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COMPUTING IN GF(2™) USING GAP

Czestaw KOSCIELNY*

The GAP system supports, in principle, finite fields of size at most 2'®. There-
fore, the author discusses in the paper how to compute in larger Galois fields of
characteristic 2, using the GAP interpreter. The proposed method of computing
is based on the software implementation of operations in GF(2™) according
to a technique typical of parallel finite field arithmetic logic circuits. The GAP
functions for determining in GF(2™) the sum and the product of two arbi-
trary elements, the k-th power, the square and the multiplicative inverse of
an element, even for m equal to several hundreds, are shown. A comprehen-
sive example, concerning the structure investigation of GF(2%%), GF(2'%) and
GF(2%°), consisting in determining small subfields of these fields, is also pre-
sented.

1. Introduction

Computing in Galois fields of characteristic 2 has been recently widely used in many
domains of modern technology. Thus, application research concerning GF(2™) looks
for software instruments which could help to explore the structure of large and huge
fields of characteristic 2. It appears that the system GAP can successfuly be used as
such a tool.

As is known, the GAP interpreter was born about 9 years ago at RWTH Aachen
in Germany, and it becomes an effective software package which gives access to algo-
rithms and data structures of many algebraic systems. The aim of this paper is to
demonstrate how to use GAP for computing in large Galois fields of characteristic 2,
although GAP in principle supports finite fields of size at most 2'® (Schonert et al.,
1995). This limitation results from the fact that GAP generates the whole multi-
plicative group of GF(q) and stores it to perform quickly and in a simple manner
operations on elements of GF(q), while the author applies the software approach
to computing in GF(q) of characteristic 2, based on the simulation of a technique
typical of commonly used parallel finite field arithmetic circuits.
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2. An Approach to Computing in GF(2™) Using GAP

In this section, a technique of computing in GF(2™), usually implemented by hard-
ware, will be recalled.

Let m denote an arbitrary integer less than or equal to 2, and
p@)=2" +pm_1-z™ 4+ - +p-T+1 (1)

be an irreducible polynomial of degree m over GF(2), belonging to the exponent e,
with g standing for one of its roots. Then the set of elements

B =laio @iy -+ im-1] (2)
where
i= Z Qiym—tk -T™F mod(p(z)), ai; € GF(2) (3)
k=
and
i=0,1,...,e=-1, e| (2™ -1)

forms a subgroup of order e of the multiplicative group of GF(2™). Moreover, it
follows that

[pp ] (4

is the identity matrix and it constitutes the standard basis of GF'(2™) over GF'(2).
The elements of the vector space generated by the basis (4), which are polynomials
in 8 over GF(2) of degree at most m — 1, form a finite field GF(2™) of size 2™. In
such a field addition and multiplication correspond respectively to addition of poly-
nomials over GF(2) and their multiplication modulo the irreducible polynomial (1)
over GF(2). Each element of GF(2™) is represented as a vector whose components
are equal to the coefficients of the related polynomial.

Let
a=lap a1 - @m-1] )
b=[by by -+ bm_1] ©
be two arbitrary elements of GF(2™), associated with polynomials
alz)=ap+ar-z+ - +am_q- ™1 , )
b(z) =bg+ by x4+ - + bpog-z™ ! ®)
Then the sum of elements (5) and (6) will be

s=a+b=[(ao+bo) (a1 +b1) -+ (@Gm-1+bm-1)] (9)
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where addition of components is taken modulo 2. This operation can be implemented
by means of a very simple software.

Although the implementation of multiplicative operations is more difficult, the
following two theorems will concisely explain it.

Theorem 1. The multiplication of two elements (5) and (6) of GF(2™) modulo the
irreducible polynomial (1) is described by means of the equation

Dro Do
bri n
=MM - ' (10)
Prm—1 DPam—2
where
ao,0 ai,o a2m—2,0
a a A2m—
]\[M — 0,1 1,1 2m—2,1 (11)
Go,m—1  G1,m-—1 a2m—2,m—1
ai; as in (2), and
Pe= Y ai‘b, k=0,1,...,2m—2 (12)

i+j=k

a;, b; being the components of (5) and (6), respectively. It is obvious that addition
in (12) is performed modulo 2 and that the vector

[Po p1 -+ Pam-2]
is associated with the product over GF(2) of the polynomials (7) and (8).

Proof. Tt suffices to observe that column vectors of the m x (2m — 1) matrix (11), are
succesive powers of the element 3

B, i=0,1,...,2m —2

in transposed form. Then eqn. (10) describes exactly the rules of multiplying over
GF(2) two arbitrary polynomials of degree < m — 1, associated with vectors (5)
and (6), modulo the irreducible polynomial (1). Therefore the vector

[pro pri -+ prm—i]

is equal to the product of elements (5) and (6) from GF(2™). ]
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Theorem 2. The square of the vector a in GF(2™) is described by means of the
equation

Sqo Qo
R e a:‘ (13)
5qm—1 am-1
where
ao,0 2,0 a2m—2,0
SM = ag,1 a1 a2m—2,1 (14)
Qo,m—1 G2,m-1 A2m—2 m—1

Proof. The m xm matrix (14) on the right-hand side of (13) represents a linear
transformation of GF(2™) over GF(2). Since the columns of this matrix are equal
to

67", i=0,1,...,m—-1

the transformation determines squaring in GF(2™). Thus the vector

[sq0 sq1 ** SGm—1)

is equal to the square of vector (5) in GF(2™). |

It should be noted that the k-th power of an arbitrary element a from GF(2™)
can easily be obtained by using the well-known repeated square-and-multiply algo-
rithm and that the multiplicative inverse of a is equal to a?" 2.

To adapt, as simply as possible, the presented method of computing in GF(2™) to
the GAP system, it is assumed that the polynomial p(z), the elements of GF(2™) and
the matrices MM and SM are represented by the GAP vectors and matrices over the
field of rationals, respectively. Next, assuming that m and p(z) are known, one must
write down, using the GAP language, functions which return matrices MM and SM,
the product of (7) and (8) over GF'(2) and the right-hand sides of eqns. (10) and (13).
Thereby one can construct functions returning k-th powers and multiplicative inverses.



Computing in GF(2™) using GAP 681

3. GAP Functions for Computing in GF(2™)

The implementation of functions determining matrices MM and SM is crucial,
because these matrices must remain in the memory all the time while computing
in GF(2™). The simplest way of construction of a function which returns the ma-
trix MM is to simulate the action of a linear m-stage shift register with feedback,
calculating the remainder resulting from dividing z* by the polynomial p(z) (Blahut,
1968, p.136). Knowing the matrix MM, one immediately obtains the matrix SM.
Taking the above into account, the author has implemented in the GAP language the
functions named MMat and SMat, which return the equivalents of matrices MM and
SM, respectively, in the following way:

MMat := function ( )
local mm, tp, tm, i, k;
tp := Copy( one );
mm := [ 1;
- mm[1] := Copy( tp );
k :=1;
repeat
k-
i.

k+1;
m+ 1;
tm := tplm];
repeat

i:=1i-1;
tpli] := (tp[i - 1] + IP[i] * tm) mod 2;
until i = 2;
tpl1] := IP[1] * tm;
mm[k] := Copy( tp );
until k = 2 * m - 1;
return mm;
end;

SMat := function ( )
local sm, k;
sm:= [ J;
for k in {1 .. m] do
smfk] := Copy( MM[2 * k - 1] );
od;
return sm;
end;

The function MMat which uses global variables m and IP denoting the extension of
GF(2) and the vector containing coefficients of the irreducible polynomial p(z), cor-
respondingly, returns the matrix mm which symbolizes the transpose of matrix (11).
This function also uses a global variable one which is equal to the unity under multipli-
cation in GF(2™). Similarly, the function SMat returns the matrix sm as a transposed
equivalent of matrix (14). In order to call the function SMat, one evidently must first
initialize the global variable MM by means of the assignment MM := MMat( );.
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Functions GFSum, GFPrd, GFSqr, GFPwr and GFInv, which can be used to deter-
mine in GF(2™) the sum of two elements, the square of an element, the product of
two elements, the k-th power of an element and the inverse of an element, respectively,
are listed below:

GFSum := function ( a, b )
local i, sv;

sv := [ ];
fori in[1 .. m] do
sv[i] := (ali] + b[i]) mod 2;
od;
return sv;

end;

GFPrd := function ( a, b )
local i, k, ab, pr, pm;

ab := function ( a, b )
local 1i, j, ij, k, w;
wi=I[ 1;
for k in [ 1 .. 2*m ] do
wlk] := 0;
od;
fori in [1 .. m] do

for j in[1 .. m]1 do
ij =i+ § -1
wlijl := (wlij] + alil * b[j]1) mod 2;
od;
od;
return w;
end;
pr := Copy( zero );
pm := ab( a, b );
fori in[1 .. m] do
for k in[1 .. 2*m~-11] do
prlil := (prlil + pmlk] * MM[k][i]) mod 2;
od;
od;
return pr;
end;

GFSqr := function ( a )
local i, k, sq;
sq := Copy( zero );
fori in[1 .. m] do
for k in [1 .. m] do
sqli] := (sq[i] + alk] * SM[k][i]) mod 2;
od;
od;
return sq;
end;
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GFPwr := function ( a, k )
local aa, pw;
if k < 0 then
k=2 " m-1+k;

fi;

aa := a;

pw:=one;

if k - Int(k/ 2 ) * 2 <> 0 then
pvw = aj

else
PV := one;

£fi;

k :=Int(k / 2);
while k > 0 do
aa := GFSqr( aa );
if k - Int( k /2 ) * 2 <>0 then
pw := GFPrd( aa, pw );
fi;
k :=Int( k / 2);
od;
return pw;
end;

GFInv := function ( a )
local mm, i;
mm := GFPwr( a, 2 " m - 2 );
return mm;

end;

The functions GFSqr and GFPwr use the global variable zero denoting the null
vector with m components, which is equal to the identity element under addition in
GF(2™) while the function GFPwr uses the previously-mentioned global variable one
which is the m-component vector [1 00 --- 0]. It can be observed that the function
GFPrd uses the function ab returning the product of two polynomials (7) and (8)
over GF(2). Tt is implemented in a conventional manner, but assuming that the
coefficients of the polynomial product are reduced modulo 2. It is also obvious that,
in order to perform multiplication, the global variable MM is found in the body of the
function GFPrd. Since the function GFSqr uses the global variable SM, the instruction
SM := SMat( ); must be executed first if one wants to determine squares in GF(2™).
The function GFPwr utilizes both GFSqr and GFPwr, and therefore the global variables
MM and SM must be initialized while powering in GF(2™) .

To find inverses in GF(2™), the function GFInv is defined. It uses powering
since the function GFPwr is very fast. It might be interesting, however, to check if the
extended Euclidean remainder algorithm would not be better in this case.

Although the overloading of infix operators is one of the main advantages of the
GAP system, all the arithmetic funtions mentioned above are called with parameters,
in order to achieve a higher speed of operation. For the same practical reason, instead
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of the GF(2)-arithmetic provided in GAP, the integer arithmetic modulo 2 is used
here.

4. Example

A self-explanatory example of the GAP program, applying functions MMat, SMat,
GFSqr, GFPrd and GFPwr for computing in GF(2%%), GF(2!%) and GF(2%"), con-
structed using the primitive polynomials 14+z+2z%, 14237 +2'% and 142103 42250,
respectively, is given in Appendix A. The functions for computing in GF(2™) are
used by the function compute having in the header a list of three formal variables
mx, kx and sx. The meaning of these variables can be clarified by stating that
the function compute calculates the multiplicative group of the subfield GF(2°%)
of the field GF(2™*), formed by means of the primitive trinomial 1 + z*¢ + z™=*
(sz|mz, 1<sz<mz, 0<kz<mz).

The function compute uses the following auxiliary functions:
e info, printing on the screen what the program will perform;

e bthc, converting the m-component binary vector which represents an element of
GF(2™), into the corresponding hexadecimal vector. In this manner, an element
of GF(2™) is represented more compactly by a vector having as components
hexadecimal digits according to the mapping:

0O < 0000 4 < 0010 8 « 0001 C +« 0011
1 & 1000 5 « 1010 9 < 1001 D « 1011
2 « 0100 6 < 0110 A < 0101 E « 0111
3 & 1100 7 & 1110 B « 1101 F « 1111.

Since the numbers 63 and 250 are not divisible by 4, the last hexadecimal
component of the vector representing the GF(2™) element for m = 63 and
m = 250 must be treated as a 3-digit and a 2-digit binary number, respectively;

e printh, displays a hexadecimal vector on the screen.

The output of the program (slightly retouched) is presented in Appendix B.

5. Conclusion

The author has demonstrated that GAP can support finite fields of characteristic 2 of
size much more greater than 2!°. It is also not difficult to observe that the presented
approach to computing in finite fields can be easily generalized for GF(p™) with
p > 2. It proves that meaningful work has really been done in Aachen: the GAP
system is a powerful tool for application researchers, easily adaptable to various tasks
concerning the solution to many difficult algebraic problems.
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Appendices

A. An Example of GAP Program for Computing in GF(2°3),
GF(2'9%) and GF(2%09)

m := 0;;

zero := [ ];;
one := [ ]1;;
IP := [ 1;;
SM = [ 1;;
MM := [ 1;;

Read("GF(2°m).fun"); #GF(2°m).fun is the name of the file, containing
#functions for computing in GF(2°m), used in the
#body of function compute

compute := function ( mx, kx, sx )
local i, x, b0, info, bthc, printh, alpha, beta, order;
m = mx;
zero := List( [ 1 .. m ], function ( x )
return O;
end );
one := Copy( zero );
one[1] := 1;
order := (2 " m - 1) / (2 " sx - 1);
IP:= [ 1;
for i in [1 .. m+ 1] do
IP[i] := 0;
od;
IP[1] := 1;

IP[kx + 1] := 1;
IP[m + 1] := 1;
info := function ( x )
local 1i;
Print( "computing in GF(2"", m, ") constructed using " );
Print( " primitive polynomial " );
Print( "\n", "p(x) = 1+" );
for i in [ 2 .. m] do
if IP[i] <> 0 then
Print( "x~", i - 1, "+" );
fi;
od;
Print( "x™", m, " over GF(2).", "\n", "beta = alpha™", order );
Print( ", alpha - primitive element ", "\n", "of GF(2"", m, ")." );
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Print( "\n", "Multiplicative group of GF(", 2 ~ x, ")", "\n" );
Print( "generated by the element beta" );
Print( " belonging to GF(2°", m, "):", "\n" );

end;
bthe := function ( n, 1)
local i, k, nhd, s, h;
k = -1;
nhd := Int( 1/ 4 );
h:=1[ 1;
if nhd <> 0 then
repeat
s := 0;
k :=k + 1;
fori in [ 1 .. 4] do
s :=s +nl[(4 *xk +1i)] *2~ (1 -1);
od;
hik + 1] := s;
until k = nhd - 1;
fi;
if 1 - 4 * nhd <> 0 then
s := 0;
for i in [ 4 *nhd +1 .. 1] do
s :=s +nfi] * 2 -~ (1 - 4 * nhd - 1);
od;
hlnhd + 1] := s;
fi;
return h;
end;
printh := function ( h )
local i, nc;
nc := [ 1;
Print( "[" );
nc[1] := "aA";
nc[2] := "B";
nc[3] := "C";
nc[4] := "D";
nc[5] := "E";
nc[6] := "F";
fori in [ 1 .. Length( h ) ] do
if h(il in [ 0 .. 9 ] then
Print( h[i] );
fi;
if h(i] in [ 10 .. 15 ] then
Print( nc[h[i] - 9] );
fi;
od;
Print( "]", "\n" );
end;
info( sx );
MM := MMat( );
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SM := SMat( );

alpha := Copy( zero );

alpha[2] := 1;

b0 := Copy( one );

Print( "beta™0 = " );

printh( bthc( b0, m ) );

beta := GFPwr( alpha, order );

fori in [ 1 .. 2 " sx-21] do
Print( "beta"", i, " =" );
x := GFPrd( b0, beta );
b0 := x;
printh( bthc( x, m ) );

od;

end;

compute( 63, 1, 3 );
compute( 100, 37, 4 );
compute( 250, 103, 2 );

B. Results Obtained After Running the GAP Program Given
in Appendix A

Computing in GF(2763) constructed using primitive polynomial
p(x) = 1+x+x"63 over GF(2).

beta = alpha®1317624576693539401, alpha - primitive element of GF(2°63).

Multiplicative group of GF(8), generated by the element beta belonging
to GF(2763):

beta~0 = [1000000000000000]
beta"1 = [31B4B361C0216000]
beta~2 = [SE00D561D3504110]
beta~3 = [4E00D561D3504110]
beta~4 = [7FB4660013712110]
beta"5 = [21B4B361C0216000]
beta”6 = [6FB4660013712110]

#Run time for GF(2°63): 12529 msec

Computing in GF(27100) constructed using primitive polynomial
p(x) = 1+x"37+x"100 over GF(2).

beta = alpha®84510040015216293433113547025, alpha - primitive
element of GF(2-100).

Multiplicative group of GF(16), generated by the element beta belonging
to GF(27100):
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beta"0 = [1000000000000000000000000]
beta"1 = [5F25DF2220BECADF000602441]
beta”2 = [4D1435631FDC6AFE040044D60]
beta”3 = [2572EC71568DAFCF004641154]
beta~4 = [3572EC71568DAFCF004641154]
beta~5 = [6A57335376336510004043515]
beta”6 = [2743063069EFOFEE044007875]
beta“7 = [0231EA413F62A021040646921]
beta"8 = [3743063069EFOFEE044007875]
beta"9 = [5D1435631FDC6AFE040044D60]

beta~10 = [7A57335376336510004043515]
beta"11 = [7866D9124951C531044605C34]
beta~12 = [4F25DF2220BECADF000602441]
beta~13 = [1231EA413F624021040646921]
beta~14 = [6866D9124951C531044605C34]

#Run time for GF(27100): 41749 msec.

Computing in GF(2°250) constructed using primitive polynomial
p(x) = 1+x7103+x"250 over GF(2).

beta = alpha®e, e =
603083798111021851164432213586916186735781170133544604372174916707880883541,

alpha - primitive element of GF(27250).

Multiplicative group of GF(4), generated by the element beta belonging
to GF(27250):

beta~0 = [100000000000000000000000000000000000000000000000000000000000000]
beta”1 = [B93ACFFA537AA4113CC325A5D9B24ACF1B379FE9B6DADD32B8D6F7AE184B811]
beta~2 = [A93ACFFA537AA4113CC325A5D9B24ACF1B379FE9B6DADD32B8D6F7AE184B811]

#Run time for GF(2°250): 650369 msec.
#Running on PC 486 DX with 100 MHz clock.
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