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BOUNDARY STABILIZATION OF COUPLED
WAVE EQUATIONS

MaaMoOUD NAJAFI*, REza SARHANGI**

The qualitative behavior of the coupled wave equations in bounded domains are
addressed. Here it has been shown that uniform exponential stability can be
achieved provided both equations are exposed to velocity feedback controllers.
However, if one of the controllers is removed from one equation and placed in
another ome, only strong stability can be guaranteed. Numerical computations
are presented to match the theoretical results.

1. Introduction

Stability is a very desirable property for an elastic system, particularly if the rate
of decay is exponential. To this end, the energy multiplier or energy perturbation
methods (Bensoussan et al., 1992; Chen, 1979; Lunardi, 1991) have been successful-
ly applied to reach this goal for various partial differential equations and boundary
conditions. Stabilization properties of serially connected vibrating strings or beams
have been examined by several authors (Chen and Wang, 1989; Ho, 1993). They
suggested that uniform stabilization can be achieved if we employ dissipative bound-
ary conditions at one end. If instead, one damper is located at the mid-span joint
of two vibrating strings coupled in series, the uniform stabilization property holds if
c1/cy (wave speeds) has certain rational values. In this paper, we will investigate the
stabilization properties of vibrating strings in parallel whose energy will be damped
out by boundary velocity feedback controllers for various boundary conditions.

The governing equation of such a system is described by the following system of
wave equations (mixed initial-boundary value problems):

Ut — ClUzy = (v — u
" (v—u) in 0 x (0, 00) 1)
Vit — gy = a(u —v)

where ¢ € R", a € R, and Q = (0,1). The initial conditions are:

u(z,0) = ug, ue(z,0)=
(2,0) = w0, u(2,0)=u n0<z<1 )
u(x,O) = v, vt(:n, 0) =1
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The following cases are under consideration:

Case 1. (one sided boundary controllers for both equations)
w(0,t) =0, uy(1,t) = —Prus(1,t) (3)

v(0,8) =0, wv.(1,t) =—LFove(1,t), t>0 (4)

Case 2. (two sided boundary controllers for one equation)
w(0,8) =0, u(l,t)=0 (5)
Uz(oat) = ,Bg’l)t(o,t), 'Ux(]-:t) e -ﬂﬂ)t(l,t); t>0 | (6)

Here t and z are the time and space variable, respectively, and v and v are
the deflections of the strings from the equilibrium positions. The wave speed c
and o (spring constant) are the system parameters and the damping coefficients
B; >0 (i =1,2) depend on the control devices. These parameters play an important
role in the physical behaviour of the system. Generally, this boundary control cor-
responds to a control mechanism which monitors u; and v; at * =1 or at z = 0.
This phenomenon takes place if the system is exposed to external forces or by (2).
This problem is motivated by an analogous problem in ordinary differential equations
for coupled oscillators, and has a potential application in oscillation of objects from
outside disturbances.

Associated with each solution of (1) is its total natural energy at time ¢:

1 1
E(t) = 5/0 {lul? + P uaf? + [ol? + v ]? + alu — o]} de )

In Section 2, we discuss the well-posedness of the problem via semigroup theory.
Section 31s devoted to the exponential stability of the system for Case 1. We observe
in Section 4 that the point spectra o,(A) are approaching the imaginary axis (Theo-
rem 2) asymptotically if we apply boundary conditions (5) and (6), hence the rate of
decay of the solution is not uniformly exponential for Case 2. But, it is shown that
the solutions tend to zero strongly as ¢t — oo (strong stability). That is to say, if
and v are the solutions to the above system with FE(u,v,0) < +oo, then

E(u,v,00) = lim E(u,v,t) =0 (8)

t—o0
Section 5 is a convincing part of this paper due to a comparison of the theoretical
results with numerical computations for the system (1)—(6). There, we apply the finite
difference method to solve the system (1) and (2) along with boundary conditions
(3)-(6), respectively. The results are illustrated in solutions u and v versus spatial
dimension z and also energy versus time t. One can find the overall result of this
paper in Section 6. The Appendix is for the proofs of lemmas in Sections 3 and 4.
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2. Notations and Preliminaries

We shall use the notations

4 d n_ d __of _of _62f 5 02
()—dt’ ()_EE’ ft_at’ fw'”az’ f”_azﬁ’ 8’“_8:52
We also need to adapt L? = L%([0,1]), |||l = || ||z, and the standard Sobolev space:

m
(0,1 = B™ = {£ 0.1 = B[ [flmny =3 [ 1W@) do < oo}
k=0

for m € N. Moreover, Hfé} ={fe Hm| f(0) = 0}. Our proper function space

H = H} {0} xL?xH o} x L? is the set of all quadruplets U= (u,zv,w)", T isthe
transpose equ1ppeé with the norm:

1
101 = [ (1o + luaP + 1w + ha? +afu — o} do ©)

Remark 1. The norm defined by (9) cannot be utilized in Case 2 since it would be
an illegitimate application of the Poincaré inequality:

1 1
/ [v|2dz < '7/ lvz|?dz, >0 (10)
0 0

due to left boundary conditions (6). However, if we consider the quotient space
generated by the class of functions [f] = {g | g = f + constant }, then we are able to
use (9).

The unbounded linear operator A associated with (1) is given by

0 1 0 0 0 1 0 0
Ao 2 ~a 0 o 0| _ 22 0 0 0
0 0 0 1 0 0 0 1
« 0 28 —-a 0 0 0 c¢?82 0
0 0 0 0
T e (11)
0 0 0
a 0 —-a 0
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The domain of A with respect to each boundary condition (3)—(6) is as follows:

where

_. u(0) =0, cPuy(l)=-pF12(1)
Di(A)=(U e H| (12)
v(0) =0, c*vy(1) = —Baw(l)

Dy(A) =S U e H| (13)
c?v,(0) = Baw(0), c*vg(1) = —Baw(1)

H= H{zo} x H{lo} x H{ZO} x H{lo} is dense in the Hilbert space H.

In Lemma 1 below, we summarize some important functional properties of the
operator A in H, which also leads us to the well-posedness of the problem (1), (2).

Lemma 1. The unbounded linear operator A satisfies the following properties:

(i)
(%)

(iii)

Proof.
(i)

(i)

(iii)

A 15 a densely defined, closed, dissipative linear operator in H;

A has compact resolvent and consequently o(A) consists entirely of isolated
eigenvalues;

A is the infinitesimal generator of a strongly continuous semigroup S(t) of
contractions on H.

It is a routine procedure to verify that A is a densely defined, closed and linear
operator. To show that A is dissipative (that is, Re (AU,U)y < 0, for each
U € D;(4), i =1,2) we first find

Re (AU, U)gr = (AU, Ut = Plugz + ] |} (14)

Applying (12) to (14), we obtain the dissipativeness of the unbounded
linear operator A, i.e.

(AU, U)sr = = (812%(1) + Bpw?(1)) <0 (15)

A similar result can be obtained from (13) and (14).

We have A = A + aB, where 4 is the standard unbounded part, and B
is a bounded perturbation to it. It is well known that with the boundary
conditions (3) and (4), (\] — A)~! is compact for A > 0. Since B is bounded,
it follows that (AI — A)~! exists and is compact for A > 0 sufficiently large
(Najafi et al., 1997). This implies that A has compact resolvent, and as a
consequence, the spectrum of A is discrete (Kato, 1966, Theorem 6.29 in
Chapter 3).

This is a consequence of (i) and (ii) and Lumer-Phillips’ Theorem (Pazy, 1983).
B
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The well-posedness of the problem (1), (2) is answered in terms of this semigroup
S(t) generated by A (Pazy, 1983). For any initial state Uy € H, the generalized
solution of (1), (2) is given by U = S(¢)Uy and it becomes a classical solution for
Uy € Di(A), i =1,2.

3. Study of Uniform Stabilizability

We state the following theorem which is the essence of this section.

Theorem 1. Consider the system (1) and (2) along with (3) and (). Then the
uniform exponential stability holds.

To prove Theorem 1, the following lemmas are utilized.

Lemma 2. For all sufficiently large T, there exists a constant C such that .
T T T 1

/ (w—v)2(1,8)dt < C (/ (Buu? + B202)(1, 1) dt +/ / (= v)? d:z:dt)
0 0 0o Jo

Lemma 3. For all sufficiently large T, there ezists a constant C such that

T rl T
//(u—v)2dxdt§C/ (Bui2 + B202)(1, ¢) dt
0 0 0 .

The proofs of the above lemmas are provided in the Appendix.

Proof of Theorem 1. Without loss of generality we assume ¢ = 1. Applying integration
by parts and boundary conditions (3) and (4), we obtain

E = —(Buf + B2v})(1,¢)
which leads to

T
E(T) - B(0) = - / (Br? + Byo?)(1, 1) dt (16)

We multiply the equations of (1) by zu, and zv,, respectively. Adding the products
and integrating over [0,1] x [0,T], we obtain

p(T)—p<0)+/TE(t>dt= é/Tm?+v3)(1,t)dt+%/Twzm;‘;)(l,t)dt
0 0 0
o T 5 T rl 5
+5/0 (u = v) (1,t)dt+a/0 /0 (u — v)? dz dt (17)

where p(t) = fol z(wiug + vev,) dz.
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Since |p(t)| < CoE(t), Co > 0, for a solution of (1)—(4) one gets the estimate

—Co (E(T) +E(0)) +/0T E(t)dt < G /OT(ﬁWf + Bav)(1,t) dt

o [T T ;1
+§/0 (u—v)z(l,t)dt-i—a/o /0 (u —v)? de dt (18)

where C is an appropriate positive constant. Using (16) in the last estimate, together
with fUT E(t)dt > TE(T), gives an estimate of the form

T
(T = 2C) E(T) < 01/0 (Brui2 + Bov?)(1,£) dt

o [T T 1
+ —/ (w —v)%(1,t)dt + a/ / (u —v)*dzdt (19)
2 Jo 0 Jo
Now using Lemmas 2 and 3 in (19) results in the following estimation:
T
E(T) < Cr / (B + )1, 8)dt,  Cr >0 (20)
0
Having considered (20) and (16) one can obtain

Cr
E(T) < 1+CTE(O)

Since the fixed time T is arbitrary, this shows that the strongly continuous semigroup
S(t) generated by A satisfies the following inequality:

ISl <1
Thus, the the proof of the theorem follows from (Balakrishnan, 1976). ]

Remark 2. Since the wave equation is reversible, with a similar approach as in (Chen,
1979), we can show that the system (1)—(4) is controllable using the “Controllability
via Stability” argument employed in (Chen, 1979).

4. The Asymptotic Behavior of Eigenvalues of the System

The essence of this section can be summarized in the following theorem.

Theorem 2. For the system (1)-(2) along with the boundary conditions (5)-(6) the
following statements hold:

1. The system is strongly stable (i.e. (8)), provided that oo ¢ A = {(1/2)c*(n? —
m?)r? t m,n € N} for the boundary conditions (5) and (6).

2. A sequence of eigenvalues can be constructed which approaches the imaginary
azis. Hence, the system is not uniformly exponentially stable.

3. If a € A, then there exists U € H such that ||S(t)U| g = constant.



Boundary stabilization of coupled wave equations 485

Having compared the results obtained in Theorems 1 and 2, we observe in the
parallel system (1)~(2) that the existence of two controllers does not guarantee the
exponential decay of the system and hence the locations of theses controllers are
crucial for uniform stabilizability.

To furnish the proof of the above theorem, we need to employ the following
results in (Huang, 1985) and the Rouche theorem in (Ahlfors, 1979), respectively:

Theorem 3. (Strong stability) Let S(t) be a uniform bounded Co-semigroup on a
Banach space, and let ReX < 0 for all X € a(A). Then S(t) is strongly asymp-
totically stable. Conversely, let S(t) be strongly asymptotically stable. Then S(t) is
uniformly bounded, ReX < 0 for all X\ € o(A), and there is on the 1Maginary -axis
neither point nor residual spectrum of A.

Theorem 4. (Rouche) Let I' be homologous to zero in Q and such that n(T, z) is
either 0 or 1 for any point z not on T'. Suppose that ¥(z) and ®(z) are analytic
in €} and satisfy the inequality |¥(z) — ®(2)| < |®(z)| on T. Then U(z) and ®(z)
have the same number of zeros enclosed by T.

Proof of Theorem 2.

1. From Theorem 1, we have concluded that the spectrum o(A) consists of only
isolated eigenvalues. Now due to Theorem 3 it remains to claim p(A) D iR
To do this, it is sufficient to show that (A — AI)~! exists for any A € iR We
assume the contrary, that (A — AI)™! does not exist; i.e. there exists \ € o(A)
such that A € sR. Then (A — AI)(ug, z0,v9,wo)T = 0 has a nontrivial solution
(o, 20,v0,w0) T € D(A), and explicitly satisfies:

zo—/\u0=0

cAuf — aug — Az + avg = 0

(21)
Wo — /\’Ug =0
aug + v — avg — Awg = 0
along with boundary conditions
0) =0, 1)=0
o(0) uo(1) (22)
vp(0) = ~Bowo(0),  Puh(1) = —Bawo(1), >0
Let
.
(u,9)" = e (uo(), v0 () (23)

Then (u,v)" satisfies the system of equations (1). The first observation is that
ll(w, 2,v,w) T = [le*(wo, 20, vo, wo) T|| = ||(wo, 20,v0, o) T||. This shows that the
system is conservative, and therefore, d E(t)/dt = 3v?(0) = B2v2(1) = 0. Conse-
quently, from (5) and (6), we have v,(0) = v,(0) = 0, v,(1) = v:(1) = 0 which
imply from (22) and (23) that v§(0) =vj(1) =0, wvp(0)= v(1) = 0. Thus
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(ug,v0) " is a solution to the boundary value problems:

cul — Nug = aug — o)

(24)
vl — A?vy = avy — up)
along with boundary conditions
0) =0, 1)=0
u0(0) uo(1) (25)
vp(0) =0, vw(l) =0, v4(0)=0, v(l)=0
By defining £ = up + vo, 7 = ug — Vo, (24) can be rewritten as:
"—a¥% =0, a=ci)
£ 3 (26)

7' =0n=0, b=cVA+2
Using the first four boundary conditions of (25) yields
£0)=0, £@1)=0, n(0)=0, n(1)=0 (27)

The solutions to (26) and (27), which satisfy the boundary conditions at = = 0,
are:

&(z) = Cysinhaz, 1(z) = Cq sinh bz (28)

where C; and C, are arbitrary constants. To satisfy the boundary conditions at
z =1, provided C; # 0 and C5 # 0, we should have

a = inm, b=1imm, n,m €N (29)

From (26) and (29) one can get o = (1/2)c?(n?—m?)n? (n > m) which violates the
hypotheses, and consequently Cy or Cy must be zero. Without loss of generality
consider Cy = 0. Then from (28) and by reverse transformation, we have

vo(z) = Cy sinhaz (30)

Now, by applying the last boundary condition of (25) in (30), we obtain C; = 0.
This shows that (24)—(25) has only the trivial solution, a contradiction. Hence,
the system is strongly stable.

2. In order to show that the solution to the system (1) along with boundary condi-
tions (5) and (6) is not uniformly exponential, we find a sequence of eigenvalues
of the system which approaches the imaginary axis, and as a result the system
is not uniformly stable. For this, we utilize Theorem 4. Since we are interested
in finding this sequence close to the imaginary axis, we only consider the strip
S={z=z+1y | — 1<z <1} in our discussion. Consequently, we obtain this
fact that sinhz and coshz are bounded in this strip. To find the eigenvalues, we
solve the following equation:

(A - wI)(u, z,v,w)" =0 (31)
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and we obtain

inh inh b
u = ky (cosh az + cosh bz) + ky (sm oz sin x)

b

inh inh b

+ k3(coshaz — cosh bx) + k4 (smaam - smb z) (32)
inh .

v = ki (cosh az — cosh bz) + ko (sma @@ sm? bw)

inh inh b
+ k3(cosh az + cosh bz) + kg (sma had + smb a:) (33)

where
)

=¥ oy YWt (34)

c c
Applying boundary conditions (5) and (6), one can get the following determi-
nant for which we can compute the eigenvalues of the system

det Q = o2 [4]1“1 sinh asinhb + 4fc(sinh a cosh b+ h ™" cosh asinh b)
—26%c® + B*c*(h + ™) sinh asinh b + 282¢? cosh a cosh b] (35)

where h = a/b. Now according to Theorem 4, we need to construct the following
functions:

\p(a):detQ

a2
+ 4fc(sinh a coshb + h™! cosh asinh ) + 4h~" sinh a sinh b (36)

= (ﬂ2c2(h+ A1) sinh @ sinh b+24%¢? cosh a cosh b— 2ﬂ2c2)

and
®(a) = 4Bc(sinh a cosh b + sinh bcosh a)
+243%c*(sinh asinh b + cosh bcosha — 1)
= 4fcsinh(a + b) + 26°¢*(cosh(a + 2b) — 1) (37)

Let ®(a) = 0. This implies a + b = %inm, from which we only consider an,
and b, such that a, +b, = 12n7, where

. «
), bn::z(mr—m), n=1,23,... (38

Now, for large n one can construct the sequence of circles inside the strip S as
follows:

Qn :i(’mr+

2nme?

1 .
rn={z|z=an+—e“’, 0g9<27r} (39)
n

To apply Rouche’s theorem, we should estimate |¥—®| and |®] on T, for large n.
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Estimation of |¥—®|. For any a € Iy,
|& — ®| < B2c2|(2 — h™' + h)sinhasinh | +48c|(1 — h™") sinh bcosh b|

+4h7"|sinha| | sinh b (40)
from which
| sinh a| = |sinh (imr + i2n(71rc2 + %e“’)
oo [+ )] oy )]
< (5 + )7 +s3) (1)
Also

|sinh b| = |sinh (a + (b — a))]
< |sinha| | cosh(b — a)| + | cosha] | sinh(b — a)|

The boundedness of coshz in S and the fact that |a —b| < (22/c?)(1/n)+ O(1/n3)
leads to the following result:

| sinh b gcl(—(%ﬂ) +o( >+CQ|b—a|+0(|b—a| )

2mc
lo% 1 2\ 1 1
<a(get1)y+alz)y+o0s)
o 200 1 1
= [Cl (————'271_02 + 1) + 02(6_2)] ; + O<n—3> (42)
where ¢; and cp are constants. Moreover,
8a 1
1-r * ’ \azc2 |a|4)‘ T n272c? +O<F) (43)
and similarly
-1 ((I - b)2 1
_ |27 |« .
12—l 4B — _o(nQ)

Now, from (40)—(43), one can get the following estimation for |¥ — ®|:

1
-2l <0() (44)
for large n.

Estimation of |®|. We need the following lemma whose proof is provided in the
Appendix:

constant

Lemma 4. <|{a+b) — (an + bn)| < — for large n.

3=
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Applying Lemma 4 we obtain

|sinh(a + b)| :| (an+b) [(a+b)—(an+bn)])]
' [(a+b)— (an+bn)]1:%+0(%>2% (45)
and similarly
|cosh(a +b) — 1] > 515 (46)

From (37), (38), (45) and (46), the following estimation can be derived:

1
> fl
[2(@)| 2 0(-) (47)
Now, from (44) and (47), we finally obtain
[®(a)| > [T(a) — ®(a)|, a €Ty, nlarge

Hence, by Rouche’s Theorem, ®(z) and ¥(z) have the same number of zeros
inside the disk I',, and the theorem follows.

3. This part is an immediate conclusion of Part 1. |

5. Numerical Computation

Here, we exhibit numerical computations supporting our theoretical results (Theo-
rems 1 and 2). Having considered this, the finite difference method (Richtmyer and
Morton, 1967) was utilized for the system (1)—(2) along with boundary conditions
(3)-(6). The sensitivity of this computational method due to its stability condition,
ie. |At/Az| < 1/c (Couront number), was carried out carefully in order to obtain
reliable results. In Fig. 1 a confirmation of Theorem 2 is apparent, since the solu-
tions wu(z,t) and v(z,t) go to zero quickly as time T increases (see Figs. 1(a) and
(b) for » and v, respectively). In Fig. 1(c), we see that the energy of the system
decays uniformly exponentially due to energy absorbing boundaries at both right
ends of upper and lower strings. In Fig. 2, we see that the solutions and the energy
of the system (1) for u, v and F, are approaching zero as time increases. These
observations agree strongly with Theorem 2. We have shown here, due to the rate
of convergence of the solutions, that when the boundary conditions (5) and (6) are
employed, the energy E(t) converges strongly, i.e. E(t) — 0 as t — oo, for all
initial states E(0) < co. To solve the system numerically, we set the arbitrary quan-
tities c =1, a =1, 81 = 1, B2 = 2. We also consider the initial conditions as
up = v = sinwz, and vy =wv; =0, z € [0,1].

6. Conclusicn

The study of the coupled wave equations in parallel shows that the behavior of the
system is effected primarily by the location of the boundary controllers and not by the
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u(x.)
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Fig. 1. (a) u-solution; (b) v-solution; and (c) energy of the system for
boundary conditions (3) and (4).
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Fig. 2. (a) u-solution; (b) v-solution; and (c) energy of the system for
boundary conditions (5) and (6).
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minimum required controllers in the system. In Theorem 1, the uniform stabilization
of coupled wave equations was achieved since the dissipative boundary conditions
were imposed in both equations. However, in Theorem 2, we have found that if the
system possesses both dissipative boundary controllers in only one €équation, the most
that can be expected is strong stability.

Appendix

Proof of Lemma 2. The lemma is proved by standard compactness-uniqueness ar-
guments. For this we assume on the contrary the lemma is false. Then there is a
sequence of solutions of (1)—(4) such that

T
/ (tm — v)2(1, ) dt = 1 (A1)
0

/OT (ﬁl(un)f +ﬁ2(vn)§)(1,t) dt + /OT/Ol(un —wp)?dzdt — 0 (A2)

If T is large enough, it follows from (19) that E(un,v,)(T) is bounded and then,
from (16), that E(un,v,)(0) is bounded. Therefore, since the energy is nonincreasing,
Up — Up is bounded in L*®(0,T; H},,) N W (0,T; L?). The injection
{0}
L%(0,T; Hygy) NWH(0,T; L*) — L®(0,T; [Hfy, Lly), 0<y<1

is compact, where [H%O}, L?]., is the interpolation space of order +. Therefore, for a
subsequence, u,—v, convergesstronglyin L*(0,T;L?) and (un,—v,)(1,-) converges
strongly in L*°(0,T). Calling the limit w, it follows from (A2) that w = 0. But (A1)
implies that ||w(1,-)||z2¢0,r) = 1, a contradiction. [

Proof of Lemma 3. This lemma is also proved indirectly. If the lemma were false, for
a sequence of solutions of (1)—(4) one would have

/OTv/Ol(u —v)?dedt = 1 (A3)

T
/ (Bru? + B02)(1,1) dt — 0 (Ad)
0

As above, it follows from (19) and Lemma 1 that u, — v, is bounded in
L>(0,T; H%O}) NW1°°(0,T; L?) and therefore, for a subsequence, u,, — v, converges
strongly to w in L*(0,T;L?) with ||w|/p2(0,1;02) = 1. The function wn = un — v,
satisfies the system

Wy, —wh + 20w, =0
wn(0,t) =0

w:z(l’t) = _/Bl'dn(l)t) + ;82'1‘)71(1’7:)
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Passing to the limit in this system, using (A4), it follows that w satisfies
w—w" + 20w =0
w(0,t) =0
w'(1,8)=0, w(l,t)=0
Therefore z = w satisfies
z-2"+2az2=0
2(0,t) =0
2'(1,t) = 0, 2(1,t)=0, 0<t<T

If T is large enough, it follows that z = w = 0. Therefore w satisfies

w" +2aw =0
w(0) =0
w'(1) =0
which implies w = 0, a contradiction. |

Proof of Lemma 4. Let

Ala) =a+b=a+ a2+2—a (A5)

2
a
NEE

for which A'(a) =1+ . Equation (A5) can be led to the following estima-

tion:
constant
—— 2 |Aa) = Alea)| = (e +2) - (an + b))
an 2
={{1+ (a—an) +O(la — anl?)
a2 + 26%
1 1 1 1 1
> |1+ la —a,| —=>2=—~=~, for large n
20 n n n o n
1- 3 -
¢ (nﬂ.-'_ 2n7rc2)
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