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TOWARDS SIMILARITIES OF INTERPRETATIONS
OF TEMPORAL LOGIC FORMULAE

Raposiaw KLIMEK*

The paper deals with similarities of interpretations of temporal logic formulae.
Two basic similarities are defined and some theorems towards these similarities
are given. An application of similarities is presented based on the example of
a typical car ferry. The analysis of the system employs the model checking
method.

1. Introduction

Temporal logic is one of the most important formalisms used while inferring in soft-
ware systems. The system properties are proved by the syntax or semantic methods.
The syntax method assumes that the desired formulae are derived from a set of basic
formulae through a well-known set of logic axioms and laws. On the other hand, the
semantic method assumes examining whether a formula is satisfied in some legal in-
terpretations. Every temporal logic formula may have infinitely many interpretations.
Interpretations may differentiate between one another in a radical way but they may
also show a similarity which could disregard the differences and then we can ascertain
that some interpretations are identical in practice. In this way the whole process of
proving and examining the system properties may become easier.

The aim of this paper is to define the basic similarities of temporal logic inter-
pretations and to present their properties. The equivalence as defined in (Wolper,
1987) seems to be insufficient for a semantical analysis of systems and it is worthwile
to define its generalization. It is possible to extend the class of interpretations which
could be considered as similar ones. It also enables us to manipulate interpretations.
The paper is organized as follows. After a short presentation of the temporal logic,
two types of similarities of interpretations are defined. An origin of these similari-
ties is also mentioned. The next section deals with some related theorems. A typical
car ferry is considered as an example. The model checking method is employed. Tt
seems that this method is the most appropriate one for the semantic examination of
a system. The last section contains conclusions.
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2. Preliminaries (Temporal Logic)

In this section the classical temporal logic is briefly presented. In order to present the
syntaz of the temporal logic, we have to introduce the notion of a set of acceptable
symbols (alphabet) and the notion of inductive rules producing acceptable formulae
(production rules).

Definition 1. The alphabet of temporal logic formulae consists of the following sets:
e A set of atomic formulae P;
o Classical logic symbols: true, false, -, V, A, =, &

e Temporal logic operators: O, ¢, U.

The power of the set of symbols in the case of both classical and temporal logic is

greater than necessary. For example, in the case of the temporal logic the operator
U is sufficient since the others can be introduced as its abbreviations. Besides the
symbols listed above, it is also possible to add the parenthesis symbols in order to
change a priority of calculations or to remove ambiguities.

Definition 2. The production rules of temporal logic formulae are the following
sentences:

i. Every atomic formula is a formula;

ii. If p and ¢ are formulae, then —p, pAg, pV g, p = q, p & ¢ are formulae,
too;

iii. If p and ¢ are formulae, then Op, Op, pldq are formulae, too.

All unary operators have a, higher priority than the others. The U/ operator has
a higher priority than other binary operators.

In order to present the semantics of the temporal logic, we have to introduce the
notions of the structure and the interpretation of a temporal formula.

Definition 3. The structure of a temporal formula over a set of atomic proposi-
tions P is a tuple K = (S, p,v), where:

S — a set of states;
p:S—8S — transition between states;
v: 8§ —2P —  valuation, i.e. an assignment of the truth values to atomic for-

mulae in each state.

The relation p provides a unique state. p*(s), where 4 > 0, denotes the i-th successor
of s,ie. if p(s) = s, then pi(s) is the i-th element of the sequence

s, p(s), p(p(s)), p(p(p(S))>
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The relation v stands for a selection of a subset of P so as all elements of this subset,
and only these elements, have the truth value.

Definition 4. The interpretation of a temporal formula over a set of atomic propo-
sitions P is the tuple I = (K, s,), where:

K —  the structure of a formula,
so — a first state.

If an interpretation I satisfies a formula p, which is denoted by I |= p, then the for-
mula p is called the satisfied one. If a class of interpretations C satisfies a formula, D,
it is denoted by C |= p. If all interpretations satisfy a formula D, what is denoted by
= p, then the formula p is called the valid one.

An interpretation of a formula which satisfies this formula is called the model
interpretation of this formula, or briefly the model. Let us consider the models of the
following formulae:

(K,s) Ep i peu(s)

(K,s) E-p iff  ~(K,s)Fp

(K Ephg i (Ks)Ep and (K.s) g

(K,s) = 0Op iff (K, p'(s)) Ep forevery i >0

(K,s) = Op iff (K,p'(s)) l=p for some >0

(K,s) E pldq iff  (K,p’(s)) F ¢ for some j >0 and (K,pi(s)) Ep for
every 1< j

The list of axioms and laws of temporal logic, together with some interesting
properties of temporal operators, may be found e.g. in (Manna and Pnueli, 1981;
Kroger, 1987). A shortened list may also be found in (Klimek,1992). Good surveys
and initiations which have been prepared in different ways are the works (Emerson,
1990; Manna and Pnueli, 1992).

3. Basic Similarities

In this section, basic similarities of formulae interpretations are presented. Before the
presentation the notion of bisimulation proposed in (Milner, 1980) should be recalled.
The connection is justifiable but it should also be noticed that the bisimulation refers
to a different kind of processes in comparision with interpretations of temporal logic
formulae. The strict similarity is defined as equivalence in (Wolper, 1987), and then
we try to generalize this notion. The strict similarity is joined to an isomorphism of
structures and then we try to define their homomorphism.

Every temporal logic formula may have infinitely many legal interpretations
which satisfy this formula. The valuation in temporal logic is quite different from
the one used in classical logic. In succeeding states variables and propositions can
have different values. The valuation of a temporal formula is in reality an inference
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from a whole sequence of states (worlds). However, perhaps there are some differ-
ences between two various sequences of states together with valuations in these states
which are not significant and therefore they could be disregarded. At first, let us con-
sider the situation which seems most common, i.e. the situation when all succeeding
states starting from the initial ones have identical valuations. Let us present it more
formally.

Definition 5. Two interpretations I; and I, over a set P are strictly similar,
which is denoted by I; ~ I, if there exists a one-to-one relation m; : Sy x Sz, and the
following conditions are satisfied:

i. (s0,,80,) € T
ii. (81,82) € m = (p1(s1), p2(s2)) €M
iii. (s1,82) € 1 = v1(s1) = va(S2)

This definition states that any two interpretations are strictly similar if it is possible
to construct a relation called m; such that the initial states belong to the relation,
the transition relations of the interpretations preserve the relation and the valuations
are identical in the states which match towards the relation.

It is possible to construct an algorithm to create the m; relation for any two
interpretations provided that there exists a similarity between these interpretations.
The algorithm is not difficult and is omitted here. The example of two strictly similar
interpretations shown in Fig. 1 illustrates the idea of how the algorithm works.

U1 2 v3 V4 Us U6
I, S0; 6—>0—>0—>0—>0—>0
™
i S; ¢e—>0¢—>0¢—>+0—>0—>0
v1 v2 v3 V4 Vs Vs

Fig. 1. An example of strictly similar interpretations.

It seems clear that for such a definition of strict similarity one can formulate the
following theorem which renders it possible to make use of the definition.

Theorem 1. If I; and I, are strictly similar interpretations, i.e. Iy ~ I, then for
any temporal formula f it is satisfied that 1 |E f & L &= f.

Proof. (sketch) If I, satisfies a formula, this means that the sequence of valuations
of succeeding states satisfies this formula. The strict similarity assures the identity
of the valuations for succeeding states after transition to I, which means that the
formula is satisfied here as well. An inference in the reverse direction is possible as
well because the similarity relation is a one-to-one relation. ]
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Now let us consider another situation which could be recognized as an extension
with reference to the strict similarity case. Perhaps there are some subsequences of
states which are not essentially different, especially with reference to the valuations
in succeeding states. Let us present it formally.

Definition 6. An interpretation I; is generally similar to an interpretation Is,
which is denoted by I} ~> I, or Iy <~ I, if there exists a many-to-one relation
5 : 51 % 8o, and the following conditions are satisfied:

i. (801,802) € mo
ii. (s1,82) € ™2 = (p1(81),82) € T2 V (p1(81), p2(s2)) € 2
iii. (s1,82) € T2 = vi(s1) = va(s2)

This definition states that any two interpretations are generally similar if it is possible
to construct a relation called w5 such that the initial states belong to the relation,
a transition relation of one of these interpretations preserves the relation and the
valuations are identical in the states which match towards the relation.

It is also possible to present an algorithm for construction of the general similarity
relation. The algorithm is not difficult and is omitted here. The example of two
generally similar interpretations of Fig. 2 shows the idea of how the algorithm works.

U1 Vg V2 vs

I, S0 e —0—>0 —————————+0
2 \\

Iy S, e—>@¢—+0—+ 0 —>0—>0

V1 () (%) (30 Vg U3

Fig. 2. An example of generally similar interpretations.

Just as in the case of a strict similarity relation, it is possible to formulate a
theorem which makes use of the general similarity definition.

Theorem 2. If an interpretation I is generally similar to an interpretation Io, i.e.
I, ~> I, and for any temporal formula f I, |= f is satisfied, then I, = f is also
satisfied.

Proof. (sketch) If I; satisfies a formula, this means that the sequence of the valuations

of succeeding states satisfies this formula. The general similarity assures transition

from any subsequence of states with identical valuation to a non-longer subsequence

of I, with the same valuation, which means that the formula is satisfied here, too.
B
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4. Properties of Similarities

In this section some theorems which could clarify the nature of both the similarities are
formulated. At the beginning, let us view the similarities from a different perspective,
i.e. from the side of the transition relation of a temporal structure.

Theorem 3. If an interpretation I is strictly similar to an interpretation I, i.e.
I ~ I, then the following statements are satisfied:

i. (tl,tz) € p1=> Its - ((Wl(tl),tg) € po /\71‘1(2‘,'2) = tg)

ii. (tl,tz) € p1=> Its - ((tg,ﬂ'l(tz)) € p2 /\71‘1(1&1) = tg)

Proof. (sketch) The transition relations always determine a single state, and the
strict similarity relation preserves both of the transitions. Therefore, for any state
the successor (the predecessor) of its similar state is equivalent to the similar state of
its successor (predecessor). |

Theorem 4. If an interpretation I, is generally similar to an interpretation I, i.e.
I ~> I, then the following statements are satisfied:

L (t1,t2) € p1 = (Ft3 : ((m2(t1),t3) € p2 Ama(t2) =13)) V ma(t2) = m2(t1)

ii. (tl,tz) € P1 = (atg . ((tg,ﬂ'g(tz)) S P2 A Wz(tl) = tg)) \ Wz(tg) = Wz(tl)

Proof. (sketch) The transition relations always determine a single state, and the gener-
al similarity relation preserves both transitions. Therefore, for any state the successor
(the predecessor) of its similar state, or exactly the similar state, is equivalent to the
similar state of its successor (predecessor). ]

As was already mentioned, every interpretation can contain subsequences of
states which do not differentiate between one another. Perhaps it would be possible
to concentrate such a subsequence of states taking into account their valuations and
to replace the subsequence with a single state. This could make further comparisons
between interpretations easier.

Definition 7. An interpretation I is an aggregated interpretation, which is denoted
by I, if and only if for every 7 > 0 it is satisfied that v(s;) # v(siy1)-

It is also possible to propose an algorithm for concentration of an arbitrary interpre-
tation. The algorithm is not difficult and is omitted here.

Calling both definitions of similarity and getting a possibility to reduce the states
of interpretation, we present now the following result.

Theorem 5. For any interpretations I, I and I3 the following statements are
satisfied:

1. Lh<eb A1, = 1 =21
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2. L > LANLL~>1 = [ ~> I3
3. L~ = hL~b
4. I <~ I, = I, <~ I,

5. L <~I, = L~Ty

Proof.
1-2. The proof is immediate.

3-5. (Sketch) If the interpretation is concentrated, then for many subsequences of
states it is possible to use a one-to-one instead of a many-to-one relation. ]

From a practical point of view the bound of a valuation seems to be useful for
further considerations.

Definition 8. A bound of a veluation of an interpretation I by a set of atomic
formulae A, which is denoted by I~4, is the replacement of the valuation for the new
valuation v which is specified as follows: wva(s) = v(s) \ 4.

5. Example

In this section a typical car ferry plying between two banks of a river is considered,
cf. Fig. 3. There is a certain carrying capacity, i.e. a maximum number of cars which

I
I
I
|
i
~ R N
Vistula ~ — T N
|
Tyniec i
|
Abbey l i
to 1
Cracow

Fig. 3. A typical car ferry.

could be carried across during a single course. The ferry plies continuously under the
stipulation that there is always a short stop (idle time) on each bank. The ferry does
not run only when there is no car at any riverside. In this case the ferry is waiting
for a car at the riverside where it has stopped the last time. If a new car stops at
the riverside to which the ferry has been moored, it enters on board, but if a new
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car stops on the opposite bank, the ferry should run there even though it is empty.
The cars which stop on a bank are added to the end of the corresponding queue. The
queues are infinite. From the point of view of the system both the queues are critical
sections.

The system behaviour is described by temporal logic formulae. The set of atomic
formulae P is the following: mewcar (or briefly n) — a new car arrives at a bank;
queuecar(q) — the car which arrived is added to the end of the queue on a bank;
watt(w) — there is at least one car on a bank which waits for a carry; at(a) — the
ferry is moored to the bank; full(f) — the ferry is full; empty(m) — the ferry is
empty; entercar(e) — the first car of a queue enters on board; time(t) — a short and
obligatory stop (idle time) of the ferry is over; crossing(c) — the ferry leaves a bank
and is crossing the river; reach(r) — the ferry moores to a bank; exitcars(z) — all the
cars on the board leave the ferry. The notation bank means the bank opposite to a
given one, i.e. bank. We also write e.g. wait, or briefly @, instead of wait(bank).

Suppose that the set of temporal formulae which describes the liveliness aspect
of the system behaviour is the following:

newcar(bank) = O(queuecar(bank) A wait(bank)) (1)
at(bank) A - full A wait(bank) = O(entercar(bank) A —empty) (2)
time A full = Ocrossing(bank) (3)
time A —~empty A ~wait(bank) = Ocrossing(bank) (4)
time A ~wait(bank) A wait(bank) = Ocrossing(bank) (5)
crossing(bank) = —at(bank) (6)
crossing(bank) = Oreach(bank) (7
reach(bank) = O(at(bank) A ~time A ezitcars(bank)) (8)
ezitcars(bank) = O(empty A = full) (9)
-time = Otime (10)

It is worth noticing that most of these formulae refer to the so-called total correctness
of a system. Since the liveness property could be expressed in many different ways,
it is also possible to prepare different sets of formulae. The safety aspect of the
system is not included in these formulae since this property is not important in our
considerations.

Whice verifying the system correctness, we can examine many different proper-
ties. For example, one of the most obvious ones is the liveness property which states
that when a new car arrives at a bank, it is obvious that at a future moment the car
will leave on the opposite bank. It is expressed by the formula:

newcar(bank) = Cezitcars(bank) (11)
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This requirement seems to be the most general among liveness properties and it
includes seemingly other liveness properties. The formula (11) could be derived from
the set of temporal formulae listed above. This kind of analysis is rather a syntax
method based on transformations of a set of formulae while using well-known axioms
and laws of temporal logic in order to obtain the desired formula. A semantic method
is another method which examines whether formulae are satisfied in a set of legal
interpretations. We are going to use this method in further considerations.

n q e € T &
I oe—>0—+0—>0—>0—>0
Iy ¢e—>r0—+0—>0—>0—>0@
n q e C T T

Fig. 4. Interpretations for two cars crossing the river in opposite directions.

Let us suppose that we have two interpretations, as is shown in Fig. 4. Both the
interpretations concern the case when two cars cross the river in opposite directions.
Each car arrives at a bank, joins the queue, enters the ferry and, after crossing the
river, the ferry reaches a bank and the car leaves on the opposite side of the river. It
is irrelevant to which bank of the river the ferry is moored first, but it seems more
natural that it is moored to the bank which is connected with interpretation I;.
Both these interpretations are strictly similar, i.e. Iy =~ I, and the only remark is
that the corresponding formulae, e.g. n and 7, are equivalent though they refer to
the opposite banks. (By the way, for bounded interpretations J; = Il_(Pn{"’z}) and

Jy = I;(Pn{"‘f}), we can write J; ~ J; and also J; = (n = OT) & J2 | (n = ©7).)

One of the well-known methods of verifying the program correctness is the
method called model checking. It is based on a verification whether a program, which
is described explicitly by a set of states and transitions, satisfies a specification and
properties given by a set of formulae. This method is important because sometimes
the model is already determined, the more so we are sometimes interested in formulae
which are not satisfied in general, i.e. they are not valid, but they are satisfied for
some models. In the latter situation we can say that some formulae are relatively
valid. (Of course, if a formula is generally valid, it is valid for all models.)

Suppose that we have some different models while considering start conditions
of crossing the river, as is shown in Fig. 5, cf. (3)-(5) and valuations in state s.. Let
M = {Mi, My, M3}. In these models there are some repetitive substructures and
hence some considerations concerning interpretations are more complicated. How-
ever, we can write the following statement: M;,M;,My, € MAi # j # k =
VI(M;)3L;(M;)3Ik(My) : I; =~ I; ~ Ix. (The notation I(M) means an arbitrary
interpretation of model M.) If we bound interpretations J; = Ij(M;)~(Fn{ma}),
Jy = Ly(My)~PM{nE) and J; = L;(M;)~(PM{m%) | then for concentrated interpre-
tations we can write simply f]? o~ /]; ~ ji;
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My, M2, M3

My v(se) = {t, f}
Ms 1 v(se) = {t,—m,-w}
Ms: v(sc) = {t,~w,w}

Fig. 5. Models for different start conditions of crossing the river.

My

e AL HE

Fig. 6. More realistic models for a start condition of crossing the river.

Suppose that we have some fragments of different models, as shown in Fig. 6,
which are related to (4). The situation when all appropriate atomic formulae are
satisfiled in a state at once, as described in Fig. 5, is unrealistic. Therefore it is
assumed for model M; in Fig. 6 that cars from a queue enter the ferry (the first
state), the queue becomes empty (the second state), and finally, when the idle period
of the ferry is over, the start condition of crossing the river is satisfied (the third
state). Model M, is a development of model M; since it seems to be more adequate,
if it is assumed that the entry on the ferry, car by car, may last for some time (some
states), and also, if there is already no car in the queue, it may last for some time
(some states) until the idle time of the ferry is over. Now, we can write the following
sentence: VIp(M3)VIi(M;): I, => I;. When we concentrate interpretations, we can
also write 1/'\2 ~ 1:1

6. Conclusions

Two basic types of similarities of temporal logic interpretations have been presented.
The algorithms for construction of the similarity relations have been omitted here and
they may be found in (Klimek, 1996). Some theorems for the introduced similarities
have also been presented. A typical car ferry plying between two banks of a river
has been used as an example and then a semantic analysis of some selected models
through examining the similarities of the generated interpretations has been carried
out.
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It seems that the similarities of temporal logic interpretations defined as an
isomorphism together with a homomorphic mapping have not been considered. Sim-
ilarities of interpretations are important since they enable us to understand better
the nature of interpretations, as well as to make the analysis of a system easier. The
analysis becomes easier because it is possible to distinguish between the situations
when the interpretations differentiate between one another in a radical way and the
situations when the differences between the interpretations could be disregarded. It
also seems that the definitions of the formulae similarities could be based on the
similarities of interpretations, cf. some comments in (Klimek, 1996). An interesting
question arises here about the range of the differences which could be disregarded:
Does the similarity of interpretations or formulae make it possible to replace one
interpretation or formula with another, or does it rather allow that one formula is
included in another which describes the reality in a more general and declarative
form? The problem of distribution of the analysis as a result of decomposition of the
whole developing process into a sequence of small steps is another important issue.
The most important and popular method for this kind of software specification (and
verification) is the method called the step-wise refinement. However, all these issues
mentioned above will constitute the next step in the research.
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