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OPTIMALITY CONDITIONS FOR LINEAR 2-D CONTROL
SYSTEMS WITH CONSTRAINTS

MICHAEL DYMKOV*

Optimal control problems for linear two-dimensional (2-D) discrete and
continuous-discrete systems with mixed constraints are investigated. The prob-
lems under consideration are reduced to linear-programming ones in appropriate
Hilbert spaces. The main duality relations are derived such that optimality con-
ditions are specified by using methods of linear operator theory. The optimality
conditions are expressed in terms of solutions of adjoint systems. A simple
illustrative example is also given.

1. Introduction

The most popular models of two-dimensional (2-D) discrete systems have been intro-
duced by Attasi (1973), Fornasini and Marchesini (1976), Givone and Roesser (1973),
Roesser (1975). In particular, these systems have been studied in relation to multi-
dimensional digital filtering, analysis of satellite photographs and videoinformation,
recent advances in microprocessor technology and other modern engineering problems.
Some aspects of these questions are given e.g. in (Bose, 1977). Detailed investigation-
s of various models have been published in many papers (cf. Kaczorek, 1985). In
this context, only few works have been devoted to the continuous-discrete systems.
However, such systems provide an appropriate mathematical tool for simulation of a
number of real physical processes.

For at least two decades a great deal of attention has been paid to the linear
control problem for 2-D systems. Among the most important contributions we can cite
controllability, observability and stabilizability (Gaishun, 1991; Gaishun and Quang,
1992; Kaczorek, 1985; Kurek, 1987; Rogers and Owens, 1992). For some other results
we refer the reader to (Bisiacco, 1995; Galkowski, 1991; Kaczorek, 1995; Kaczorek
and Klamka, 1987; Kurek and Zaremba, 1993; Lewis, 1992). We also mention the
new monograph by Gaishun (1996) where traditional control problems for abstract
multidimensional systems are treated.

Some 2-D optimal control problems, such as LQP and minimum energy control
problems have been considered by several researchers (Bisiacco and Fornasini, 1990;
Klamka, 1994; Sebek, 1989; Dymkov, 1993a; 1993b; 1994). On the other hand, few
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Proof. Let © be a bounded set. Therefore 2 is weakly compact. Suppose that 7
is a minimizing sequence such that limy_.. Re(n,b) = sup,cq Re(n,b). We conclude
from the inequality stated above that this limit is finite. Since Q is weakly compact,
there exists a weakly convergent subsequence denoted again by 7. Let nx — n* as
k — co. It is evident that Re(n*,b) = sup,cq Re(n,b). Since m € Kf for all £ and
K} is closed, we have limg_,oo me = n* € K7.

The proof for the other case follows in much the same way and is omitted. ]

Let us introduce the Lagrangian L : Wex ls(Wg) x l2(Wy) — R as follows:
L(&,n) = Re(p,£) + Re(n, TE - b)
A pair (£%,7°) is called the saddle point if ¢ € Ko, 7° € Kf and
L(&,n°) < L(€%,1°) < L(€°,m) (15)
for all £ € Ky, n € K.
Lemma 3. Suppose that the pair (€°,m°) is a saddle point. Then £° and 1° are

optimal solutions to (11), (12) and (13), (14), respectively. Moreover, the comple-
mentary slackness conditions Re(n®,T¢%—b) =0, Re(£°,5—T*n°) =0 are satisfied.
Proof. From the right-hand side of (15) it follows that Re(p,£%) + Re(n°, T¢® — b) <
Re(p,£0%) + Re(n, T€° —b) for all n € K}. This inequality is possible if 7¢° — b € K,
Re(n°,T¢% —b) = 0. Now, for all £ € Ko, T¢—b € K; from the left-hand side of (15)
we deduce that

Re(p,€) < Re(p, €) + Re(n®, T¢ — b) < Re(,£) + Re(n°, T€® — b) = Re(p, £°)

which amounts to the optimality of £°. Similar considerations apply to the optimality
of #° and the equality Re(¢°,5— T*n%) = 0. =

Corollary 1. Suppose that Re(n*,T¢* —b) =0 and Re(£,p— T*n*) =0 for some
admissible elements £* and n*. Then &* and n* are optimal solutions to problems
(11), (12) and (13), (14), respectively.

Proof. 1t is sufficient to show that the pair (£*,7*) is a saddle point for the Lagrange
function. It is easily seen that

Re(p,€*) + Re(n, T¢" — b) > Re(p,€") + Re(n", T¢™ - b)

for all n € K. Hence L(¢*,n*) < L(&*,n) for all n € K}. The other inequality
in (15) may be handled in much the same way. [ |

Theorem 1. Let 7° € I;(WEg) be an optimal solution to (18), (14). Then there is an
optimal solution £° € Wg x lo(Wy) to (11), (12) such that Re(p,£°) = —Re(n°,b)
and the complementary slackness conditions Re(p—T"n°,£%) =0, Re(n®,T¢°~b) =0
are valid.

Proof. Tt is sufficient to find and admissible element ¢° such that the pair (£°,%°) is
a saddle point for the Lagrange function.
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Write o = —Re(n°,b). Since 7° is an optimal solution to (13), (14), we have
—Re(b,n) — a > 0 for any 1 such that n € K} and $—T*n € K. As in (Ter-
Kricorov, 1977), we show that if Rep > 0, n € Kf, and pp — T*n € Kf, then
—Re(n,b) — Repa > 0.

Conversely, suppose that this were false. Then there are 7 € Ki and p, Rep > 0
such that pp — T*n € Kf, but —Re(7,b) — aRep < 0. If Rep < 0, then setting
7 =17/ we have 7j € K} (since K} is a cone) and p—T*7 = (1/p)(pp —T*7) € K7,
but —Re(#,b) — a < 0, a contradiction. If Rep = 0, then —Re(7,b) < 0, 77 €
K¥, T*7 € Kj. Therefore, for any p, Rep > 0 and [-T*7 + p(p — T*n%)] € K} or
[pP — T*(7i + pn°)] € K. 1t is clear that 7+ pn° € K}. According to the previous
case, we have —Re(7 + pn°,b) — aRep > 0. Passing to the limit as p — 0, we
have —Re(7,b) > 0 and 7 € K} because K; is a closed cone. This contradicts our
hypothesis.

Thus the following proposition is correct:
If Rep > 0, n € K}, pp— T*n € K, then — Re(n,b) —aRep > 0. (16)

Now, we prove the following assertion: If (16) is valid, then there exists an
element £° € Ky such that

Re(£%,5 — T*n) < —Re(b,n) —a forallpe K, (17)

Define the operator T: Wxla(Wg) = L.(Wg)xC as T¢ = (=T¢,(5,€))- The
adjoint operator T* : lo(Wg) xC — Wg x lo(WEg) has the form T*§ = —T*n + pp,
where § = (n,p) € l.(Wg) xC.

Set Qf = K xC., where C;y = {z € C, Rez > 0}. It is easy to verify that
Q1 = K1 xRy, where Ry is the set of nonnegative real numbers.
: Let Q5 = {§_€ L(Wg)xC, T*5 € K3}. Clearly, Qo = (Q§)* = {2z €
lo(Wg)xWg, z=T%, T € Ko}. Now, (16) can be expressed as follows:

If 5€Qf N Qf, then —Re(y,b) >0,

where b = (b,a), § = (y,p) € lo(Wg)xC. This means that b€ (Q1NQY*.
Since Q¢ and Q; are closed, (QINQY* = ((Q1 + Qo)*)* = Q1 + Qo. Therefore
—b € Q1 + Qo. This means that there are ¢° € Ko and Z € Q1 such that -b =
T¢° + 7. Hence, for any 7 € Q* we have —Re(b,7) = Re(T¢°,7) + Re(Z,7) >
Re(£°, T*7). From this it follows that —Re(b,n)—aRep > Re(£°, —=T*n)+Re(p(5,£°))
or Re(£°, pj — T*n) < —Re(b,n) — Repa for all n € K; and p, Rep > 0.

Setting p = 1 in the last inequality, we have Re(¢°,p — T*n) < —Re(b,n) — «
for all n € K1 as was required for (17).

Now, in (17) we set = 7°. Then Re(£°,5—T*n°) < —Re(b,n°) +Re(b,7°) =0,
or Re(£%,p — T*n°) < 0. Since p— T*n° € K§ and ¢° € Ko, we have Re(£%, 7 —
T*n°) > 0. Hence Re(¢%,5 — T*n°) = 0. On account of this fact we have from (17)
Re(b,n) + Re(€°,5 — T*n) < Re(b,n°) + Re(¢°,5 — T*n°). The obtained inequality
implies L(¢%,m) > L(¢%,1°) for all n € K}.
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Since Re(&*,p—T*n°) =0 for £° € Ko, p— T*n° € K, we have Re(b,n°) =
Re(b,n°) + Re(€%,5 — T*n°) < Re(b,n°) + Re(¢,p — T*n°) for all £ € Ky. Hence
L(£%n°) > L(&,n°) for any ¢ € Ko.

Thus we have proved that the pair (£°,7°) is a saddle point for the Lagrangian.
The proof of the theorem is now completed by using Lemma 3. |

Remark 3. It is easy to check that the dual theorem is valid. In other words, if there
is an optimal solution to (11), (12), then there exists an optimal solution to (13), (14)
such that the conclusion of Theorem 1 is valid.

2.3. The Main Result for Continuous-Discrete 2-D Systems

It is well-known that the duality theory is a commonly-used tool to obtain optimality
conditions for linear extremal problems. Below this method is used in an analysis of
the original problem (1)-(3).

Introduce a new variable A= (v, y) € Wgx l2(Wg) given by A= (A)~*(P*n+p).
Using the explicit form of the adjoint operator (A~!)*, we obtain

Y =P*n(0) +p(0) +a*y(0), y(t) =P n(t+1)+p(t+1)+a"y(t+1)

where t € Z4, ||ly(¢)|]| — 0 ast — co. Here ¢ : C — E is a function from Wg, y :
Z4 xC — E belongs to lo(Wg). Set n = (v(0),v(1),...), where v:Z;xC — FE is
a function from I(Wg).

Now, based on the form of ¢* and P*, the above relations can be expressed as
follows:

y(ts) = ATyt +1,9) —D*qu(‘%ﬁ)

+ P o(t+1,8)+p(t+1,s), |yt )lw—0, t— o0

P(s) = A*y(0,s) — D*—‘% + P*(0,s) +p(0,s), te€Z, se€R (18)

In this case the constraints (15) and the cost functional (13) are written down in
the form

_B*y(tws) - Q*'U(t7 3) € Kﬁk7 ’U(t, 5) € Kf (19)
—q(s) —¥(s) € K3, t€Zy, s€ER
) =—3 ARe(b(t,s),v(t,s))Eds (20)

teZy

Thus the dual problem to (1)—(3) is to minimize the functional (20) on the solu-
tions to (18) under the conditions (19).
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Theorem 2. Let u%(t,s), ¢©°(s), t € Z, s € R be an optimal solution to the
problem (1)-(3). Then there exists an optimal solution v°(t,s), t € Z, s € R to the
dual problem (18)-(20) such that J(u®,¢°) = r(v°) and Re((Pz°(t,s) + QuO(t,s) —
b(t,5)),v°(t,8))e = 0, Re(y°(s) + ¢(s),¢°(s))e = 0, Re((B*y°(t,8) + Q*v°(t,5)),
ul(t,8))g = 0,t € Z4, s € R, where 2°(t,s) and y°(t,s) are solutions to (2) and
(18) corresponding to u°(t,s),p(s) and v°(t,s),t € Z.,s € R, respectively.

Proof. According to the previous reasoning, an optimal solution to (1)—(3) gener-
ates an optimal solution ¢° € Wg x lo(Wy) to (11)—(12) , which is obviously de-
fined by »° and ¢°. Using Remark 3 we obtain that the dual problem (13), (14)
has an optimal solution 7° € I2(Wg) such that J(u®¢%) = 1(¢°) = r(n°) and
the complementary slackness conditions are valid. The desired functions v°(t, s)
are constructed by setting v°(t,-) = n°(t) for any t € Z,. It is easily seen that
the required relations follow from the complementary slackness conditions. For ex-
ample, 30,7, JpRe(v°(t,8), ((P2(t,s) + Qul(t,s) — b(t,s))pds = 0 follows from
the condition Re(n®,T¢° — b),(w,) = 0. Since 7° € K}, T¢® — b € Ky, we have
Re(v°(t,s), P2°(t, s) + Qul(t,s) — b(t,s))r >0 for all t € Z; s € R. From the previ-
ous equality we have Re(v(t,s), PzO(t, s) + Qul(t,s) — b(t,8))g =0, t € Zy s € R,
which was to be proved. Other relations are proved in much the same way. [ |

3. Problem Formulation for Discrete 2-D Systems

Let E and V be finite-imensional Hilbert spaces over the real field R, as opposed to
the above case. The replacement of C by R is made only to simplify the presentation.
The sets of square-summable functions z : Zi — E,u: Zi - Vipo:Zy - FE are
denoted by X(Z%,F),U(Z3,V),F(Z,E), respectively, where Z3 = Zy xZ4. In
this case our optimal control problem in a discrete version can be formulated as
follows: Maximize the linear functional

Jw)= Y p'(ts)a(t,s)+ Y ¢ (s)e(s) (21)
(t,s)EZi S€EZ 4
on the solutions to the system
z(t+1,s) = Az(t,s + 1) + Dx(t,s) + Bu(t,s), =z(0,s) =¢(s), (t,5)€Zi (22)
subject to
Qz(t,s) + Gu(t,s) — b(t,s) € K1, ¢(s) € Kz, u(t,s) € Ko, (,8) € Zi_ (23)
Here A,D,Q and G,B are linear operators acting from FE into E and from V
into E, respectively; p*(¢,s) and ¢*(s) are given square-summable functions.
For given u(t, s), ¢(s), (t,s) € Z2 we say that afunction z(t,s) from X (Z3,E)
is a solution to the system (22) if z satisfies (22) for all (¢,s) € Z3.

A control w € U(Z?,V) and an initial function ¢ € F(Z%, E) are called admis-
sible if they and the corresponding solution z(t,s) satisfy (23) for all (t,s) € Z3.

In the sequel, we suppose that the assumptions made in Section 2 are fulfilled
here, as well.
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3.1. Preliminaries and the Adjoint System
Consider the nonhomogeneous system in the form
z(t +1,8) = Az(t,s + 1) + Da(t, s) + g(t,5), z(0,8) =(s), (t,s) €ZF (24)

where g : Z3 — E,p : Z. — E are given square-summable functions. Denote
by [?(E) the Hilbert space of square-summable sequences of elements from E.
B(Z4,1*(E)) stands for the Hilbert space of square-summable maps ¢ : Z, — 12(E)
equipped with the standard inner product.

Define the operator a : I>(E) — [?(E) by (az)s = Azs11 + Dz,,z € I*(E).
Obviously, a is a bounded linear operator and ||a|| < [JA]| + ||D]|. In the sequel, we
shall assume that ||A]| + ||D] < 1.

Thus (24) can be represented in the form
a(t+1) =ac(t) + 9(t), a0)=¢, teZ, (25)

where oft) = (z(,0),2(t,1),...) € I*(E), » = (¥(0), ¢(1),...) € I*(E), g(t) =
(9(¢,0),9(¢,1),...) € *(E).

Define the bounded linear operator A : B(Z,1?(E)) — I2(E) x B(Z,I>(E)) by
A (a(0),a(1),...) = (a(0), (a(1) — aa(0), @(2) — ac(1),...)). Then eqn. (25) can be
written as the following linear equation in B(Z.,[?(E)):

Aa = 5L f= (‘1059) € l2(E) XVB(Z+7 lZ(E)) (26)

It is easy to check that .A has the bounded inverse operator A~1!

(0, (m(0),n(1),-..)) — (,1(0) + ap,n(1) + an(0),...) for any ¢ € I*(E),n =
(n(0),m(1),...) € B(Z4,1*(E)). Hence, if ||A|| + ||D|| < 1, then (26) has a unique
square-summable solution given by a = A71f for any f € I>(E) x B(Z 4, 1*(E)).

Define now the adjoint equation associated with (26):
Ae=g, A :P(E)xB(Z4,1P(B)) - B(Z4,A(E)) (27)

where g € B(Zy,l*(E)), A* denotes the adjoint operator of .4, given by A* :
(8,(n(0),n(1),...)) — (B = a*n(0),n(0) — a*n(1),...). Here a* : I*(E) — I*(E)
is the adjoint operator of @, defined by the formula o* : (z(0),z(1),...) —
(D*z(0), A*z(0) + D*z(1),...), where A* and D* are adjoint operators of A and D,
respectively. Using this representation of A*, we may rewrite (27) as

n(t) =a™n(t+1)+g(t+1), B=a"n(0)+9(0), teZy (28)

with respect to the unknown variables 8 € 12(E), n(t) € I1*(E), t € Z+. The
system (28) is called the adjoint system of (25).
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In turn, setting (¢, s) = [(¢)](s) from (28) we have
y(t,s) = A*y(t+1,s - 1)+ D*y(t+1,8) + gt + 1,s)
y(t,0) = D*y(t +1,0) + g(t +1,0), (t,s) € Z% (29)

ﬂ(S) = A*y(O,s - 1) + D*y(075)a18(0) = D*y(oa O)a s € Z-}-

We say that eqn. (29) is the adjoint system of (24).

As is well-known, (26) possesses a unique solution for any f € [*(E)x
B(Z.,1?(E)) if and only if the adjoint equation (27) has a unique solution for any
g € B(Z4,1?(E)). In addition, in this case there exist continuous inverse operators
A1 and (A*)~!. Moreover, (A*)™! = (A~1)*. Since for the case ||A]| + ||D]| <1
eqn. (26) is solved, the adjoint system (28) has a unique square-summable solution
for any g € X(Z+%,E).

It is easy to prove that the operator (A™!)* : B(Z,I*(E)) — I*(E)«x
B(Z4,1?(E)) can be expressed in the form

(A1 : (@(0), a(1),...) — { 3 aafs), (S ata(s+1), 3 atals + 2),...)}

SEZ 4 SEZ 4 SEZ 4

Therefore, the solution to the adjoint system (28) can be written down as

8= atg)nt)= 3 a*glt+1+s), teZy

SEZ 4 SEZ 4

Thus we have proved the following result.

Lemma 4. Let ||A|| + ||D|| < 1. Then systems (24) and (29) have unique square-
summable solutions for any ¢ € F(Z+,E), f,9 € X(Z+*,E), respectively.

3.2. The Main Results for the Discrete Case

Similarly to B(Z,,I?(E)), we define the space B(Z4,I%(V)) of square-summable
functions w : Z4 — [%(V). Define the operator B : B(Z4,13(V)) — B(Z4,1*(E)) as
(BE)(t) = BE(t), t € Z,, where the map B : [2(E) — I*(E) is given by (Bz); =
Bz, t € Z. In this case we say that B produces B.

In a similar way, B* : E — V produces B* : B(Z+,1*(E) — B(Z+,12(V)).
Below it will be supposed that Q : B(Z,2(E)) — B(Z4,1%(E)), G : B(Zy,1*(V)) —
B(Z,,I1?(E)) and their adjoint operators are defined by analogy.

According to Section 3.1, the solution z € B(Z4,[*(E)) to eqn. (22) is of the
form

{ 1=A"f, f=(p,Bu), ueBZ+E(V)) (30)

u(t) = (u(t,0),u(t,1),...), t€Zy
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Define the operator T : [2(E)x B(Z4,12(V)) — B(Z4,1%(E)) by T(p,u) =
QA=Y (p, Bu) + Gu for (p,u) € I2(E)xB(Z4,1*(V)). It is easily seen that 7' is
a bounded linear operator. Denote by K; the cone in B(Z4,l?(E)) which is pro-
duced by the cone K; according to the formula K; = {a € B(Z4,1%(E)) : a(t) €
K1 (I*(E)),t € Z 1}, where K;(I?(E)) = {) € I>(E),\s € K1,s € Z4}. Analogously,
we define the cone Ky in B(Z4,12(V)).

Let K} = {z* € E,(z*,2)g > 0,z € K;} be the dual cone of K; in E. This
cone produces dual cones in 12(E) and B(Z,,I?(E)) as follows:

K{(P(BE) ={ e P(E), s € K{,s € Ly}
Ki = {ne BE+P(B) () € Ki (*(B)),t € 2+

Similarly, we define dual cones K3(I?(E)), K}(1?(V)) and K} in appropriate spaces.

For brevity, we write N = K,(I?(E)) xK3 and N* = K;(I*(E)) x K}. Thus the
original optimal control problem (21)—(23) can be formulated as the following linear
programming problem in the Hilbert space [?(E) x B(Z,*(V)):

9(&) = (p*,€) »max, T¢—bek,, (€N (31)
where p* = (¢ + ZteZJra*tp(t),BZt€Z+a*tp(t+ 1),...), b = (b(0),b(1),...) €

B(Z+712(E)): b(t) = (b(t: O)>b(t> 1): e ‘)a te Z+'
The dual problem of (31) is the following:

r(n) = —(b,n) = min, §*-TneN*, nekj, neB(Z+C(E) (32)

Theorem 3 below gives a necessary optimality condition for the problem (21)—(23)
in terms of solutions to the adjoint system. To this end we provide the following result
stated here without proof since it follows immediately from the results of Section 2.2.

Lemma 5. Let £ € 12(E) x B(Z4,1*(V)) be an optimal solution to (81). Then
there exists an optimal solution n° € B(Z,,I%(E)) to the problem (82) such that
(p*,€%) = —(b,1°) and the complementary slackness conditions (T'¢° —b,n°) = 0
and (T*n° — p*,€9) =0 are valid.

It is a simple matter to prove that the adjoint operator 1™ : B(Zy,I12(E)) —
B(Z,1?(V)) can be expressed in the form

7*: (n(0),m(1),...) — (E a**Q*n(s), »_ B'a™Q™n(s +1) +é*n(1),--.)

sCZ SEZ 4

We introduce a new variable £ = (8,y) € B(Zy,l?(E)) xB(Z4,1*(V)) by the
formula ¢ = (A™1)*(Q*n — p*). From the representation of (A~1)* we have

B=Q "n(0) —p*(0) +a*y(0), y(t)=Qn—p t+1)+a"y(t+1), t€Zy

Let 8= (4(0),%(1),-..), y(t) = (y(t,0),y(¢,1),...), and n(t) = (v(t,0),v(t,1),...).
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Taking into account the representations of a* and Q*, we obtain the following equa-
tions:

y(t,8) = A*y(t+1,s = 1)+ D*y(t + 1,8) + Q™ v(t + 1,5) — p*(t + 1, )
y(t,0) = D*y(t + 1,0) + Q*v(t + 1,0) — p*(t + 1,0)

%(s) = A*y(0,s — 1) + D*y(0,5) + Q*v(0,5) — p*(0,8), (t,8) € ZL (33)
$(0) = D"y(0,0) + Q*v(0,0) — p*(0,0), s€Zy

From (32) it follows that
—B*y(t,s) — G*u(t,s) € K5, —wv(t,s) € Ki, —v¥(s) —q*(s) € K3, (t,8) € Zﬁ_ (34)

The cost functional for the optimal problem (32) is written as

ry)=— Y blt,s)y(ts) (35)
(t,s)EZ_z’_

Hence, the dual optimal control problem of (21)—(23) is to minimize 7(y) on the
solutions to (33) under conditions (34).

Theorem 3. Let ||A|| + ||D|| < 1 and u°(t,s), ¢°(s), (t,s) € Z% be an optimal
solution to the problem (21)-(23). Then the dual problem (83), (84) has an optimal
solution v°(t,s), (t,s) € Z+% such that [Qz%(t,s) + Gul(t,s) — b(t, s)]v°(¢,s) = 0,
[B*4°(t, 8) + G*°(t, 8)]ul(t,s) = 0, [¥°(s) — ¢*()]¥°(s) = O,(t,s) € Z3, where
20(t, 8),¢°(t, s) and y°(t,s), (t,8) € Z?% are solutions to systems (22) and (38) cor-
responding to u’(t,s), ¢°(t,s) and v°(t,s), (t,s) € Z2, respectively.

The proof follows immediately from Lemmas 4 and 5, and Theorem 2.

4. A Simple Example and Concluding Remarks

The purpose of this section is to illustrate the foregoing theoretical considerations
based on a simple scalar example .

Let us consider the discrete scalar linear 2-D system

1 1
{L'(t +1, 3) = g(w(t7 3) + u(ta 5))7 fL‘(O, 3) = (P(‘S) = 2_'4—;*—:1—’ (t73) € Z-Z*- (36)
with constraints
1
z(t, s) + u(t, s) > prEsesy u(t,s) >0, (t,8) €z (37)

Our objective is to find a control sequence u’(t,s) in I*(R), (t,s) € Z2, such that
the cost functional

Jw=- 3 2;535@,5) (38)

(t,s)EZ?‘_

is maximized subject to (36) and (37).
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In our case the dual optimization problem is to minimize the functional
1

(t,s)€Z+2

in 1?(R) subject to

u(t, ) = éy(t F1,8)fu(t+1,8) + (t,5) € 72 (39)

2L+s+l ’

1 1
U(s) = 5y(0,5) +v(0,9) + 57, s €Ly

such that

y(t,s) +v(t,s) <0, o(ts) <0, (ts)€Z?

It follows from Theorem 3 that the optimal solutions satisfy the conditions

((t,5) + 006, 9) = s 0(6:5) =0, (1) € 23 (40)
(50°(6,8) + 00 ) (t,5) = 0, (1,9) € 23 (a)

From (41) we get v°(t,s) = —£y°(¢t,s), (t,s) € Z3. Otherwise, u’(t,s) =0, (t,s) €
Z3. This yields z°(t,s) = 2~ (g4 (¢ 5) € Z +2 . Then 2°(t,s) +u(t,s) =
2~ (1) 4~(t+sH1) « g=(t+s+1) (¢ 5) € Z2 which contradicts the constraints (37).
Now from (40) we obtain u®(t,s) = 4~(Fs+1) — 20(¢ s), (t,s) € Z%. Apply-
ing this to (36) yields 2°(t,s) = 2~14-(+s+U (¢ 5) € Z2. Hence u'(t,s) =
2-14-(t+s+) (¢ 5) € Z%. Similarly, it is easy to check that y°(t,s) = 27 (t+s+D)
and 10(t,s) = —2-(tsH) (t 5) € Z 42 . Finally, we get

1 1 1 1 8
0y _ 0y _ _ — - —
J)=r() == 3 4ttt getstl > g > gL~ 49

(t,s)ez? SEZ4  tEZ4

As was already mentioned, this example illustrates the theoretical considerations.
However, the practical usefulness of the obtained results should be tested on examples
which are more representative of multidimensional systems than our scalar example.

The method described above has been used in solving other optimal problems,
e.g. the linear-quadratic regulator problem and the minimum-energy control problem
for discrete and differential-difference 2-D systems. Moreover, it should be pointed
out that the results given in the present paper can be extended to the case of abstract
2-D systems with mixed constraints.
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