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GRADIENT OF THE DISCRETIZED ENERGY METHOD
AND DISCRETIZED CONTINUOUS GRADIENT
IN ELECTROMAGNETIC SHAPING SIMULATION

JeEaN R. ROCHE*

The goal of this paper is to study the differences between two approaches to
gradient computation in shape optimization. Simulation methods in shape op-
timization require computation of a local minimum of an energy function by
descent methods, which involves the gradient computation with respect to shape
perturbations. Two different approaches are mainly used in optimal shape com-
putations. The first one consists in computing a zero of a continuous gradient
approximation. The second one consists in computing a zero of the shape deriva-
tive of a discretized version of the cost function. In this paper, we study the
differences between the two approaches in electromagnetic shaping simulation.

1. Introduction

In (Henrot and Pierre, 1989) the authors consider an electromagnetic casting problem
in the two-dimensional case. The optimal shape is characterized as a local minimum
of an energy functional depending on the shape and the solution of the partial dif-
ferential equation. In (Novruzi and Roche, 1995; Pierre and Roche, 1991; 1993) we
have introduced a numerical shape optimization approach where we have computed a
critical point by numerical minimization of the cost function. We seek for an approx-
imate solution in a set of domains with piecewise linear boundary. This procedure
transforms the continuous problem into a finite-dimensional problem, where the op-
timization parameters are the nodes of the piecewise linear boundary representation.
Any classical numerical descent optimization technique necessitates the computation
of a good approximation of the shape gradient. Here two techniques can be used. The
first one, called the GCD method, consists in computing a continuous shape deriva-
tive and then evaluating a numerical approximation. The second one, called the GD
method, consists in computing the gradient of the numerical approximation of the
goal function. In (Novruzi and Roche, 1995; Pierre and Roche, 1991; 1993) we have
applied the first technique. In the present paper, we set up a purely discrete problem
and then we compare the two methods.

The relation between these two methods has been studied by Chenais (1992),
Lods (1992) and Masmoudi (1987) with the shape-optimization problem considered
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as a control problem. The conclusion is that the discretization of the continuous
gradient and the gradient of the discrete cost function are the same if we use an interior
approximation of the geometry and the solution of the elliptic problem. This is not
our case and we study the numerical difference in the results and the computational
complexity.

2. Variational Formulation
2.1. Problem Statement

The simplified model of the electromagnetic shaping problem studied here concerns
the case of a vertical column of liquid metal falling down into an electromagnetic
field created by vertical conductors. We assume that the frequency of the imposed
current is very high so that the magnetic field does not penetrate into the metal. In
other words, we neglect the skin effect. The electromagnetic forces are reduced to the
magnetic pressure acting on the interface.

We denote by w an open and bounded domain of class C? in R? and by 0
the complement of @. Let I' be the boundary of w, and denote by v; and wv,
the inward and outward normals to I, respectively. Under suitable assumptions
(Henrot and Pierre, 1989; Novruzi and Roche, 1995; Pierre and Roche, 1991; 1993),
the equilibrium configurations are given by a local critical point of the following total
energy:

Bw¢) = 5o [ Vel do+oP() M

where P(w) is the perimeter of w (i.e. the length of I' when T is regular enough,
for instance of class C?)

Plw) = /F dr (2)

dI' being the length measure of T

In (1) o is the surface tension of the liquid and ¢ is the solution of the problem:

—Ap(z) = mojo(z) in Q (3)
o(z) =0 on T (4)
lo(z)l = 0(1) as |z[ — o0 (5)
IVe(z)| = O(lz]™") as 2] - o0 (6)

where jo = (0,0,7) stands for the density current vector and uo is the vacuum
permeability. The support of j, is in the interior of (.
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Lemma 1. The exterior Dirichlet problem (3)-(6) has a unique solution in W3 (Q).
Proof. See (Kress, 1982). |

If we introduce the function:

ue)= 32 [ nlo—slin(e)dy+ S nlel | o) dy (7
which satisfies

—Au = pgjo in R (8)

lul = O(|z[™*) as |z| — o0 (9)

|Vu| = O(|2|™%) as |z] — o0 (10)

then the problem (3)—(6) is equivalent to:

o(z) =u(z) +v(z) inQ

where
~Av(z)=0 in 0 (11)
v(z) = —u(z) on T (12)
lv(z)] =0(1) as |z| > o0 (13)

Remark 1. Using Green’s formula and the boundary conditions on T' (4) and (12)
we have

2dz = — um__&,o(z) - u(z)jolz
[ az == [ a2 ar -y [ @i (14

where supp (jo) = {z : jo(z) # 0}. Then we can give a representation of the energy
useful for numerical calculations:

E(w,p) = 2—1#—0/F?,L(x)a—(g-l(iEZ dI‘+—;—/Supp(jo)u(a:)jo(w)da:-l—a/rdl" (15)

or

2 e L ] - [
E(w,p) 27 /Fu(x) 0 dr + 3 Supp(jo)u(w)jo(:c) dz +o0 1“dI‘ (16)
Remark 2. This problem or very similar ones have been considered by several
authors. We refer the reader to the following papers and to references therein for
physical analysis of the simplifying assumptions that the above model requires: see
Brancher et al. (1983), Brancher and Sero-Guillaume (1983), Coulaud and Henrot
(1994), Etay (1982), Gagnoud et al. (1986), Mestel (1982), Sero-Guillaume (1983),
Shercliff (1981), Sneyd and Moffatt (1982).
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The variational formulation of (1)-(6) consists in considering the equilibrium
domain w as a stationary point for the total energy (1), under the constraint that
the measure of w is given by Sp.

In (Henrot and Pierre, 1989; Pierre and Roche, 1991) it is shown that the equi-
librium relation is given on the boundary of w by

Llwﬁ +oH =A on T (17)
240

where H is the curvature of I' (seen from the metal), o is the surface tension of the
liquid and | - | denotes the euclidean norm. The constant A is an unknown of the
problem, and so is the boundary T.

To establish the equilibrium relation (17), we consider the following Lagrangian
operator:

L(w,p,A) = B(w, ) + A(meas (w) - So) (18)

In the next subsection, we introduce a framework to compute first shape derivatives
of L and establish necessary conditions.

2.2. Derivation

In order to introduce shape optimization techniques, we consider shape derivatives.
We can distinguish a few approaches to derivation with respect to the shape in
(Sokolowski and Zolesio, 1992).

Let V be a regular vector field (e.g. C'(R?,R?)) with compact support in an
open neighborhood of Q, and v be the outward normal to w. We consider domain
deformations defined by the mapping:

Ty(V) iz — z+tV(z) (19)
and we set Q; = T3(V)().
Next we denote by ¢, the solution to the exterior Dirichlet problem (3)-(6) when
we replace 2 by ;. Then the shape derivative of ¢ is given by
oy = e 2(@) — o(z)
¥ (z) = lim t

This derivative exists if € has a Lipchitz boundary. The shape derivative of ¢ is the
solution of the following elliptic exterior problem (Simon, 1980):

(20)

—-Ap'(z) =0 in
¢'(z) =-V(z) Vo(z) onT (21)
lo'(z)] = O(1) as |z| — oo

Given an integral operator F(w, ) which depends on the shape w and on the solution
@ of the boundary-value problem, we can define

d . E(wi, 1) — E(w,p)
—FE =1
dt (@i, 01) t=0 5% t

Then we can compute the shape derivatives of operators depending on w, I" and .

(22)
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If

Gl(wtawt)=/ g(we, 1) dz (23)

/ dtg( t,(Pt

Gl 1) = /r g2(Ts, 1) T (25)

then

d
EG 1(we, 1) o dz+/rg(w,<p)V-Ve dr (24)

and if

then we have

d
o dtQZ(Ft: <pt)

d
< Galwn, ) ar+ /F 02(T,)HV v, dT (26)

where ‘H is the curvature of T

Using the framework just introduced we have the following Lemma.

Lemma 2. If V € C*(R%,R?) with support in an open neighborhood of w, T' is of
class C?, and L is defined by (18), then we have

1 Op\2
t:o_iu_o/p{(aue) +aH+A}-V-VedF (27)

1 3y’ 3] Op
t=0 20 {“aue + aue“(z)aye (2)

- Hu(z)a—;(f—)} V. ve.dl'

d
EL(wt: Pt A)(V)

or

d
EL(“}M Pis A)(V)

+ /(0H+A)V e dD (28)
T

where H is the curvature of T seen from w.

Proof. If E(w, ) is given by (1), then

d —1
—L = — VoVe'de — [ (Ve)?*V - v dl
dt (wh(phA) t:O(V) 2“0 (Az pvy dz /1"( (P) ved )

+U/HV-VedF+A/V-uedF
by iy
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But

6 '
/W)ch’=/s0 d
Q T 61/6

since ¢’ is the solution of (21), and ¢ =0 to " by (4).

If E(w,y) is given by (15), using (26) and the fact that u' = 0, we obtain the
second representation of the shape derivative of the Lagrangian L. |

PpAp'dz =040
Q

Remark 3. The expression (27) is true only in the case of a regular boundary T.
In the case of a boundary which is only piecewise linear, the problem is radically
different. The first derivative of the energy term involving the magnetic field may not
exist at all. For the perimeter term we can give an expression for the first derivative
even in the case of a piecewise linear boundary, see (Sokolowski and Zolesio, 1992).

Remark 4. The equilibrium relation (17) implies the first-order neccessary condition:

T L{wy, i1, A) t:O(V) =0 for all V € C*(R?,R?) (29)
3. Discretized Approach
3.1. Discretized Problem

We construct numericaly a minimizing sequence of domains w*. More precisely, we
consider a sequence of domains determinated by their boundarles dw*. In the sequel,

I'* = gw* stands for a p1ecew1se linear Jordan curve with edges ¢ = [2F, 2} ],
i=1,...,n and 2§ , = zF. We introduce a parametric representation of each £;:
t
&(t) = (1 - )2F + 12k, = (a}(0),220)) (30)

Let L; = ((#})* + (¢ Z) )12 = ||2i41 — 2| be the length of the segment [z, 2:41] and
h=max{L;, i=1,.

At each iteration of the minimizing algorithm, the boundary T**! is obtained
by a local perturbation of I'*. To each vertex z¥ of I'* is associated a direction

ZF € R?. We construct a continuous piecewise linear function Z¥ : T* — R? such
that

ZF(28) = ZFsy, hi=1,...,n (31)

Then the perturbation vector field defined on T* is given by Z*(z) = 37, & ZF(x)
and the new surface T**! is constructed from I'* by

Fk+1 — {X — $+i§sz(x) = <I+i£zzzk>($)) 61.' S R; S Fk} (32)
i1 =1
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where £ = (£y,...,&,) are the unknowns which determine the evolution of the surface
I'*. In practice, the continuous minimization problem reduces to an n-dimensional
optimization problem depending on the solution of the exterior Dirichlet problem
(11)—(13).

For numerical purposes, we consider the following penalized energy:

r 2
E (W*, %) = B(w*, ) + 3 (meas (W*) - So) (33)

Then, using the notation just introduced, the penalized energy (33) has the following
form:

n

1 k
B (W, oF) = — (/O u(zi(t)) gi (wi(t))Lidt+JLi)

n 1 2
T .9 1 ]
+ 3 (Z/} @ (t)z; (¢)L; dt — SO) +/Qu(m)]0 dz (34)

or

-1
200 Jar

(Vorv )2 dz + o Z L;

=1

n 1 2
. (z | awatLia- So> (35)

The expression (34) is useful in numerical calculations because we suppose that we
know the value of the expression:

Er(wkaﬁak)

[ wla)io(o) da = [ ueis(e) s (36)
Qk

supp(Jjo)

which is independent of w.

Remark 5. For a piecewise linear approximation of I' we know that the error
between z € I'* and its projection on I is of order h?, where h is the maximum
length of the ; segments (Nedelec, 1977).

3.2. Exterior Dirichlet Problem

At each iteration, we have to solve the following exterior problem:
—Av(z) =0 in QF (37)
v(z) = —u(z) on dw* =T* (38)

lv(z)| = O(1) as |z| — oo (39)
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Following Kress (1982), an integral single layer representation of the solution
to (37)-(39) is given by
-1

o

oe) = 5 [ a)info—yldr +c (40)

with q(y) € H~Y/2(T'*) and

/ q(y)dl' =0 (41)
Tk
The contant c¢ is the value of v at the infinity. Then
v -1 dln|z — y| 1 .
= — _ ' dr —
. B =5, /r L) 5o dC+3e@) ifzel (42)

Here the unknown is the density ¢(y) and we compute it using the boundary con-
dition (38) in a weak formulation. We seek q(y) € H~1/2(I'*) as a solution of the
following problem:

e /F q(y)lnlx—y[dFdF+c/ g(z) dT = —/r u(z)g(z) dT (43)

2 Tk Tk

and
/F g(z)dr =0 (44)
for all g € H~Y/2(D).

In numerical calculations, we consider a piecewise constant approximation gy (x)
of ¢(z):

(@) = Y gelo) (45)
i=1

where e;(z) = 1if z € [2;,z;41] and zero elsewhere.
Then we obtain a linear system:

AG=b (46)
where

-1

a,-,j:——// In|z —y|dldl", 4,7=1,...,n (47)
27 Jode;

ai,]-:/ dr, j=Lnandi=n+1 (48)
2

aiij = aj,i (49)

Gn+int1 =0 (50)
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(@); =4 j=1,...,n (51)

gnt+1 =€ (52)

b; = —/ u(z)dl, i=1,n (53)
12

Remark 6. The linear system (46) is symmetric and dense, so we use a LDL!
decomposition of A. The numerical approximation of the normal derivative in (42)
is computed by a Gauss quadrature.

Remark 7. If ¢ is the solution of the system (43),(44) and ¢ is the solution of (46)
with piecewise constant approximation, we have the following error boundary (Ned-
elec, 1977):

= all /20y < Cubllgllars (54)
and
o _ o < Calg] (55)
- = 1
Y EY H—l/ﬁ(l")_ 27||qliF1(T)
Remark 8. The numerical computation of the coefficients a;j;, 4,7 = 1,...,n

requires I xn? floating-point operations (flops). The integer ! is the product of
K x K and the number of flops needed to compute a logarithm, where K is the
number of numerical-quadrature nodes. Computing the L!DL decomposition of the
matrix A requires n®/6 flops. Once the L!DL is known, the computation of ¢;,
i=1,...,n needs n? +n flops. Thus the computation of § demands (n%/6) + (I +
1) xn? +n flops.

Remark 9. The approximation of the normal derivative of dv/dv, at z; € I; is
given by

ook -1 ¢ X Oln|z; — zi(sm)| 1
G @) =50 Zl ¢ :Lzlpm . + 50 (56)

il

Accordingly, the computation of 89*(z;)/0v; requires O(n) floating-point opera-
tions.
3.3. Discretized Continuous Gradient

Using the shape-derivation techniques introduced in Section 2, we obtain the contin-
uous gradient of the penalized energy (33).
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Lemma 3. If V € C(R?,R?) with support in an open neighborhood of w, I' € C?
and E, is defined by (33), we have then:

d 1 Ap\2
— -, dT
=0 240 /1" ((81/6) +0H> Viorved

a;Er(wt) wt)(V)
+ r(meas (w) — SO) / V-v.dl' (57)
T

where H is the curvature of I’ seen from w.
Proof. This result may be proved in much the same way as Lemma 2. ]

The discretized continuous gradient (GCD, “Gradient Continu Discretisé” in
French) is a numerical approximation of (57) using the framework introduced in Sec-
tion 3.1. To compute the boundary integrals, we used an interior Gauss-Legendre
quadrature method with integration points z;(sn), i =1,...,n and m =1,..., K.
We denote by p., the associated weights.

Then for i =1,...,n the i-th term of the GCD approximation has the following
form:

(DEr(wk,np’“,A))i = Z ij( ) (z1(87))(Z5 - ve)(zi(s5)) Lu(s5)
£=1,1—1 j=1
(2 —zic1) (s —z) ) 5
o (Hzi = zi1l 21 = Zz‘“) %
+r Z EPJ e) (z1(s5))
£=i,1—1 j=1
K
x|S0 S piak(s)al(s;)Lu(s;) — So (58)
L=1i,1—1 3=1

The first term is a numerical approximation of the first term of (57). This means
that we make two approximations, namely the interpolation of the boundary and the
numerical estimation of Vy* - v,. The term

( (21 — 1) (Zig1 — %) ) Z@ (59)
llz: — Zi—lll lzit1 — 2l
is obtained by derivation of the perimeter of w*.
Having defined S(z) as the vector tangent to T'* at =, we introduce
S = im S(z) (60)
2€(zi,zi41)
and
St = lim S(z) (61)

z€(2i,2i4+1)
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Hence (Sokolowski and Zolesio, 1992):

it (o)

Since M is equal to zero for all [;, we have (58).

This approach is used in (Novruzi and Roche, 1995; Pierre and Roche, 1991;
1993) for direct simulation in electromagnetic shaping metals.

J

= | HZ;-vdl Z;-(§7 - §F 62
” v +; (5; ) (62)

t=0

Remark 10. The numerical computation of (DE,(wF,¢*, A)); after solution the
linear system (46) requires 2 x K x K x O(n) flops for each 4. Then the computation
of the gradient after computation of ¢* demands O(n?) operations. This implies
that the algorithm to compute the GCD approximation requires (n3/6) + O(n?)
floating-point operations. Clearly, this shows that the complexity of the algorithm is
dominated by the solution of the linear system(46), more precisely the factorization
step of the matrix A.

3.4. Gradient of the Discrete Cost Function

To compute the discrete gradient (GD, “Gradient Discret” in French) of the discrete
cost function approximation, we consider first a discrete approximation of the pe-
nalized energy (33) and then we shall seek differences when we perturbe z;(s) into
zi(8) + € Z,(s). We denote by D, this derivative.

The discrete version of the penalized cost function is given by the following
formula:

Bwh o) = 2305 Lt (o) 2
(W, = — " (xi(s;)) —F——Li(s;
v 2p0 = bi 77 e (zi(s5)) J
n K
+> Y pioLi(s;)
=1 j=1
2
r n K
+5 (Ziji??(Sj)wi(Sj)Li(sj)) -5
=1 5=1
s i)y (63)
supp(jo(¥))
where the coefficients p,, appearing in the formula are in fact the weights associat-
ed with the interior Gauss-Legendre integration points z;(sm), ¢ = 1,...,n, m =
..., K.
Set
op* ou* ov* _
—au—e(mi(sl)) = —é‘y‘e—(xi(sl)) + B0 (zi(s1)) (64)



556 J.R. Roche

and

aﬁk 1

311 IIJz 51) Z‘b Z pm !372 5¢) (Sm)le(sm) + 5‘11’ (65)
] 1 m=1
J#

The coefficients g; are the solutions to the linear system (46).

Formally, we can compute the following derivative:

Kk

_ -1 0
D, (B, (w*, ) = 2m)zzpm{ o (0 (21(6m)) ) G (01(m)) i)

i=1 m=1

—k
+ 0¥ (2i(sm)) Dy %)(zi(sm))@(sm)

=k

P
v, (wi(sm))Dn (Li(sm))}

n K
+2 D pmoDy(Li(sm))

=1 m=1

n K
+r {Z > 5 [ Dy (82 (5m )2t (5m)) Li(5m)

=1 m=1

QD

+ uF (zi(sm))

+ 62 (3m)2} (5m) Do (Li(5m) |
n K
x [(ZZ 51)) ]} (66)
where:
i) D, (uk (xl(sm))) = Vu* (2i(5m)) Zn (2:(5m))
11) DTI (Ll(sm)) = L;l(sm):b:f(sm) . D") (:i:i(sm))

i) D ( (m)a:l(sm)) =Dn(i?(3m)) (Sm)+$ (8m)Dy ( (m))
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Dl -1 X n
) Da( S (als0)) = 32 D Dala) 3 om g lils0) = 5(5m) s(sm)
N
+3D,(a)
R K In
=57 20@) 2 pnDa (5, lai(se) — wi(sm)l)
o
XLJ‘(Sm)
1 & K In o
T or Z (%)mzzlpma |zi(se) — 2 (sm)]
J#i
% Dy (Ly(sm)) (67)

The D,(g;)’s are the shape derivatives of ¢;, 7 =1,...,n. The vector D,(g) is then
the solution to the following linear system:

ADy(q) = Dy(b) — Dy(A)7 (68)
where
= t
D,(3) = (Dn(qj))jzly,_,n (69)
t
Dy() = (Dy(5))' oy (70)
and
DT?(A) = (Dn(a"i]‘))i,jzl,m,n (71)
Here A,b and ¢ are given by (46)—(50), (53) and (51), respectively.
To compute the matrix coefficients D,(ai;), ¢,7 = 1,...,n, we make use of the
expressions
1 K K
aij = E( DD Wy Wy In|i(5m,) — a:j(st)(LiLj> (72)
mi=1mgo=1
if ¢+ 7, and
1 2 2
= 2 _ 2 7
@i = (In L7 — 3)L3 (73)
Accordingly,

K K
Dy(aij) = ;}7;{ ST Wy wim, [Dn(ln|$i(5m1) — 2;(Sm,)|) L L;

mi1=1my=1

+ I |25 (8my ) = %5 (Smy )| Do (Li) Lj

+In|zi(sm, ) — mj(sm2)|LiDn(Lj)} } if i #j (74)
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and
1
Dy(ai) = 5 (LiDy,(L;))(In L — 2) (75)
Since
K
bi = —Zpku(wi(sk))Li, ) :1,...,71 and bn+1 =0 (76)
k=1
we have

Dn(bi) =

B ipm{D" (u(oi(sm)) ) Ls + u(zilsm)) Da(L) } (77)

In conclusion, we obtain the following result:

Theorem 1. Let Q be a domain with piecewise linear boundary T. If E.(w*,¢*)
is given by (63), then the shape derivative D, (E,(w*,¢*) is given by

D, (Er(wk’ ‘Pk)) =

-1 n K D ko agbk ' 5

%ggpm{ o (* (@i(sm))) o (@:(5)) Lilsm)
Sk

+ uk (mi(sm))Dn (aa%e) (mi(sm))Li(Sm)

a—k

+u*(zi(sm)) a—i (%i(5m)) Dy (Li(sm)) }

n K

+ 3 pmoDy(Li(sm))

i=1 m=1

n K
tr {Z > Pm [Dn (& (sm)2i (8m)) Li(sm)

i=1 m=1

+ &7 (3m)a} (sm) D (Li(m))

X [( Zj —1» ipli?(sl)m;(sl)) - S] } (78)

Remark 11. To compute the GD approximation, we have to solve the linear sys-

tem (68) for n = 1,.

..,n. As the matrix A was factorizated to solve the linear

system (46), the solution to the linear system (68) requires n? operations for each 7,
so that this step adds n® + O(n?) flops to the number of operations required to
compute the GD approximation. The number of floating point operations needed to
compute the GD approximation is n® + (n®/6) + O(n?).
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4. Numerical Algorithm

The numerical method consists in constructing a sequence of I'* piecewise linear
Jordan curves given by (30). At each iteration the vector {x+1 € R® is computed by
a Quasi-Newton optimization procedure such that:

Er(gk-i-l) .<_ Er(é—k) (79)

We propose the following scheme to evaluate the unknown optimal shape, as a
local minimum of (1):

Data. T°, r° the perturbation vector field Z and jo given.

For r = r* solve the unconstrained optimization problem:
(P,) min { £,(), £ € R" | (80)
for k=0,1,... until a convergence test is satisfied:

Step 0. Set k =0, Hy =the identity matrix.

Step 1. Compute the gradient of E,.
a) Solve the integral equations (42) and (43).
Here we have two possibilities:

bl) Compute the GCD of E,, or
b2) Compute the GD of the approximation of E,.

Step 2. Compute the descent direction using a BFGS approximation of the Hessian
of E,. For gk = DEr(Ek) — DET(ﬁkfl) and 6 = & — €x—1 compute Hiyy as

1+ gZHkék] 5]452 5;9ng]9 + Hkgkéz
Hpyw = Hp + [ - 81
i U AT gk (81)
Step 3. Compute
Ekt1 = —pi (Hk DE, (&) (82)
where pi is found by the Wolfe line-search procedure.
Step 4. Update the boundary T'* to obtain [*+1
D = (T4 Y (& hZi) () (83)
=1

Set k =k + 1. Return to Step 1.
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Remark 12. The first value 70 of the penalty parameter r must be chosen so that
the penalty term be of the same order as the gradient of E. Otherwise, numerical
instabilities may occur. After solving the unconstrained problem E,o, only two or
three steps in the evolution of the parameter r are needed to guarantee the con-
vergence, e.g. 7 = 10,100,1000. The number of steps k& to solve the unconstrained
problem (P.) depends on the test of convergence and 7. For the first r-iteration we
terminate the iteration when k = 20, but for the last r-iteration we stop when the
gradient norm stops decreasing.

Remark 13. In (Dennis and Schnabel, 1983) the authors remark that to get Hjy,,
from Hj requires O(n?) operations. Accordingly, the GCD method requires (n®/6)+
O(n?) flops at each iteration and the GD method requires 73 + (n3/6) + O(n?) flops
at each iteration. This implies that an iteration of the GD method requires n3 more
flops than one GCD iteration.

We also remark that the finite-difference approximation of the gradient, which
is classical in engineering, requires O(n*) operations because of the n numerical
resolutions of the exterior problem at each iteration.

5. Numerical Examples

In order to illustrate the differences between the two methods, we consider two ex-
amples described in (Pierre and Roche, 1991). We estimate the differences in the
L?-norm between the GD of the penalized cost function and the GCD of the pe-
nalized cost function at each iteration when we use the algorithm presented in the
previous section. In each example, the surface tension and the surface S, of the
liquid are given in addition to the distribution of the current j, which is of the form

jo = (Z apézp> I (84)

where I is a given intensity of the current, 6z,, p=1,...,m are the Dirac masses at
the points z, in the plane, and o, are adimensional coefficients which are directly
indicated on the figures.

In the first example, we consider four Dirac masses and a surface of S equal
to m. In Table 1, the first column gives the number of evaluations of the gradient,
while the second column gives the L2-norm of the discretized continuous gradient
and the L2-norm of the difference between the GCD and GD when we run the GCD
algorithm. In Table 2, we observe the evolution of the L?-norm of the GD and the
difference between the GCD and GD when we use the GD algorithm. Figures 1 and 2
show the corresponding plots.

In the second example, we consider twelve Dirac masses for ¢ = 0.5 and S = 4.
In Table 3, we observe the evolution of the GCD and the error with respect to the
GD. In Table 4, we show the evolution of the GD and the error with respect to the
GCD. The respective graphs are displayed in Figs. 3 and 4.
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Table 1. Example 1, n = 64, o = 0.005, GCD gradient.
[ iter. | [GCD)l2¢r) | IGCD = GDJlzery |

10 0.128e-02 0.363e-03
30 0.871e-03 0.353e-03
50 0.334e-03 0.272e-03
100 0.180e-03 0.200e-03
146 0.133e-03 0.206e-03

Table 2. Example 1, n = 64, ¢ = 0.005, GD gradient.

[iter. [ 1GDllzzry [ IGCD ~ GDllz2qr |

10 0.154e-02 0.364e-03
30 0.140e-03 0.254e-03
50 0.981e-04 0.210e-03
70 0.869e-04 0.198e-03
100 0.787e-04 0.198e-03
181 0.742e-04 0.206e-03

Table 3. Example 2, n = 64, ¢ = 0.5, GCD.

[ iter. [ IGCDl 2y | IGCD = GDJlper) |

10 0.285 0.777e-02
30 0.136 0.513e-02
50 0.671e-01 0.443e-02
70 0.312e-01 0.414e-02
100 0.416e-02 0.340e-03
200 0.169e-03 0.199e-02
321 0.156e-05 0.195e-02

Table 4. Example 2, n = 64, ¢ = 0.5, GD.

[ iter. | IGDlz2(ry | IGCD — GDllg2(ry |

10 0.288 0.845e-02
30 0.753e-01 0.635e-02
50 0.361e-01 0.578e-02
70 0.148e-02 0.359e-02
100 0.541e-03 0.265e-02
200 0.630e-04 0.219e-02
300 0.656e-05 0.219e-02
415 0.853e-06 0.219e-02
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In Tables 1-4 we observe that the method using the GD has a rate of convergence
greater than that of methods using the GCD. The two exemples presented show that
the GD allows us to compute a better approximation of the solution of the discretized
Euler condition. This is a natural conclusion, since the GCD is only an approximation
of the GD. But the local optimal shapes obtained by the two methods are similar and
the differences do not justify the extra floating-point operations required to compute
the GD.

In conclusion, we think that the GCD method to compute an approximation of
the gradient is more efficient because it gives accurate results at a low floating-point
operation cost.
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