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SUB-GRADIENT ALGORITHMS FOR SOLVING
MULTI-DIMENSIONAL ANALYSIS PROBLEMS
OF DISSIMILARITY DATA

ADNAN YASSINE *

The multi-dimensional scaling (MDS) problem, extensively addressed in data
analysis, has been investigated in significant works (e.g. De Leeuw, 1977; 1988;
De Leeuw and Pruzansky, 1976; Kruskal, 1964; Shepard, 1974). It consists in
determination of a configuration z* such that the matrix elements of distances
between the points are required to be those of a given matrix called the prox-
imity or dissimilarity matrix or, if this is impossible, it reduces to the nearest
optimization problem in which a function (called the loss function) is to be min-
imized. In this paper, the stability and regularity of the Lagrangian duality
in convex maximization (non-convex minimization) are considered. We present
some convergence results of the DC (Difference of Convex functions) optimiza-
tion algorithms which are based on DC duality and local optimality conditions
for DC optimization. Various regularization techniques are studied in order to
improve the quality (robustness, stability, convergence rate) of the DC algo-
rithm (DCA). For solving MDS problems, sub-gradient algorithms (involving or
not regularization techniques) in DC optimization are presented. Some numer-
ical applications for large-scale problems are also provided.

1. Introduction

In recent years, active research has been conducted regarding the following class of
non-convex and non-differentiable optimization problems:

(PNC): inf{g(z) - h(z):z € X}

where ¢ and h are convex, X = R*. The problem (PNC) is called the DC op-
timization problem and its particular structure makes significant developments in
both qualitative and quantitative studies possible (e.g. Hiriart, 1989; Hiriart and
Lemaréchal, 1990; Yassine, 1995).

As regards convex approaches to non-differentiable non-convex optimization (as
opposed to combinatorial approaches to global optimization), we present here main
results concerning DC optimization and algorithms for the DC optimization problems
(DCA). The DC duality was firstly introduced by Toland (1979) in the context of
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variational calculus in mechanics, and generalized by Tao (1975; 1976) for convex
maximization programming.

Owing to their relative simplicity of implementation, DCA’s permit to solve
large-scale real world DC optimization problems. Due to their local character, they
cannot guarantee the globality of computed solutions to general DC optimization
problems. In general, DCA converges to a local solution, but we observe quite often
its convergence to a global one. A DC objective function has infinitely many decom-
positions which may exert strong influence on the quality (robustness, stability, rate
of convergence and globality of sought solutions) of DCA.

The Multi-Dimensional Scaling problem (MDS) plays a leading role in statis-
tics on account of various applications in different fields, e.g. social sciences (Bick
et al., 1977), biochemistry (Crippen, 1977; 1978), psychology (Levelt et al., 1966),
mathematical psychology (Beals et al., 1977; Shepard, 1974), etc. A mathematical
formulation of this important problem, due to Kruskal (1964a; 1964b), may be written
down as follows:

Let ¢ beanorm on R? and d be its corresponding distance. Let two symmetric
matrices A = (6;;) and W = (W;;) of order n be given such that
61'_7' :(5]'1' >0, Wi =W]‘,‘ >0 Vi#£j, 6;=W;=0 Vi=1,...,n

We call A the dissimilarity matrix and W the weight matrix. The MDS problem
consists in finding n points X3, Xs,...,X,, € RP such that

d(Xi,Xj)ﬁé‘,i' Vz,]=1,,n

Denote by M, ,(R) the set of real nxp matrices. Let ¢ be a norm on RP. For
all X € M, ,(R) we consider the semi-norms d;;(X) defined by:

dij (X) = ¢ [(X:)' — (X;.)]
where X; denotes the i-th row of X. We set p(X) =3
Zi<j Wi; d%j(X) and "72 = Ei<j Wi; 5123‘-
Note that d;;(X) is convex, positively homogeneous and non-negative. More-

over, p and 7 are two semi-norms on M, ,(R). The MDS problem may be formulated
as

i<j Wij 85 di(X), n(X) =

(P min {o(X) = 5 37 Wi (d5(X) - 8)°

i<j
The problem (P;) is equivalent to the DC optimization problem
(1,
(Po): min {Zn*(0) = p(X): X € Map(R)}

Thus DCA can be directly used to solve (P). This is an important development in
numerical methods for MDS.
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The aim of this paper is to investigate the following optimization problems:

1. The stability of the Lagrangian duality in the problem of convex maximization

(P): max{f(z):¢(z) <1}

where f,$ € To(R™) are positively homogeneous and bounded everywhere. One
of the conditions is assumed:

a) f is non-negative and ¢ has any norm on R",

b) f and ¢ are two semi-norms on R® such that ¢=1(0) C f~*(0).

2. Duality and sub-gradient algorithms regularized in DC optimization, as well as
their application to solving MDS problems.

The latter involves a study in the fields of DC optimization, sub-gradient methods, and
regularization techniques (in order to accelerate the convergence of these methods).
Applications generally concern large-scale numerical simulations related with multi-
dimensional scale analysis.

In Section 2 the duality problem in DC optimization is presented in relation to
sub-gradient algorithms. The stability of the Lagrangian duality in convex optimiza-
tion is examined in Section 3. The multi-dimensional scaling problem for dissimilarity
data (MDS) is discussed in Section 4. Section 5 presents comparative numerical ex-
periments of solving the related MDS problem. Some final remarks and conclusions
are given in Section 6.

2. DC Optimization
2.1. Introduction

Let X = R™. The dual space ¥ of X can then be identified with X itself (Y = R").
Denote by 'g(X) the cone of proper, lower semi-continuous, convex functions on X,
and consider the following optimization problem:

(P): a=inf{g(z)—hz):z€ X}, g,heTo(X)
Since g and h can become infinite simultaneously, we assume that (+o00) — (+00) =
400 to avoid an indetermination problem.

The DC duality may be defined by using conjugate mappings ¢* and h* such
that

(D): B=inf{h*(y)—g"(y):y €Y}
where ¢*(y) = sup {{z,y) — g(z) : € X} is the conjugate mapping of g € I'g(X)
with values in I'g(Y). Problem (D) is the dual of (P) and a = §.

If o is finite, then domg C domhA and only the values of g — h € domg are
involved in the search for global and local solutions to (P). This DC duality was first
studied by Toland (1979) in a more general framework.
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2.2. Duality in DC Optimization

Theorem 1. (Tao, 1986) Let (p) and (A) be the solution sets of problems (P) and
(D), respectively. Then:

1. dh(z) C 9g(x) Vz € (p)
2. 9g*(y) COh*(y) Vye€ (A)
3. U{0¢*(y) :v € (A)} C (p) (an equality if h is sub-differentiable in (p))
4. U{Oh(z) 1z € (p)} C(A) (an equality if g* is sub-differentiable in (A))

Definition 1. A point 2* of X is a local minimum of (¢ — h) if g(z*) and h(z*)
are bounded and if g(z) — h(z) > g(z*) — h(z*) for each z in a neighbourhood U
of z*. Consequently, domgnNU C dom h.

Definition 2. A point z* of X is a critical point of (g —h) if Oh(z*)Ndg(z*) # 0.

Theorem 2. If a point x* admits a neighbourhood U such that
Oh(z)Nog(z*) #0 VYV eU
then g(z) — h(z) > g(z*) — h(z*)Vz € U (i.e. z* is a local minimizer of g —h).

Proof. We have h(z*) > h(z) + (z* — z,y), Vz € X,Vy € Oh(z). In particular
h(z) — h(z*) < (z —2*,y),Yo € U,¥y € Oh(z) N dg(z*). But g(z) - g(z*) >
(x —z*,y),Vz € U,Vy € Oh(z) N dg(z*). Hence

9(z) — g(z*) > h(z) — h(z*) Ve eU [ |
If z* is a local minimum of (g— h), then Oh(z*) C dg(z*) (Hiriart, 1989). This

necessary condition is also sufficient for several non-differentiable DC problems (Tao,
1981; 1984), in particular for a polyedral h (Hiriart, 1989).

The sub-gradient algorithms presented in the following enable us to obtain a
point z* such that dh(z*) C dg(z*). The local minimum property of g — h for z*
is likely.

Let p; (resp. A1) be the set of points verifying the necessary conditions of local
optimality for (P) (resp. for (D)), i.e.

p1={x € X :0h(z) Cg(z)}, Ar={y€e€Y :89"(y) C h*(y)}
For every point z* in X (resp. y* in Y), the problems
S(z") = inf {A*(y) — ¢"(y) : y € OR(z™)} -
and
T(y*) =inf {g(z) - h(z) : z € g™ (y")}

are defined.
We denote by s(z*) (resp. 7(y*)) the set of solutions to S(z*) (resp. to T(y*)).



Sub-gradient algorithms for solving multi-dimensional analysis problems . .. 525

Theorem 3. (Toland, 1979; Yassine, 1995)
z* € p1 iff y* € Ay s.t. 1 € Fg*(yY)

y* € Ay iff ¥ € p1 s.t. y* € Oh(z¥)

Corollary 1. If * € 1 (resp. y* € A1), then:
i) s(z*) = Oh(z*) (resp. T(y*) =9g"(y*))
) h*(y) — 9°(y) = g(z”) — h(z*) Vy € Oh(z*) (resp. g(z) — h(z) = h*(y*) —
9" (y") vz €dg*(y*))

These results constitute the basis of DCA to be studied in Section 2.3. In general,
DCA converges to a local solution. However, it would be interesting to formulate
sufficient conditions for local optimality.

2.3. Sub-Gradient Algorithms (DCA Algorithms)
2.3.1. Complete Form

In the sub-gradient algorithm, two sequences {z*} and {y*} verifying Theorems 1
and 3 are constructed schematically as follows: Starting from any element z° of X,
the algorithm creates two sequences {z*} and {y*} defined by

yt € s(z*), o er(yh)
Theorem 4. (Toland, 1979) Let us assume that the sequences {z*} and {y*} are
well-defined. Then we have:
1. g(z**1) — (a1 < B (y*) — 9" (¥*) < g(a*) — h(a*)

The equality — g(a**1) — h(z*F1) = g(2*) — h(z*) is fulfilled iff z* € dg*(y*)
and y* € Oh(z*). Then z* € p; and y* € A;.

2. If o is bounded, then
: ky k - : e ky ok k = o >
dm {g(z®) —h(z™)} = lim {(A*(y") = ¢*(y")} =a” 2 @
8. If o is bounded and if the sequences {z*} and {y*} are bounded, then Vz* €

Qz*) (resp. Vy* € Qy*)) there ezists y* € Qy*) (resp. z* € Qz*)) such
that:

i) ¥ € p1 and g(z*) — h(z*) = a* > «

i y* € Ay and R*(y*) - g*(y*) =a* > a
ii) lim {g(z*)+9"(¥")} = 9(z") + " (") = (z*,5")
) kﬂrfm{h(wk) +h*(y")} = ha*) + h*(y*) = (=", %)

where Q(2*) is the set of the accumulation points of {z*}.
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From a pratical point of view, although this algorithm uses a DC decomposi-
tion mentioned above, Problems (S(z*)) and (T(z*)) remain DC optimization pro-
grammes. Calculation of y* and z**! is therefore still a difficult task. In practice,
the sub-gradient algorithms are generally used on the simplified form presented in
what follows.

2.3.2. Simple Form

Starting from an arbitrary point z°

€ X, we define the two sequences {z*} and
{y*} by taking

y* € 8h{z*), ¥ € dg*(y*)

In this case, all the assumptions of Theorem 4 are still satisfied. Moreover, one could
expect to obtain the properties dh(z*) C d¢(z*) and Idg*(y*) C Ah*(y*), but we
only have dh(z*) N dg(z*) # 0 and Ag*(y*) N Oh*(y*) # 0.

Definition 3. A function f is strongly conver on X if there exists a real p > 0
(called the coercivity coefficient) such that

A(L = A)

£+ (1= Ny M) + (1= N f(y) - Z

pllz = ylI> VA€ [0,1); Vz,y e X

Theorem 5. (Auslender, 1976) If f is strongly convex on X, then there exists a
real p > 0 such that

f@) 2 f(=) + (y,2" —2) + plla’ — 2||* Vz,2' € X; Vyedf(z)
The converse is true if f is sub-differentiable.
Theorem 6. (Tao, 1986; Yassine, 1995) Let us assume that g and h are strongly

convez and the sequences {z*} and {y*} are well-defined. Then we get the following
properties:

1. g(z*+) = h(z*H) < h*(y*) - g* (v*) — pall*Ht — 2*|?
< g(@*) = h(@®) — (pn + pg)||z*HT — z*|?
where pr and p, are the respective coefficients of coercivity related to h and g.
2. W (™) — gt (™) < g(aMth) = h(z*H) — pge lyFT — ¥

S h*(y*) — g*(¥F) — (pre + pg)|ly**T — y*||2

where pr» and pg« are the respective coefficients related to h* and g*.
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Corollary 2. (convergence of the simple form)
1. g(z*) = h(z*) = h*(y*) — g*(v*) <= yF € Oh(z**) and zFH! =z
In this case, we get y* € Oh(z*) N dg(z*).
2 h*(y*) = g*(¥*) = g(a*) — h(z*) = " €0g"(¥*) and y*7 =¢*
Here, we get y* € Oh(z*) N dg(z*).

2. If a is bounded and the sequences {z*} and {y*} are bounded, then Vz* €
Q(z*) (resp. Yy* € Qy*)) there exists y* € Qy*) (resp. z=* € Q(z*)) such
that:

i) g(z*) = h(z*) = B*(¥*) — g* (") — W' (¥) —g* W) =" 2 & as k-
+oo
i) y* € Oh(z*) N dg(z*) and z* € Oh*(y*) N g™ (y*)
. k+1 _ k| — . k+1 ok —
i) kgrfwllz z"[|=0 and kgrfwily y*|=0
where Q(2*) is the set of the accumulation points of {z*}.

Proof. This result follows immediately from Theorems 5 and 6.

3. Stability of the Lagrangian Duality in Non-Convex
Optimization

3.1. Problem Statement

Let X =R™ and Y be its dual space (i.e. Y = R"). In this section, we consider the
stability of the Lagrangian duality in convex optimization problems of the form:

(P): max{f(z): ¢(z) <1}

where f € T'o(R™), and it is positively homogeneous, non identically zero, and ¢ is
any of the norms on X.

The problem (P) (called the primary problem) may be formulated as follows:

(P): min { - f(z): 5¢°(0) < 5}

The Lagrangian function related to (P) is defined by
Ao .
— — — >
o) = { f@)+ 5@ -1} i 220

—00 otherwise
We define

(P\): g() = inf {L(x,)\) ‘z€ R"} — inf { — f(z) + %(qﬁz(w) —1):ze ]R"}

The dual problem (D) related to (P) may be written down as follows:
(D): B= Sup{g()\) A > 0}
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Such an aproach is motivated by the following rationales:

1. Tt provides significant additional information to characterize primary and dual
solutions. Consequently, we are able to obtain the primary solution from the
dual solution and vice-versa.

2. The study permits to use problem (Py) whose solution leads to that of (P).

3.2. Study of Problem (P))

We denote by (pa) (resp. P and D) the set of solutions of (Py) (resp. (P) and
(D))

Proposition 1.
1. dom g =]0, +o0[

2 (p2) € {zem g =-L8 22 ) 1)

Proof.
1. If f is positively homogeneous and non identically zero, then
g0)=inf{ - f(z):z€ X} = -0 (1)
Hence dom g CJ0, +col.
If f is finite, then Vz € X,3b > 0 such that f(z) <b- ¢(z). We have

A

{02 =1} 2 -b-6(2) + 5 {0)* - 1]

L@, ) = ~f(@) +

and

A
lim L(z,\) = = 2= 4
#(z)—-+oo (2,4) ¢(z)1£>n+oo 2 9() ®

Consequently, dom g =|0, +o0].

2.7 € (P\) = 0 € 0,L(z,\) = 0 € —0f(z) + Ap(z)0¢(z) = If(z) C
Ad(z)dd(z). Then

Vy € 8f(z), Vz € 84(z), z'y = Ad(2)z'z (2)

If f is positively homogeneous and ¢ is a norm on X, then Vy € 8f(z), Vz €
9¢(z)

o'y = f(z), o'z = ¢(z) 3)
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Combining (2) and (3), we get

f(z) = A(z)? (4)
Hence

A

o) =~ — (&) + So(e) = -

A _ f@)
2 2

A 2
e =—§{1+¢($) !

Corollary 3. Let x be a solution to (py). Then we have
i) ¢(z) > 1= -2>g(A) > —f(z)
i) d(z) <1=-A<g(A) <—f(z)

i) p(z)=1=> -A=g(\) = —f(z) and z € P, A€ D.

The above properties are direct consequences of Proposition 1.

Corollary 4. For every A > 0, we get the following three properties which are
mutually ezcluded:

i) (px) C {z € R : ¢(z) > 1}

i) (pr) C {z € R 1 ¢(z) < 1}

iii) (pr) C {z € R™ : ¢(z) = 1}
This corollary follows immediately from Proposition 1.

Remark 1. If (p,) is a singleton, then the above corollary is trivial.

Theorem 7.

Ak
1. g(\) = ——5 + 3\‘,

2. D ={\}={V-2k} is a singleton and we get
i) (pr) C{z € R* : ¢(z) =1}
ii) o = f = g(\*) = — f(z%) = =\

where k is a negative constant depending on f and ¢.

3. P =(px)
Proof.
2 -1 2 -1
1. 8g()) C co{w—)—~}, hence Vg(A) = ¢'(A) = $e) -1 =-1- M, and
) 2 2 A
then g(\) = —= + —, where & is a real to be determined.

2 A
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2. and 3. Let A* and z* be the dual and primary solutlons respectively. There-

fore: ¢'(A*) = —= — —k~2— 0, whence k£ = 5 = +/—2k.
Futhermore, ¢'(\) = (¢*(z*)-1)/2 =0 = ¢*(z*) = 1 = f(2*) = »*¢*(z*)
A" = g(A*) = =2*, and then 8 = g(A*) = —f(z*) = a = —)\*, ¢(z*)

1 and X\* =+/-2k%. ]

1
2
") =

3.3. Stability of the Lagrangian Duality when f and ¢ are Two
Semi-Norms

Let us consider the primal problem (P) when f and ¢ are two semi-norms defined
on X = R" such that N(¢) C N(f). We want to prove that the previous results
are still consistent for this class of problems. If A = N(¢) and B = A*, then X
can be expressed as X = A @ B and the following properties are established:

$(z+a) =d(z), f(z+a)=f(z) YacA

Consequently, (P) can be expressed as
(Q): max {f(z):z € B,¢(z) <1}

The semi-norms f and ¢ on X are norms on B, hence problem (Q) always
possesses a solution. If we denote by @ the set of solutions to (Q), then P = Q+ A
(ie. if z is a solution to (Q), then z* = z + a is a solution to (P) Va € A). In
addition, we get

(B)s g =inf { - f(z) + J(#(a) ~1) i € B")
Based on the previous remarks, problem (Py) may be formulated as follows:

(P): g\ :inf{ - f(z)+ %qﬁz(x) 1z € B} - %

Since g(A) < —A/2, we can consider the set E = {z € B : —f(z) + (1/2)¢*(z) < 0},
which means that the last problem considered is equivalent to
. A A

(P)): g()) _mf{ ~f@)+5¢* @) iz € E} -3

Since f is bounded everywhere, 3b > 0 such that f(z) < b¢(z). Hence (Py) can
be written down in the form

. A A
(B): g =int { - f(z) + 56°(a) v € B} - 2
where Ey = {z € B : ¢(z) < 2b/A, XA > 0}. Since ¢(z) is a norm on B, we deduce
that FE, is bounded and the previous stability results can be applied.
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3.4. Solution of Problem (P)

The idea consists in solving the intermediate problem (P,) for a given A°, which leads
to a value of the constant k = A°{g(\%) + (A\°/2)}, since A* = +/—2k is a solution
to (D). Problem (Py.) is solved again to obtain a solution to (F). We then get the
following algorithmic scheme:

1. Choose any A° > 0.
2. Solve

(Pyo): g(A\°) =inf {L(z,)°) :z € R™}

:inf{ —f(z)+§(¢2(:c)-—l) :zEIR"}

3. Compute the constants k = )\O{g()\o) + (AO/Q)}, A = +/—2k.
4. Solve

(Pa): inf{L(z,\*) iz € R*} = inf{ — f(z) + A2—*(¢2(x) “1):ze€ ]R"}

The solution z* to (Py«) is also a solution to (P).

4. Multi-Dimensional Analysis of Dissimilarity Data
4.1. Introduction

We consider a set of statistical units {01,02,...,0,} (called the objects) and ask some
subjects {g1, 92, --,9x} (called the judges) to settle, under certain experimental con-
ditions (called occasions) and starting from a pre-definite scale, a list of numerical val-
ues, representing the proximities between the different objects. This list is denoted by
{8ijm, (3,4,m) € LxK}, where L is a part of {1,...,n} x{1,...,n}, K ={1,...,k}
and §;jm denotes the proximity between the objects o; and o; defined by the judge
gm. The numerical problem to be solved by MDS methods consists in looking for
a set of points {Xl(m), X;m), .. ,X,(zm)}, in k-Euclidean spaces (,,d) of finite
(and minimum) dimensions, for m = 1,...,k, in such a way that the proximity
d(Xi(m),X J(-m)) can be as close as possible to the real approximate proximity using
the terms {8;jm, (4,j,m) € L x K} defined by the judges. The choice of the repre-
sentation space (€,d) of the set {8;jm}, gives a general idea of proximity of different
objects, but it is also necessary to take into account the importance given by every
judge to each dimension of the representation space w. When considering several
representation spaces {(Qm,d),m =1,...,k}, one can get an idea about every judge
involved by the definition of the list of data {&; ;,m, (4,7,m) € LxK}.

Practical examples of applications of multi-dimensional scaling methods have
come from social sciences (Bick et al., 1977), biochemistry (Crippen, 1977; 1978),
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psychophysics (Levelt et al., 1966), mathematical psychology (Shepard, 1974), and

many others.

Example 1. To easily understand the MDS problem, here is a concrete and simple
example: We try to find a metric configuration in R? (p = 2 or p = 3) which
represents the “relationship of friendship” existing between the students from the
same group. Let G be a group of six students. To establish the level of friendship
between these students, each of them (S; for ¢ =1,...,6 i.e. n = 6) is asked to give
a mark (out of 20), denoted by N;j, to each student S;. The results are shown in

Table 1.

Table 1. Marks N = (N;;), ¢,7=1,...,6.

S1 Sa Ss Sy | Ss Se
S1 18 16 12 | 10 13
Se | 164 15 11 | 13 14
Ss | 13.2 | 13,5 18 | 14 10
Ss | 15 15 12.5 11 12
Ss | 11.5 | 11 11.5 | 15 11
Ss | 11 10.5 | 14.5 | 13 | 14.5

Let W = (W,;),4,5 =1,...,6 be the weight matrix which corresponds to the

normal case:

Wi=0 and Wi =1 Vi#j
and A = (6;;),4,5 =1,...,6 be defined by
6ij = |Nij — Nj;| Vi,j=1,...,6
Table 2. A = (6;;), i,j=1,...,6.

0 16 | 28 | 3 1.5 | 2
16 |0 1.5 | 4 2 3.5
28 1150 55 | 25 | 4.5
3 4 5.5 10 4 1
15| 2 25 | 4 0 3.5
2 3.5 |45 |1 3510

We need to find six points Xi,Xs,...,Xg € RP, such that the differences
|d(Xi, X;) — 6;j] for every ¢ and j are minimum (d is the distance in RP).




Sub-gradient algorithms for solving multi-dimensional analysis problems . .. 533

4.2. Mathematical Modelling of MDS Problems

Let us consider the Euclidean space RP endowed with the norm ¢ and the corre-
sponding distance d. Two symmetric n-matrices A = (6;;) and W = (W,;) are
given such that

5¢j:(5j7;>0, Wi]' :—‘Wji>0 Vl?,éj, 6 =Wy =0 Vi=1,...,n
(A is called the dissimilarity matrix and W is the weight matrix).
The MDS problem consists in finding n points Xj, Xs,... , X, € RP such that
d(X“X]) =~ (Sij Vl,j =1,...,n

We denote by M, ,(R) the set of real nxp matrices. For all X € M, ,(R) we
consider the semi-norms d;;(X) defined by

dij(X) = ¢[(X2)" ~ (X;.)]
We set p(X) = 21-<]- Wi; 5,'3' d,‘j(X), UE(X) = Ei<'Wij de(X) and ng =
Zi<j Wij 5?]" '
Note that dy;(X) is convex, positively homogeneous and non-negative. More-

over, p and 7 are two semi-norms on My p(R). The relevant MDS problem may be
written down in the form

(P1) : min {U(X) = % > Wij (dif (X) —5z‘j)2}

1<y

We conclude easily that (P;) can be expressed in the following forms:

(P): min {%nZ(X) —p(X) X € Myy(B))

(Py) : max{f;—g—)) (X)) # 0}
(Py) : max {p(X) :n(X) < 1}
(Ps): min{xo(X) = p(X) : X € Mny(B)}

where C = {X € Mnp(R) : n%(X) <1}

According to the previous considerations, the Lagrangian stability applied
to (P;) can be easily observed. In the following, we shall present some results where
an explicit form of the dual function related to (Ps) is given. This permits to solve the
MDS problem of the form (P;) with a complete study of the regularization in terms
of the function g - ||?/2. We also analyze the importance of these regularizations
when applying the sub-gradient algorithms to numerical solutions of large-scale MDS
problems in the form (P2) and (Ps).
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4.3. Solving Problem (P3)

Proposition 5. (DE Leeuw, 1977; Tao, 1981) Let

—&ij e, .
— if i#janddj(X)#0
700 3 (X)
BX:B-L":BZ": n ik . .
(X) = (By) : By bik if i=j and diw(X)£0 Vk=1,...n
k:ld’k(X)
0 otherwise
and
—Wi; = -1 ifi1#7
V= (Vi) Vig = O
(Vi3) ZWik:n——l otherwise
k=1
Then

1. B(X) aend V are two symmetric, positive semi-definite, centred, nxn matrices
of rank < (n —1)

2. p(X) =tr[X*  B(X) - X] and %n2(X) = tr[X*- V- X]
3 B(X)-Xe€d(p(X)) and V-X € 8(%7}2(X)).

Let A be the vector sub-space of constant configurations and B = Al the
vector sub-space of centred configurations. Then M, ,(R) = A®@ B=A® A’ and

VX €A p(X)=n(X)=0=> A=p""(0) =1""(0)

Since p and 7 are two semi-norms, we have p(X + A) = p(X) and 9(X + A) =
n(X)VA € A, and if z* is a solution to (P,), then z* + A is the set of solutions to
(Py). Futhermore, if z* € M, ,(R) is a solution to (P.), then z% is a solution to
(P;) and the space B = A is to be considered.

To solve (P;), we apply sub-gradient methods with and without regularization.
We denote by DCA1 (resp. RDCAL1) the sub-gradient algorithm without (resp. with)
regularization techniques, introduced in order to solve (P). This means that

DCAL: min {%T,?(X) ~p(X): X € My p(B)}

RDCAL: min {(7(0) + & IXI2) — (3(3) + £ 1) - X € Mo ()

where A is a strictly positive real number used to accelerate the convergence and
is a strictly positive real number called the regularization parameter.
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The algorithm DCA1 consists in defining two sequences {X*} and {Y*} such
that

1 * 1
XF YR e gp(Xt) — XM € a(§n2) (vk), Yke 8(5772(X’°+1))
We get
k k k k k41 1 A k k
X* — v = B(X*). X*F — x*H = (V+;e-e) B(X*)- X
Then the calculation of the new iterate X**! requires to solve the linear system

(V + %e : et) CXHH = B(X*) . X*

n n
Since V = nI—e-et, where e = (1,1,...,1)* and ee!- X*+! = ZX}CH = ZYik =0
=1 =1
because the matrix Y* is centred, we have V - X**1 = n . X*+1 which leads to
Xk+1 — Y_k — B(Xk) .Xk
n n
The algorithm RDCA1 is the regularization of DCA1 applied to the problem. It
consists in defining two sequences {X*} and {Y*} such that
k k AREAY . E+1 Ao My )k
Xt —vtea(d+ Sl IIF) (XY — X ed(gn + ol -7 ) (V)
The calculations lead to the following formula:
XE L vE=X-BXF) X XE—YE= 2 VXA 4 X
Hence

k1 _ Yk
i+ An

4.4. Solving Problem (P4)

The Lagrangian function related to (P;) is defined by

A ) i
L(X,)) = AP (X) =1} = p(X) it A20

—00 otherwise

We denote by Duall the algorithm for solving (Py), in which we use the stability
of the Lagrangian duality. Tts steps may be summarized as follows (cf. Section 4.4):

1. Select any X° >0, k= 0.
2. Solve (Pyo): min {L(X,X°): X € Mnp(R)}.
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3. Let X; be the solution to (Pyo). Then k = A%{(X%/2)n%(X1) — p(X;)} and
M = /=2k. In particular, if A\° = 1, then & = (1/2)n*(X1) — p(X1) and
AY =2k

4. Solve (P): min {L(X,X*): X € Mn,(R)}.

The solution X* to (Px«) is a solution to (P;) which verifies the conditions

p(X7) =3 = —g(\), m(X*) =1

4.5. Procedure for Solving Problem (P5)

We denote by DCA2 and RDCA2 the respective sub-gradient algorithms, without
and with the regularization technique, for solving (Ps). Of course, (Ps) is of the
same type as (P2). We can write

DCA2: min{xc(X)-p(X): X € My ,(R)}
RDCA2: min{[X-xo(X)+ %nxuz] - [A-p(X) + %IIXIIZ)] L X € Map(R)}

The algorithm DCA2 consists in defining two sequences {X*} and {Y*} such that
XF—v* e dp(X*) — XM e d(xe) (YY), Y* e d(xo)(XH)
The calculations yield
XF—YF=BX* Xt —VE=A. V. X x>0, p(X*) =1
Hence

whel_ _VE-YE B X

~ (V- YR) T p[B(XF) - XK

The algorithm RDCA2 involves definition of two sequences {X*} and {Y*}
such that

Xt vt eo(n+ g—n : {|2)(X’“) — X* e o(ul + X dxc)*(YF)
Then we get
X*F— P =X B(X*) X* 4+ pX* — X5 = proj(YF)

Hence

cen [ 7 i (YR <1
YE/n(Y*) otherwise
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5. Numerical Results

In this section we present some comparative numerical examples which concern all
the algorithms applied when solving MDS problems. Two different cases can be
considered, according to the choice of the dissimilarity matrix:

Case 1. The dissimilarities are considered as the distances between points of the
vector space (in that case, it is known that the optimal value is Z€ero).

Case 2. The dissimilarity data are positive real numbers (a priori, the optimal value
is unknown).

The following examples related to large-scale MDS problems correspond to sim-
ulations tested on a SUN workstation. The examples enable us to compare the
different methods. In Tables 3-6, o(X*) represents the optimal value of the function
o(X) = (1/2) 3;c; Wij [6i5 — di;(X)]* at a minimum point X* and g(X*) denotes
the norm of the gradient at X*.

Table 3. Number of iterations (Case 1).

dim | DCA1 | RDCAL | Duall | RDCA2 | DCA2 | o(X™) | g(X7)
50 95 99 97 95 95 28E-8 83E-7
100 100 102 102 100 100 11E-6 63E-7
200 105 106 107 105 105 44E-6 | 62E-7
300 108 109 110 108 108 10E-5 62E-7
400 110 111 112 110 110 17E-5 64E-7
500 112 112 114 112 112 28E-5 60E-7
600 113 114 115 113 113 39E-5 65E-7
800 115 116 118 116 115 71E-5 82E-7
1000 117 117 119 117 117 10E-4 93E-7
1200 119 119 121 119 119 12E-4 82E-7
1500 120 120 122 120 120 25E-4 | 94E-7
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Table 4. Number of iterations (Case 2).

| dim [ DoA1 | RDCAT | Duall | RDCA2 | DCA2 [ o(X) | x|

50 44 44 46 44 44 6.4798 T9E-7
100 48 48 50 48 48 21.919 95E-7
200 52 52 54 52 52 87.676 86E-7
300 55 55 57 55 55 197.272 48E-7
400 56 57 58 56 56 350.707 80E-7
500 58 58 60 58 58 547.980 85E-7
600 59 59 61 59 59 711.404 87TE-7
800 61 61 63 61 61 1302.633 | T8E-7

1000 62 62 64 62 62 2069.191 | 49E-7
1200 63 63 65 63 63 2845.619 | 87E-7
1500 64 64 66 64 64 4553.558 | 92E-7

Table 5. Computing time (Case 1).

| dim | DCAL | RDCAT | Dualt | RDoA?2 | DOA? |

50 1.0 1.5 1.7 1.9 1.9
100 4.5 6.5 7.0 7.8 8.0
200 20 27 30 31 32
300 46 64 72 73 75
400 84 116 129 130 133
500 134 179 207 220 225
600 227 270 310 325 332
800 360 455 580 599 610

1000 535 730 765 812 835
1200 855 1129 1312 1391 1424
1500 1353 1751 2142 2234 2297

The number of iterations given in Tables 3 and 4 does not provide complete
information taking into account the complexity of calculations for each iterative pro-
cess. Consequently, it is interesting to present the CPU time related to each method
applied to the problem MDS (see Tables 5 and 6).
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Table 6. Computing time (Case 2).

[dim | DCAL | RDCA1 | Duall | RDCA2 [ DCA2 |

50 0.5 0.9 0.9 0.9 0.9
100 2.5 4.0 4.0 4.0 4.0
200 11.5 14 16 17 17.5
300 27 36 38 40 41
400 50 68 72 75 76
500 75 110 116 121 123
600 115 153 170 180 182
800 216 298 314 328 331

1000 343 470 500 525 529
1200 516 718 755 785 790
1500 885 1183 1252 1296 1302

The graph of the function

g(N)

A

k

:————|—-—-

2

A

is given in Figs. 1-4, for several different cases.
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Fig 1. Graph of g (Case 1) for the dimension 1000, A" = 187.8604.
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Fig 2. Graph of g (Case 1) for the dimension 1500, \* = 281.7905.
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Fig 3. Graph of g (Case 2), for the dimension 1000, A* = 138.4307.
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Fig 4. Graph of g (Case 2), for the dimension 1500, A" = 210.1834.

6. Concluding Remarks

The following comments regarding the present study can be made:

The numerical results do not provide a complete comparison if we consider only
the number of iterations, because the complexity of each iteration is not the
same. The presentation of results also requires considering the computing time
related to each method. This additional information enables us to evaluate more
accurately the quality of each algorithm.

The regularization applied to problem DCA2 slightly improves the speed of the
computing algorithm. When applied to problem DCAL, it does not provide any
advantage.

The number of iterations for sub-gradient methods increases slightly with the
size of the problem. The computing time turns out to be increasing exponen-
tially.

Several numerical tests revealed that the best values of A and p for regular-
ization of DCA1 and DCA2 are \* = p* = 1, except for RDCA1 in Case 2,
where the best values of A and p are found to be A* =1 and p* such that
50 < < 150. A very slow convergence is obtained if 0 < p <1 or u > 150.

Numerous computer experiments show that DCAL is the best algorithm for
solving problem MDS, followed by its regularization algorithm RDCA1 and the
algorithm Duall. As regards the two other sub-gradient algorithms (DCA2 and
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RDCAZ2), there are no significant differences in relation to the computing time
or the number of iterations.

e The solutions obtained for Case 1 are global, since the optimal value is zero.
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