garg, 1995). Let us just look at one example. Suppose G is the controlled
automaton with @ = {q:,¢2,¢3} with the property that once the controlled system
starts at g, it will leave ¢; and never comes back, that is, g1 will be a “transient”
state while go, g3 are “steady-state” states. It is unlikely that we should pay the same
attention to q; as well as to ¢o,¢3. The same idea applies to the control cost Es.
This is why we impose the GSF constraint on the controller f.

3.2. The Set of GSFs

Definition 7. Let G = (%£,Q,4),5 = (X, X,7n). S is called a subautomaton of G if
1. X CQ;
2. 1=10|x.

Here 6 |x is the restriction of § on X.

Based on the definition of controllability of languages (Ramadge and Wonham,
1987a), fix ¢; € Q, for L C L(G;). Then L is called controllable with respect to
(L(GJ)aEu) if

Ei}u N L(GJ’) clL

where L is the prefix closure of L.

Definition 8. A subautomaton S = (X, X,7n) of G is called realizable if Vg; € X,
L(S;) is controllable with respect to (L(Gj), Zu).

In fact, a realizable subautomaton S of G is obtained by only removing some
controllable edges from G and at the same time the states in S are isolated from
the states in G — S.

In the sequel, we denote the set of realizable subautomata of G by GE.

Definition 9. For a realizable subautomaton S C G®, B(S)={z| z€ X,30 € T
s.t. 6(qg,0) is defined but § |x is undefined} is called the set of boundary states.

It is trivial to have the following result.

Proposition 3. Any GSF corresponds to a strongly-connected realizable subautoma-
ton of G.
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Let us suppose that S is a strongly-connected realizable subautomaton of G
corresponding to the GPCP, the associated GSF is fs. Numbering the states in Q

as ¢1,¢2,---,9|| and events in ¥ as o1,...,0|g|, we can build a control matrix as
follows:
R *
x ok ok *
¥ % %
IZe] > [Q

where the elements are the values of f(g;,0;) for ¢ € (1,|Q]), 7 € (1,|%]). If f(gj,0%)
is undefined, the corresponding entry in C(Z, Q) is set to “0”.

Recalling the definition of B(S), we have

¥ k.o %
PR
CB(EaQ):
* %

[Ze] x |B(S)]

The corresponding column is denoted by C; (i = 1,2,...,|B(S)|).

Definition 10. As=C; +--- + C\|B(s)| is called the extended control vector.

In fact, the extended control vector is the sum of all the control actions of the
GSF for realizing S.

Sometimes, we can compare GSFs without explicitly stating the performance
index.

Proposition 4. For 51,5, € GE, if S; C S; and Ag, > As,, then E(S1) < E(S).

Proof. We have 51 C Sy — E1(S1) < E1(S2). Moreover, Ag, > Ag, — Vo, € X,
Agl > AL, where A (A%) is the j-th row of C(%,Q1) (Ca(Z,Q2)). AL <
A’S2 implies that in realizing S;, the number of disabling actions for o; is greater
than that in realizing S;, or equivalently, l} > l?. Since Ag, > Ag,, we have
I} > I7(¥i). Recalling the definition of Ep, we have FE»(S;) < E5(S;). Combining
the fact that F,(S1) < E;1(S2), we have the claim verified. ]

A subsequent development of the above proposition is as follows.

Corollary 1. For S1,S5, € GE, if S; =S5 and Ag, > Ag,, then E(S7) < E(Sz).

The above corollary can be explained as follows. Given a DES G, predicate
P and performance index E, if two GSFs give the same closed-loop state space,
but one takes less control than the other, then the former is better according to
the performance index E. The state feedback that is minimally restrictive is called
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parsimonious in (Kumar and Garg, 1995). In fact, we can have another result parallel
to the above corollary.

Corollary 2. For the OSFCP problem, there is at least a mazimal solution in the
sense of Ramadge and Wonham.

Proof. We construct the subset FEW of F as follows: Select an f € F, its cor-
responding realized subautomaton is S, its extended control vector is A;. Control
fi € FRW(j =1,2,...,m) if and only if the realizable subautomaton corresponding
to f; is S; with the property that As; = As (j = 1,2,...,m). We then have
E(Sk) < E(Su)(k,n € (1,2,...,m)) if and only if fx < fn. That is, for the chain of
permissive state feedbacks f; € FEW there is a maximal element (by Zorn’s lemma).

4. Synthesis Procedure

In this section, we present an algorithm for solving the OSFCP. This algorithm is of
hybrid nature. We first reduce the solution space to a sufficiently small subspace by
employing an algebraic operation on the set of all GSFs and then use the brute force
computation to get the optimal control. The algorithm is as follows:

ALGORITHM “HYBRID”
1. Partition the state space @ according to the relation AC(P). Choose one ele-
ment, say @i, in AC(P);
2. Forall f; € Fy (i =1,2,...,|F1]), where F is the set of GSFs with respect to
AC}, compute its corresponding extended control vector Ay,;

3. If for some 1,j,Ay, = Ay,, then f; and f; are equivalent with respect to A.
The equivalence classes in Fy are (F*, F?,... ,FMY;

4. Forall i € (1,2,..., M), compute the maximal elements in F* under the relation
“<”: Denote the set of these elements by Freduced;

5. For the set of state feedbacks in predueed for ( #£ §) 4,5 € (1,2,..., M), if
feFi ge F,g<f and A7 > A’ then remove g from the solution space.
Denote the resultant GSFs by F.redued,

6. Find MAX ¢ 0 reduced E via computation.
1

For this algorithm, we have the following result.

Proposition 5. If &, and Q are finite, then the algorithm HYBRID gives the
optimal solution in finite steps.

Proof. Since @ is finite, AC(P) contains at most |Q| elements, so Step-1 can be
done in finite steps.

Notice that in Step 2, Q1 C Q so |@1| < |Q]. Since we have at most 2!@/
elements in Fj, computation in Step 2 can be done in finite steps. As long as Fy
is finite, computations in Steps 3-5 can be done in finite steps. Finally, notice that
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Fpreduced ¢ preduced = [y and that Fy is finite, so the computation in Step 6 can
be done in finite steps. [ ]

5. Example

Consider the system depicted in Fig. 1. Let T(P) = Q — {5}. We can find that
AC(P) = {1,2,3,4},{5},{6}. Suppose all the events are controllable. Let us concen-
trate on the equivalence class {1,2,3,4} in AC(P).

q1 o1 g5 01 q.G

02 g1
o3
g3
q2
04

o3 o9

94 o1

Fig. 1. The controlled plant.

We enumerate all the GSFs and their corresponding extended control vectors as
follows. For the state feedback f;, the corresponding state subset is {1,2,3,4}:

feCi(E,Q) =

S O O =
O O O =
S O O N

Note that C{(Z,Q) stands for the control matrix for the state subset A with
the corresponding boundary state subset B.

Similarly, we have

fo:CHER(2,Q) =

S O O e
O O O =
S O O N
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(1 0 (1]
0 0
fa: Cﬁ,’;is}(z, Q)= nE Az = )
L0 0 L 0]
1 0 1 [ 2]
0 0 0 0

. {124} _ _
f4-c{1’2} (EaQ)_ 00 0 ) Ay = 0
010 | 1]
1 0 (1]
. {12} 0 0 _ 0
f5~ {12}(2 Q) 0 1 1 AS— 1
u.O 1 Ll_
1 1]
0 0

fo : 8}3}(2J Q)= , Ag =
1 1
L0 L 0]
[1 1 2
o2 s 00 A 0
f7 {24}( Q) 0 0 ’ 7 0
L1 0 1

Using the algorithm HYBRID, we simply get the following elimination process:
1. f, should be eliminated (compared with fi);
2. f4 should be eliminated (compared with f);
3. fs should be eliminated (compared with f3);
4. f6. should be eliminated (compared with fs);
5. fr should be eliminated (compared with fi).

Thus, we have just two feedbacks left: f; and f;3. Once we have the performance
index E, we can decide which GSF is better.
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6. Conclusion

An optimal control problem is formulated and solved in this paper. It has the following
features: the performance index is a trade-off between the control cost and behaviour
gain; the control specification is explicitly given, and a structural constraint is imposed
on the candidate optimal controllers so as to clarify the assumption of one-time cost;
the synthesis algorithm is of interest in the sense that the required numeric calculation
can be partly reduced by qualitative reasoning.
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