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UNIVERSAL VOICE COMPRESSION ALGORITHMS
BASED ON APPROXIMATE STRING MATCHING

ItaAN SADEH*, ALEXANDER KEIZELMAN*
MICHAEL ZAK*

Two practical voice-coding schemes based on approximate string matching are
proposed. The first one is an approximate fixed-length string-matching data
compression, and the other is a Lempel-Ziv-type quasi-parsing method by ap-
proximate string matching. The performance of the two algorithms and their
sub-optimal versions are evaluated. The main advantages of the proposed meth-
ods are the asymptotic sequential behaviour of the encoder and the simplicity of
the decoder. In particular, a sub-optimal tree-structure algorithm is proposed
and its real-time advantages are demonstrated.

1. Introduction

Although it seems strange, audio data are remarkably hard to compress effectively.
Let us make a short overview of widely-used speech compression algorithms:

¢ ADPCM (Adaptive Delta Pulse Code Modulation) public standards for voice
compression.

o Shorten performs compression of waveform files such as audio data. A simple
predictive model of the waveform is used followed by Huffman coding of the
prediction residuals. But when we try to achieve better compression rates using
an acceptable quantisation error in bits, speech quality is decreased dramatically
fast.

* An LPC (Linear Predictive Coding) coder fits speech to a simple, analytic model
of the vocal tract, then throws away the speech and ships the parameters of the
best-fit model. An LPC decoder uses those parameters to generate synthetic
speech that is usually more or less similar to the original one. The result is
intelligible, but sounds like a talking machine.

¢ CELP (Code-Excited Linear Prediction) is one of the most frequently used cod-
ing techniques operating at low bit rates. However, CELP vocoders still have a
drawback: unnatural speech rate quality is rapidly increasing as the bit rate is
decreased.

* Computer Science Department, Natural Science Faculty, Ben-Gurion University of the Negev,
Beer-Sheva, Israel, e-mail: sade@math.tau.ac.il.
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We propose two practical source-coding schemes based on approximate string
matching which entertain all specific properties of the human auditory system.

Approximate string matching is a technique with considerable theoretical merits
and practical promise. Our major motivation comes from data-compression theo-
ry, although we believe that our results might have a wide range of applications in
pattern-recognition theory, artificial intelligence, biological research and, in particu-
lar, the Genome Project. Its algorithmic complexity and data structure were studied
by Landau and Vishkin (1986), Galil and Giancarlo (1988) and Storer (1990). How-
ever, we focus our attention on the probabilistic aspect of the problem, in particular
on universal source coding. Universal source-coding algorithms that achieve the the-
oretical bound, R(D), have been proposed by Sadeh (1993a; 1993b; 1994). The most
appropriate application we had in mind is in multimedia, where voice is transmitted
on the same channels and the decoder in a universal receiver must be cheap. Conse-
quently, bandwidth reduction and cheap decoding procedures are the first necessary
step to bring multimedia closer to reality.

The first practical universal source coding were proposed by Lempel and Ziv
(1977; 1978) for compression of sequences by a lossless encoder. Their algorithms are
based on a parsing procedure which creates a new phrase as soon as a prefix of the
still unparsed part of the string differs from all preceding phrases. A fast implemen-
tation was given by Welch (1984). The asymptotic behaviour of its implementation
through suffix trees was studied by Szpankowski (1993). A suffix tree construction
algorithm was presented by McCreight (1976) and a simple algorithm for sorting the
suffixes of a string was given by Manber and Myers (1993). Digital search trees were
used in (Jacquet and Szpankowski, 1995) to obtain second-order properties of the
LZ parsing scheme. LZ parsing algorithms play a crucial role in applications such
as efficient transmission of data (Lempel and Ziv, 1977; 1978), estimation of entropy
(Ziv, 1978), discriminating between information sources (Gilbert and Kadota, 1992),
test of randomness, estimating a statistical model of individual sequences (Plotnik
et al., 1992) and so forth.

Berger (1971), Blahut (1987), Gray (1975), Ornstein and Shields (1990), Sadeh
(1995) and others proved the existence of optimal codes subject to a fidelity criterion.
These works vary in the assumptions on the class of sources, the fidelity criterion and
the type of convergence of the rates to the rate distortion function R(D). In most
cases, the construction of a code involves the following step: Given a block of source
symbols, find the code in an exponentially large class of codes, which performs best
for this block. This task is prohibitively complex even for modest code-book sizes and
makes these schemes impractical for implementation. Most of the schemes postulate
that an a priori distribution of the source or some statistical information be known
at both ends of the data link. Such postulates are inappropriate in the design of a
universal machine.

Sadeh (1993a; 1993b; 1994) has proposed two practical source-coding schemes
based on approximate string matching. The first one is an approximate fixed-length
string-matching data compression method combined with a block coder based on the
empirical distribution, and the other is an LZ-type quasi-parsing method by approxi-
mate string matching. The output process, which is also a data base, is also assumed
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to be stationary and ergodic. It has been shown by Sadeh (1993a; 1993b; 1994)
that in the former algorithm the compression rate converges to the theoretical bound,
R(D), as the string length tends to infinity. We note that the decoding algorithm
is very simple. The encoding algorithm is exponential at the beginning, but it is
implementable. As time elapses, the encoding algorithm tends to be asymptotically
linear with respect to the size of the data-base string. The algorithm of Wyner and
Ziv (1989) is obtained as a special case of no-distortion D = 0.

A similar result holds for the latter algorithm in the limit of the long data base
generated by the former one, as proved by Sadeh (1993a; 1993b; 1994). The algorithm
of Lempel and Ziv is obtained as a special case of no-distortion for the quasi-parsing
method by approximate string matching.

We follow the terminology and some results of Sadeh (1993a; 1993b; 1994) who
adopted the terminology of Wyner and Ziv (1989), and Ornstein and Weiss (1993) in
their work concerning lossless algorithms.

There is some literature regarding the probabilistic analysis of problems of ap-
proximate pattern matching (Arratia and Waterman, 1989; Arratia et al., 1990;
Luczak and Szpankowski, 1997; Sadeh, 1993a; Steinberg and Gutman, 1992). In
particular, we would like to mention two references related to a probabilistic analysis
of pattern matching in the context of computer science (Knuth, 1981) and combina-
torial probability (Pittel, 1985).

We implement Sadeh’s algorithms (1993a; 1993b; 1994) and propose a sub-
optimal tree-structure algorithm for real-time voice coding. The results seem to be
promising in comparison with other known methods.

2. Physiological and Psychological Acoustics

This section covers the basics of psychoacoustic modelling. For more details, we refer
the interested reader to (Meyer and Neumann, 1972; Kinsler et al., 1982).

2.1. Human Speech

The acoustic energy associated with speech originates in the chest muscles which, by
contraction, force air from the lungs up trough various components of the vocal mech-
anism. This steady stream of air may be looked on as a carrier of energy that must
be modulated in its velocity and corresponding pressure in order to produce sounds.
The requisite modulation is accomplished in two basic ways, leading respectively to
voiced and unvoiced sounds.

Voiced sounds include the vowels of ordinary speech as well as tones characteristic
of the singing voice. The primary modulating agent for voiced sounds is the larynx,
across which the vocal cords are stretched. The vocal cords are two membrane-like
bands forming a diaphragm with a slit-like opening that modulates the air stream as
it vibrates open and shut. The length of this opening and the tension to which the
vocal cords are stretched determine the fundamental frequency of this modulation.
The shorter and lighter vocal cords possessed by most women vibrate almost twice
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as rapidly as those possessed by men. This accounts for the higher pitch of most
women’s voices. The action of the vocal cords produces a sawtooth pressure waveform
containing many harmonics.

The resonating cavities and orifices of the nose, mouth, and throat form an
acoustic filtering network altering the relative amounts of harmonics. Many of this
are controllable at will and thereby a wide variety of voiced sounds may be produced.

It is also possible for the voice mechanism to produce unvoiced sounds. For
instance, a steady forcible exhaling of the breath will produce a hissing sound caused
by turbulences set up in the flow of air through the numerous irregularities along the
vocal tract. Here the sounds produced by modulating the airstream with the lips,
teeth, or tongue. As with the voiced sounds, conscious control of the tongue and lips
alters the resonances of the cavities and orifces, producing a wide variety of unvoiced
sounds so that recognizable ones can be generated (whispering). A spectrum analysis
of the unvoiced sounds reveals a band of practically continuous frequency coverage
largely confined to the upper portion of the audible range.

The loudness of human voice is dictated by the stream of air forced trough the
vocal cords from the lungs. The frequency of the human voice is controlled by the
elasticity and vibration of the vocal cords, while the resonators govern the quality of
the sound produced.

Intelligibility of speech is an indication of how well speech is recognized and
understood. This depends on acoustic power delivered during the speech, speech
characteristics, hearing acuity and ambient noises.

The relative speech power depends on the frequency, for both men and women.
Much of the acoustic power of speech is concentrated in the frequency range of 100
to 1000 Hz. Despite this fact, higher frequencies are of great importance, because a
higher frequency band of speech makes the consonants of speech intelligible.

2.2. Ear Characteristics

2.2.1. Frequency Range and Sensitivity of Hearing

The human ear is capable of hearing sound waves having frequencies from about 20 Hz
to 20 kHz; the upper frequency limit becomes markedly lower with increasing age.

The threshold of hearing is the minimum perceptible free-field intensity level of
a tone that can be detected at each frequency over the entire range of the ear. The
tone presented to both ears should have a duration of about 1s. For tones shorter
than 0.3 s the apparent loudness increases with increasing tone duration, and for tones
longer than 3s “fatigue” sets in and the apparent loudness diminishes with time.

As the intensity of the incident acoustic way is increased, the sound grows louder
and eventually produces a tickling sensation. This level is less dependent on the
frequency than the threshold of hearing and is called the threshold of feeling. As with
the lower threshold, it varies somewhat from individual to individual, but not to a
great extent. As the intensity is still further increased, the tickling sensation gives
rise to pain at about 140 dB.
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The frequency of maximum sensitivity is near 4 kHz. Below this, the threshold
rises with decreasing frequency, the minimum power required to produce an audible
sound at 30Hz being nearly a million times as great as at 4kHz. Thus for high
frequencies the threshold rises rapidly to a cut-off.

2.2.2. Loudness

The threshold of hearing is very much frequency-dependent. In general, two tones
of equal sound pressure but of different frequencies are not heard as equally loud.
Therefore, to characterize a sound by its subjective effect, it is not sufficient to state
its sound intensity; the characteristics of the ear must be taken into consideration. In
addition to the physical quantity, i.e. the sound pressure, a physiological quality, i.e.
a loudness level, has been introduced.

Considerably higher sound pressures are required to produce an equal-loudness
impression at low frequencies than those needed at high frequencies. At the upper
end, the lines of constant loudness agree roughly with the lines of constant sound
pressure. The threshold of hearing forms the lowest curve of equal loudness.

The loudness level measurement by a subjective listening comparison is difficult
to carry out in practice. To obtain the loudness level from the sound pressure level,
one must first consider the frequency dependence of the sensitivity of the ear. The
loudness level meter contains therefore electrical filters that evaluate various frequency
components according to their intensities.

3. Principal Lemma of Approximate String Matching

We present an extension of Kac’s Lemma (Kac, 1947), proved by Sadeh (1993a; 1993b;
1994) and based on ideas of L.H. Ozarow and A.D. Wyner (Wyner and Ziv, 1989).

Consider a finite-valued stationary infinite sequence v defined on an alphabet V.
Let v] denote a sample sequence between positions ¢ and j in the sequence v. Let
B Dbe any set of strings of length [ taken from the space of all possible strings of
length [, defined on V,i.e. B C V! such that Pr(B) > 0. We denote by Y,, a string
of length [ starting from position n, Y, = v27'~! and we say that two strings Y,
and Y, are approximately matched with respect to B if Y, € B and Y, € B.
We denote the conditional probability that an approximate match with respect to B
occurs for the first time at step &k by

Qk(B):Pr{YkeB; Y; ¢ B; 1§j§k—1]Y0€B}

The average recurrence time to B is defined by
(o]
u(B) =D kQu(B)
k=1

The event that in the realizations of v we can find members of B is

A:{YnEB for some n, -—oo<n<oo}
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Lemma 1. (The Extended Kac Lemma) Under the above assumptions, we have
Pr{A} =Pr{Y, € B}u(B)
In particular, for stationary ergodic processes, we obtain

1=Pr{Yy € B}u(B) =Pr{B}u(B)

4. Algorithms and Convergence to R(D)
4.1. Definitions

Let u be an ergodic finite-valued stationary sequence. Let %@ denote a sample se-
quence or the block (consecutive symbols in the sequence). The notation u) stands
for the block between positions 7 and j in the sequence u. The sequence u::1 is our
data base.

Definition 1. Let L be the ﬁrst index such that the string wug...ur—; is not a
substring of the data base u—,,. That L is denoted by L,(u), i.e. for n = 1,2,...
L,(@) is the smallest integer L > 0 such that

L—l#u—m+L1 LSmSn

Ln(u):inf{L>0: ull # Tt L§m§n}

Definition 2. The random variable N;(@) for { > 0 is the smallest integer N > {
such that

-1 _ ,1-1-N
uy L =u_y

. I-1-N
Nﬁ:mf{NZl:u =u_y }

Let p(@,7) denote the average value of the ‘per-letter’ distortions for the letters
that comprise the block 4, i.e.

l

o 1

(4, ) :72 Uk, Uk )
k=1

where the pair (@ix,7x) denotes the letters at the k-th position at the source and the
user, respectively. The distortion is assumed to be memoryless.

Definition 3. For each sample sequence @ of length [, taken from a sequence u, we
define the set

D —Ball(a) = {v] p(g,v) <D}

Definition 4. For each sample sequence % we define the random variable

DL —.)= max L, 17,11:,11
( ) w:p(2,0)<D ( )
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In other words, using the sequence v~} as our data base, we continue the sequence
ug,u1 ... until there is no L-string ¥ in the D — Ball surrounding the L-string u =
Ug - - . wr1 such that ¥ is a substring of the data base v=%. We define DL, (%, v_}) = L.

—_n"

Definiton 5. For each sample sequence % we define the random variable

DNy(a,v") = i Ni(p,v”1L
(8, v25) oplin_ 1(9,v75)

In other words, we choose all the strings of length [ taken from V! that are neighbours
of u§™! = @. From this set we select a string ¥ with the smallest N;(7). The selected
¥ is the element in D — Ball () with minimal first repetition.

Speech is represented by a sequence of symbols (frames), each of which con-
tains N sounds. In order to compare two audio frames, we use the Discrete Fourier
Transform for mapping from the audio to the frequency representation domain.

According to specific properties of the human auditory system, we assign a weight
to each frequency.

Definition 6. Let u and v be two different audio frames. Let U{' and V¥ be
the Fourier coefficients of DFT(u) and DFT(v), respectivelly. Then we define the
distance between the two frames as

distance (u,v) = abs (U; — V;) % weight,;

max
50 Hz<frequency (#) <5000 Hz
i.e. the maximum for all indices which correspond to real frequencies from 50 to

5000 Hz.

Definition 7. Let u and v be two different audio frames. They are equal under our
comparison function if and only if

distance (u,v) < Approximation Ratio

For implementation of a search tree we need a characteristic function of the audio
frame (a key of the audio frame) which maps from the frequency to the real-number
representation domain. '

Definition 8. Let u be an audio frame. Let U}¥ be the Fourier coefficients of the

DFT(u). The key of the audio frame is defined by

5000 Hz
key (u) = Z abs (U;) * weight,

frequency (1)=50 Hz

i.e. similar frames have identical keys.
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4.2. Duality Lemma

We present a duality between the two random variables of Definitions 4 and 5, as
proved by Sadeh (1993a; 1993b; 1994). This duality implies the duality between the
proposed algorithms.

Lemma 2. For each sample sequence 4, o data base v:,lc', and any positive integers
n <k and l <n, we have

{DNl(ﬂ,v:i) > n} = {DLn(ﬂ,v:}l) < l}

4.3. Approximate Fixed-Length String Matching—Data Compression

The sequence u }1 is called the “past”. The sequence ug,u; ...u;—1 is a new block.
It is assumed that the optimal data-compression algorithm has already been applied
to the history in order to create this data base of length n. We also assume that the

data base was “empty” before the encoding procedure has begun.

The new sequence can be compressed by assigning 1nd1ces to blocks smce each
symbol in the data base is assigned an index.

The data compression scheme is as follows: -
Approximate Fixe(f—Length String—Data Compression Scheme:

1. Choose a string @ = uy™* of length I. R
2. If ué 1 can be approximately matched up to the tolerance. D By assubstring of
v_,, encode it by specifying DN; (@,v~1). Append v D]‘NDN’ to ‘the data base.

3. Otherwise, append the string 7)0 ! satisfying p(ug = l,vf) 1) =0 to the-data base.

4. Add a bit as a flag to indicate whether or not there is a matrch =

5. Repeat the process from Step 1, with string 7 = u?l 1 of lengt .411md ‘data base
v_n +1- Shift the indices by 1 to the appropriate values

Approximate Fixed-Length String—Data Decompression Scheme:

Bt

1. Handle the coming strlng according to the ‘lag’ If the flag 1nd1ca 45 ‘Match’ copy
the substring of v— spec1ﬁed by the pointer DN;(@,v"%) o the'decoder data

base. Append the string v DNDN’ to the data base in the decoder dt position 0.

-7

2. If the flag indicates that there is no match, append the string received in the
input buffer at the beginning of the decoder data base.

3. Shift the indices by ! to the appropriate values. Update n to nﬂ;l—l Repg@t the
process from Step 1 with a new input.

Theorem 1. Consider a data base v_>, generated by the Approzimate Fized-Length
String Data Compression Scheme from a stationary ergodic process w. We assume
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that v:io is a stationary end ergodic process. Then, for all § >0,
log DN, (@, v_}
Jim Pr{ Og—’ﬁ“—’—vl’) — R(D) >ﬁ} =0

and the average compression ratio attains the bound R(D).
This theorem has been proved by Sadeh (1993a; 1993b; 1994) by using Lemma 1.

4.4. Quasi-Parsing Method by Approximate String Matching

The machine is based on a quasi-parsing procedure which creates a new phrase as soon
as a prefix of the still unparsed part of the input sequence differs from all substrings
in the data base by more than D per letter. The data base is the concatenation of all
the preceding phrases. The encoding of each phrase consists of the pointer N to the
last approximately matched string, the string length DL, and the last reproducing
letter with zero distance from the last input symbol.

Quasi-Parsing Scheme:
1. Let [ =1.
2. Choose a string uf)_l of length [.

3. If uf)“l can be approximately matched up to the tolerance D by a substring of
v_1 store a pointer N to that substring and increment 1. Go to Step 2.

s
4. Otherwise, append the string v’__ﬁ,_N to the data base track at position zero

and further, and append the letter v;_; (the reproducing letter which satisfies
d(uj—1,v1—1) = 0). The encoding is done by the pointer to the string vl__ﬁ,_N, the
length DN ,(u) and the last reproducing letter associated with the last source
letter.

5. Repeat the process from Step 1, where the data base is appended with the chosen
string denoted by véJ Ls_ The data base contains now n + DL, (u) reproducing
symbols. Shift the indices to adopt to the algorithm.

Theorem 3. Let u be a stationary ergodic process defined on an elphabet U. Con-
sider a suffiz v:; taken from the data base v™l generated by an encoder-decoder
pair as described in the Approzimate Fized-Length String Data Compression Scheme.
Suppose that at time zero we switch to the Quasi-Parsing Scheme. Assuming that the
scheme preserves stationarity, as the memory size n tends to infinity, for the new
sample sequence U encoded from the input uw by the Quasi-Parsing Scheme, we have

in probability

) logn
1 5 = R(D
nsoo {DLn(n, v=h) } D)

n

5. Implementation of the Search Tree

Each frame in the data base has the corresponding node in the search tree, which
consists of the key, index in the data base and pointers to the left and right sons. The
search is executed by one path on the tree.
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To search for the target we first compare the currently processed fragment with
the corresponding fragment in the data base with some distortion. If it is not the
same, we go to the left or the right subtree as appropriate and repeat the search in
that subtree. If we find the fragment, the procedure succeeds. Otherwise, we continue
searching until we hit an empty subtree. The search works in time O(log(n)).

frame.1| frame_2 frame_n

# N\ ¥# \\
Fig. 1. The search tree.

According to (Kruse, 1987), the first case, which inserts a node into an empty
tree, is easy. We only have to make the root point to the new node. If the tree is
not empty, then we must compare the key with the one in the root. If it is less, then
the new node must be inserted into the left subtree; if it is greater, then it must be
inserted into the right subtree.

The keys which are inserted in the tree constitute a sequence of random numbers,
and therefore the tree is balanced.

6. Compression Performance
6.1. Results

The sample rate 8 kHz was accomplished. The overall speech quality was found
to maintain its distinctness, continuity and high intelligibility even at a frame size
256 bytes.

The graphs show the performance of the Approximate Fixed-Length String-
Matching Method and that of the Quasi-Parsing Method which are implemented
with linear and tree search. The original file size is 100 KB.
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The compression performance for the Approximate Fixed-Length (length = 4)
String-Matching Method with linear search implementation is presented in Fig. 2.

Compression rate,%

Bit rate kb/s

Distortion
Data Base size,Kbyte

Fig. 2. Distortion vs. data-base size and compression rate/speed.

The compression performance for the Approximate Fixed-Length (length = 4)
String-Matching Method with tree search implementation is presented in Fig. 3.

Compression rate,%

Bit rate,kb/s

Distortion

Data Base size,KByte
Fig. 3. Distortion vs. data-base size and compression rate/speed.
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The compression performance for the Quasi-Parsing Method with linear search
implementation is presented in Fig. 4.

Compression rate,%
— N ()
o o o

oo

60

80 100 03

. Distortion
Data Base size Kbyte

Bit rate,kb/s
8 &

(=l

. Distortion
Data Base size,Kbyte

Fig. 4. Distortion vs. data-base size and compression rate/speed.

The compression performance for the Quasi-Parsing Method with tree search
implementation is presented in Fig. 5.
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Fig. 5. Distortion vs. data-base size and compression rate/speed.
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6.2. Analysis of Results

1. Approximate Fixed-Length String Matching vs. Quasi-Parsing Method: We can
see that the Quasi-Parsing Method takes higher compression rates and better
quality than the Approximate Fixed-Length String Matching.

2. Linear search vs. tree search: The tree search works in time O(log(n)) and
achieves a compression rate approximately equal to that of the linear search.

Consequently, the best choice for the speech compression is the Quasi-Parsing
Method, which is implemented with tree search.
6.3. Comparison with Other Tools

Table 1 compares our technique with general and speech-purpose compression utilities
commonly available. The table shows that a speech-specific compression utility can
achieve a considerably better compression than the majority of general tools.

Tab. 1. Compression rates vs. quality and speed (the original file size 65 KB).

| program I % rate l quality l speed kB/s ]
compress 73 | lossless 65
Zip 64 | lossless 65
gzip 64 | lossless 65
shorten default 60 | lossless 65
shorten with quantization error 1 52 bad 65
shorten with quantization error 2 45 | very bad 65
aiffccomoress 52 | lossless 65
ADPCM 50 | lossless 8
aucompress default 38 high 50
aucompress with distortion 0.1 37 good 50
aucompress with distortion 0.2 34 good 50

The program runs faster than real-time ones on most SUN SPARCstations.

7. Conclusions

The important properties of our implementation are as follows:
1. A real-time fast compression is accomplished by using a search tree.

2. High compression rates can be achieved by using an initial data base and setting
distortion.

3. A good comparison function for two frames is obtained by considering specific
properties of the human auditory system.

4. One of the features is applying an acoustic filter for reducing noise.
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Sadeh’s algorithms (Sadeh, 1993a; 1993b; 1994) are thought to be the first
universal asymptotically sequential algorithms that attain the bound R(D). But
we emphasize that all of Sadeh’s results are obtained after infinite time of operation
and based on the accumulated data. It is still better than blockcoding because we
send only the necessary messages and not all the pre-calculated codebook. The weak
points are the slow convergence to R(D), the initial complexity encoding procedure
and the requirement (in practical cases) for a good and long initial data base. How-
ever, in practical cases we believe that the rate of convergence is faster. In the real
life there exist properties such as Markovity, periodicity and/or some a priori infor-
mation about the signal. In such cases the algorithm is paving the way for practical
solutions. The most important issues are the asymptotical complexity of the encoder
«and that the decoder in both algorithms is very simple. It is based on copying strings
either from a specified location in the data base or from the input data. In practice,
the low-complexity of the decoder is usually an important advantage. It reduces the
overall price of communication systems. The transmitter can be implemented in a
costly way, but the receivers must be cheap.

Other important properties of the algorithms are as follows:

. Optimality is obtained for a general stationary ergodic source.
. Optimality is obtained for all memoryless distortion measures.
. They are easily adapted to multimedia applications.

. The Lempel-Ziv algorithm (CCITT Standard) is recovered as D = 0.

[ B L N

. A realization with relatively low complexity and implementation with dynamic
dictionary.

6. An appropriate definition of the distortion measure makes it possible to reduce
the information content of a voice record while keeping a minimal audio distor-
tion.

7. Sub-optimal tree-structure algorithms are proposed and demonstrated in this
paper.
8. Benefits of noise reduction.

The most commonly-used methods for lossy compression are based on a predictive
coding (DPCM), a transform (such as DFT, DCT, DST, WHT, wavelet, Haar and oth-
ers), and vector quantization, with possible hybrid combinations. Most of them lack
any general proof of optimality. Most of them use some kind of MSE criteria or data
compression is achieved by coding only “high-energy” coefficients in their transform.
Moreover, almost all of these techniques are not real-time algorithms. All transform-
coding methods are performed after the speech signal is received and only then trans-
formed and processed. Thus, it is not real-time computation. Our algorithms achieve
an almost optimal compression performance with tolerable resources. However, the
potential of approximate string matching can further be enhanced through its use in
a subband coding system (Pearlman, 1994). Although the proposed coding methods
are optimal as the data grow large, the performance achieved may not be the asymp-
totic limit, since voice samples are finite in extent. For several coding methods, it
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has been shown both mathematically and experimentally that a subband or wavelet
decomposition can achieve gains over direct coding of the original (full-band) source.
Recently, it has been proved that for Gaussian sources the coding-rate gain is equal
to the improvement in the convergence of the rate-distortion function (Padmanabha
Rao and Pearlman, 1991). For Gaussian and non-Gaussian sources, this improvement
in the convergence of the rate-distortion function in subbands is related directly to
a measure of composite memory, which is markedly smaller in subbands than in the
original fullband source (Nanda and Pearlman, 1992). This means that the approach
to the rate-distortion function is potentially closer when using a subband decom-
position of the source. Therefore, using approximate string matching in a subband
decomposition with appropriate allocation of the rate among the subbands will result
in a better rate-distortion performance than with direct coding, because the results
obtained will be closer to the rate-distortion limit. This circumstance also holds true
for zero distortion, so that there is also a rate advantage for lossless coding of source
subbands. Our future objective is to seek algorithms which achieve a nearly optimal
universal compression performance with limited resources in real time. The theory,
which has been recently proved in (Padmanabha Rao and Pearlman, 1991; Sadeh,
1993a; 1994), strongly encourages us to look for a combination of subband coding
and approximate string matching.

An important property is that our algorithm decompresses much faster than
it compresses. Recall that the aim of the communications system is to convey the
information generated by a sender or a source to a receiver at a reasonable cost.
The encoder could be a costly device that transforms the source output into a form
that can be transmitted over the channel. But the decoder that converts the channel
output into a form that can be interpreted by the receiver must be cheap. This implies
that the methods are attractive for practical applications.
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