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GENETIC ALGORITHMS AND HOPFIELD
NEURAL NETWORKS FOR SOLVING
COMBINATORIAL PROBLEMS!

JERzY BALICKI*, ANDRZEJ] STATECZNY*
BoGDAN ZAK*

In this paper, a Hopfield neural-network population for solving NP-hard mul-
tiobjective optimization problems with zero-one decision variables is proposed.
The initial states of the Hopfield models in this population are modified by a ge-
netic algorithm and the energy functions are constructed by using a non-negative
convex combination method. Accordingly, optimization neural networks for the
related optimization problem are designed. Simulation results are also presented
to illustrate the effectiveness of the approach.

1. Introduction

Genetic algorithms can be used to solve many optimization problems. Holland (1975)
developed this approach and its theoretical foundations. In recent years a lively in-
terest has been observed in the application of genetic algorithms to combinatorial
optimization problems (Bac and Perov, 1993; Reeves, 1995). Simultaneously, Tank
and Hopfield (1986) considered the neural approach to solving the Travelling Sales-
man Problem (TSP). Moreover, Sun and Fu (1993) proposed a hybrid neural-network
model consisting of multiprocessor systems for finding solutions of TSP and discover-
ing solutions to the Hamiltonian Cycle. A review of applications of neural networks
can be found in (Korbicz et al, 1994). Some optimization networks for the related
optimization problems are considered in (Abe, 1996; Kaznachey and Jagota, 1997).

In this paper, two optimization problems of resource allocation are formulated
as multiobjective optimization problems (Ameljaficzyk, 1986) with zero-one decision
variables. In the first problem, Pareto-optimal solutions are generated. In the other
problem, compromise solutions with parameter p = 1 are obtained. For solving these
problems, Hopfleld artificial neural networks (HANN) are designed. Energy functions
are constructed for the related multiobjective optimization problems. Formulae to
determine the values of the external inputs and synaptic weights are presented. The
HANN for finding Pareto-suboptimal solutions (PHANN) is thus obtained. Similar-
ly, the neural network called CIHANN which gives subcompromise solutions at the
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equilibrium points for p = 1 is proposed. However, the neural approach to solve
optimization problems has a serious disadvantage, consisting in the fact that at the
equilibrium points only local minima of the energy function can often be attained.
The resulted solution can even be non-feasible. To avoid this drawback, a genetic
algorithm using the designed HANN is proposed.

2. A Standard Genetic-Neural Algorithm SGNA

Genetic algorithms can be used in solving some NP-hard optimization problems. Al-
though there are many versions of the basic genetic algorithm (Bac and Perov, 1993;
Goldberg and Lingle, 1985), the underlying mechanism operates on a population of
individuals. The most important is a suitable representation of chromosomes which
in optimization problems represent the solutions. If the solutions are represented by
binary numbers, the standard genetic algorithm can be used. For real numbers in
the solution representation, some coded binary numbers are taken in most cases. If
real numbers are directly processed by the algorithm, then this algorithm performs
evolutionary computations (Holland, 1975).

Moreover, the crossover operator with a correct value of the crossover probability
pe has to be chosen. Apart from the standard crossover operator, Goldberg and Lingle
(1985) suggested a crossover operator called the “partially-mapped crossover”, and
Bac and Perov (1993) proposed a crossover operator created by the non-Abel group
theory.

During selection of parents, the fitness function plays the main role. For max-
imization problems without constraints, the objective function f(z) is the fitness
function F(z). If the objective function should be minimized, then the fitness func-
tion can be chosen as F(xz) = —f(x). If there are constraints, then the optimization
problem should be converted into an unconstrained problem by one of the well-known
methods for one-criterion problems. For multicriteria optimization problems one of
the scalarization method (Ameljaficzyk, 1986) can be used to transform it into an op-
timization problem with one criterion. In particular, the non-negative convex combi-
nation method (Balicki and Kitowski, 1996) or the hierarchical method (Ameljaniczyk,
1986) can be applied.

Reproduction of offspring depends on the values of the fitness-function for chro-
mosomes (solutions). If a value of the fitness function is larger, then the chance of
selection for a given solution is greater. Some copies of the solution are cloned ac-
cording to the fitness function and random selection of parents is carried out. Then
the crossover of parent chromosomes with a high probability p. is made. From two
solutions two new solutions are created by exchanging parts of chromosomes at a
randomly chosen point.

After the reproduction and the parent crossover, a mutation with a low probabil-
ity pm for each gene (one bit in the binary representation of the solution) is applied.
According to the decrease in the mutation probability p.,, the influence of mutation
on the chromosomes decreases, too. But its too small value causes that optimal or
suboptimal solutions cannot be found. Hence a suitable value of the mutation proba-
bility is fixed by the simulated trial-and-error method. Reproduction, crossover, and
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mutation are repeated until a stopping condition is satisfied. The stopping condition
is related to the maximal number or to the “patient” condition, where after a given
number of iterations the algorithm is stopped if there is no improvement in the fitness
function sense.

Genetic algorithms and evolutionary computations have the same disadvantage.
Namely, they fail to find optimal solutions in many cases. Neural networks have
difficulties when they start from bad initial points. But from another point of view,
genetic algorithms and neural networks have been successfully applied for several
optimization problems. This is the reason why a combination of genetic algorithms
and neural networks can give additional possibilities to reach “good” solutions. It is
necessary to take advantage of them to a great extent.

Standard genetic algorithms do not require many iterations during one reproduc-
tion, crossover, and mutation for the whole population of solutions. However, Hopfield
analog networks demand O(knM?) iterations to obtain an equilibrium point, where
k denotes the number of increases in the penalty parameter, n is the number of
network-state updates, and M stands for the number of decision variables. For a
parallel implementation of the Hopfield model, the complexity is O(kn).

It is possible to combine genetic algorithms and neural networks in several ways.
First of all, neural networks prepared to optimize of a problem can be used as solvers
for local optimization in each basic step of the standard genetic algorithm. In such
an approach, the genetic algorithm usually operates on the initial activation level of
Hopfield networks, since for given synaptic weights and external inputs the initial
activation level has a strong influence on the solution quality. This algorithm can
be called the standard genetic-neural algorithm SGNA. In Fig. 1 the diagram of an
SGNA is presented. In the SGNA the crossover operator picks up K randomly
chosen pairs of HANN from the network population to obtain K pairs of offspring
by the Goldberg operator (Goldberg and Lingle, 1985). The termination condition
© < I is satisfied when during I trials the maximum of the fitness function from all
chromosomes in the first population cannot be increased.

If the next population has a larger maximal fitness value, then it is labelled with
the number 7 = 1. Experimental results confirm the usefulness of genetic algorithms
in solving combinatorial optimization problems, and especially multiobjective opti-
mization problems. The main disadvantage of SGNA is the fact that we have to know
the parameters of the HANN prepared to solve optimization problems.

3. Multicriteria Optimization Problem with Zero-One Decision
Variables

Let us consider the following example of the multiobjective optimization problem
(X, F, P) consisting in designing Pareto-optimal allocations of program modules and
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Fig. 1. A diagram of a standard genetic-neural algorithm SGNA.
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processor types:

o X —a feasible set,

X= {z e B2V+J ' T = (T1lse s Tuis - BV By, e Ty, o, T )
2 J
S ai=1Lv=1V, > o} =1,i=13}
i=1 j=1
e [ —a vector performance index,
F:X >R, F()=[F(@), B@)]", zeX
2 J '
Fi(z) =) ) xal;
=1 j=1
J VvV 2 vV VvV 2
FQ(.T) = Zzztviwvizg +Z Ztvuxvi(l _mui) (1)
j=1lv=11i=1 v=1u=1 i=1
e P —the Pareto relationship,
where B = {0,1}, V is the number of program modules m;,...,m,,...,my, J is
the number of processor types y,...,7;,...,ms, I stands for the number of pro-

cessing nodes wy,ws, I =2,

.
1 if program module m, is
Tyi = < assigned to processing node w;, ¢ =1,V,s=1,1,

0 otherwise

1 if processor type m; is
zT. = { assigned to processing node w;, ;=1,1, j=1,J,

0 otherwise

\

Fy is the cost of allocated processors, x; denotes the cost of processor type m;, F;
is the performance time for allocated program modules, t,; stands for the processing
time of module m, on processor m;, 7,, denotes the communication time between
program modules m, and m, (v < u) which are processed on different processors,
v,u=1,V.

In the constraint Zle Ty =1, v =1,V, the decision variable z,; is equal to 1
if the program module m, is assigned to the processing node w;. We assume that
the number of processing nodes is equal to 2. The above constraint can be written
in a more general form E:f:l Tm = L, where z,, is a typical binary variable, and it
should be satisfied for M > L. This means that only L variables can be equal to 1,
and the other M — L variables should equal 0. There are no preferences as to which
decision variables should be taken. This constraint is related to the requirement that

the program modules be assigned to the node ws, or to the node ws.
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The general form Efr{:l Zm = L includes several constraints from the collection
of combinatorial problems. For instance, in the Travelling-Salesman Problem (Aiyer
et al., 1990) during L steps (L is the number of all cities) a salesman should pass
through each city ¢; exactly once, which can be written down as Zle z;; = 1 for
k = 1,L, where z;; is equal to 1 if in the k-th step the salesman is in the city c;.
The trip of the salesman is characterized by a bounded-time condition. He should
make exactly L steps, and if the constraints Zﬁ:l T, = 1 are satisfied for k=1, L,
then that requirement is met, too.

We deal with a similar situation in the vehicle routing problem VRP (Reeves,
1995), where V' vehicles make deliveries to C' customers. In VRP we have to allocate
customers to vehicles and find the order in which each vehicle visits its customers so
as to minimize the global distance covered by the vehicles. Because each customer has
to be assigned to exactly one vehicle (the vehicle has enough capacity to deliver units
of resource to one customer), there are the constraints 23:1 Tye =1 for ¢ =1,C,
where z,. is equal to 1 if the w-th vehicle delivers units to the c-th customer.

Similar constraints are in the 0—1 knapsack problem, the set covering problem,
or the standard assignment problem (Reeves, 1995). They can be expressed in the
general form ng:l Zyi = L. To satisfy them and other sorts of constraints, Hop-
field neural networks HANN can be used (Tank and Hopfield, 1986). Moreover, for
minimization of a linear function or a quasi-quadratic function with binary variables

Hopfield networks can also be useful.

4. Hopfield Neural Networks

John Hopfield proposed a special case of artificial recurrent neural networks for several
differentiable applications, e.g. optimization, association memory, or A/C converters
(Tank and Hopfield, 1986). A review can be found in (Tadeusiewicz, 1993). Hopfield
networks are still criticized (Aiyer et al., 1990; Lillo et al., 1991) or developed success-
fully (Balicki and Kitowski, 1996; Cieplifiski and Jedrzejek, 1994). From the former
point of view, they are not flexible enough for several optimization problems, e.g.
genetic algorithms, evolutionary methods, tabu search, or simulated annealing. But,
from the latter point of view, they can be applied for solving some cases of optimiza-
tion problems. In particular, problems with a linear or a quasi-quadratic objective
function and constraints with binary decision variables are preferred.

Decision problems which have a known polynomial algorithm for finding the de-
cision ‘yes’ or ‘no’ are said to be of class P. If some decision problems have a known
non-deterministic polynomial algorithm for finding the decision ‘yes’ or ‘no’, then they
are said to be of class NP. The decision version of a problem and the optimization
version of the same problem are closely related, since it is intuitively obvious that an
algorithm for the decision version of a problem can be employed to solve its optimiza-
tion version. But there are decision versions which are of class NP and optimization
versions which are not in the class NP. Let us consider a tree-search algorithm where
all branches can be searched simultaneously. If the maximum time taken by a branch
is polynomially bounded, then the problem is of class NP. If, in addition, a problem P
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is such that there is another problem in the class NP which is polynomially trans-
formable to P, then P is NP-hard (Reeves, 1995). If an NP-hard problem P belongs to
the class NP, then this problem is NP-complete. Some combinatorial problems which
were solved by Hopfield network are NP-hard. The class of NP-hard problems is now
known to be quite large. The list of NP-hard problems is contained in (Reeves, 1995),
and is periodically updated in the Journal of Algorithms.

The main advantage of the HANN is parallel processing in neurons. The neu-
rons process simultaneously signals obtained from other neurons. This cooperation is
ordered to minimize computational energy of the whole network. When the network
attains a local minimum of the energy function, then it stops. A Hopfield brain be-
haves similarly to a lazy man who wants to be at rest. It prefers to do nothing if the
network energy could increase. '

In analog models of HANN the neural activation states are changed from the
initial state u(to) = [u1(to),.--,um(to),--.,un(to)]’ according to the ordinary dif-
ferential equations

M
du,, Um o
—dt—:—%:-f-r;wnmgn(un)-i—fm, m=1M (2)

where M is the number of neurons, u,, denotes the global activation level of the
m-th neuron, m = 1, M, 7,, stands for the positive passive coefficient for the neuron
with the output z,,, wnm is the synaptic weight from z, to z,,, and I,, denotes
the external input to the neuron z,.

The matrix of synaptic weights is symmetric. MoreoveE,_iu_mm =0form=1,M.
At the equilibrium points of the HANN (du,/dt =0, m = 1, M or lim;—, e du,,/dt =
0,m =T, M) we have Um/fm = Sobr, Wamgn(tn) + Im, m =T, M.

For hardware implementation of HANN, the following well-known Hopfield mo-
tion equation is more useful:

du U M
C'm“_ﬁ = —T]—m + Z{U\nmgn(un) + Im; m
m n=1

1l
&

dt (3)

where R,, and C,, are positive coefficients such that
M = RmCm for m=1,M, wWnm = CrBnm, Im=Cmln

Coefficients R,, and C,, have a physical meaning in the electrical model of the
HANN (Tank and Hopfield, 1986): C,, is the capacity of an input capacitor and R,,
denotes the parallel combination of p; (the input resistor of the m-th neuron) and
R,.» (the resistor in the synaptic connection n-m), i.e.

1 1+M1
Rmn

Rn  pm =

This formula can be transformed as follows:
du M ~ —
Tm—d?- = —um+2wnmgn(un) + I, m

n=1

I
UI—‘
<
&
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where 7, = W = RnCr for m =1, M, Wom = RnWnm = TmWnm, Im = Rmf =
TmIm. Here 7, = nm denotes either a passive coefficient or the adaptive time con-
stant.

The activation function in a neuron can be modelled in the form
1 _

G (Um) = 3 [1 + tanh(cu,)], n=1,M (5)

where ., is the gain coefficient in the m-th neuron (am, > g > 0 for m =1, M).

Hopfield found a Lyapunov function for the differential system (3):

M M

Z Z wnmgn(un)gm(um)

n=1m=1

Eu)=-

DN =

M a9 (um)

=Y Ingmlum) + 3 [ 7 (6n) d6n (©)

m=1 m:lO

where g;,! is an inverse of the activation function gm, %m = g (Tm).

The basic property of the analog HANN is the fact that if gain coefficients oy,
m = 1,M are large enough, then the equilibrium points of (3) can usually find
a local minimum of the energy function E. Moreover, z,, € {0 +¢, 1 —¢} for
m = 1, M, where ¢ decreases to zero according to increasing the gain coefficient.
Hopfield networks navigate towards equilibrium points while decreasing the energy
function. Because at an equilibrium point it is not possible to decrease the energy
function, the HANN finds either a local minimum of its energy function or its saddle
point, where the energy gradient is equal to zero. This results from the proof that
the Hopfield energy function is a Lyapunov function.

The above-mentioned standard model of the HANN can be developed for solving
optimization problems. A general method transforms the optimization problem into
an energy function. This means that optimization problems with constraints are
reduced to optimization problems without constraints by the penalty-function method
or the Lagrange-multiplier method, and then these functions are compared with the
Hopfield energy function to determine the synaptic weights and external inputs in the
HANN. Since the solutions obtained in these HANNS are related to the initial states
of the activation levels, genetic processing is used to get the best solutions.

5. Uniform Hopfield Networks for Satisfying of Linear
Constraints

Uniform Hopfield networks UHANN play an important role in satisfaction of the
special class of constraints expressed in a general form as Ele Ty = L. For the
uniform Hopfield networks all main parameters have the same value for each neuron,
ie. Wam = w for n,m € 1, M, I, = I for m = 1.M, 5, = n for m = 1, M,
Om =0 for m=1,M.
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To solve numerically the motion equations of the UHANN, the Euler method can

be used. Then the following iterative procedure to find the active levels at the next
moment is applied:

M
Um (ty + At)= (1 - ?t) U (tk) + wAtZgn(un(tn)) +IAt for m=1,M (7)

n=1
n#m

where At is the integration step length and ¢; stands for the time of the k-th
iteration, £ =0,1,2

In the Euler method the integration step At should be taken as small as pos-
sible to avoid errors related to the approximation of differential equations by several
partitions. However, if At is too small, the number of iterations is excessively large

For a uniform Hopfield network the main part of the energy function called the

basic energy function, where the influence of synaptic weights and external inputs is
important, can be expressed as follows:

M(S

M M M
Z Z (wn)gm (um) + 1 Z G (Um)

(8)
m=1

If in the UHANN there is only one neuron with the external input equal to'1, then

the basic energy function is the activation function multiplied by —1 (Fig. 2). It
decreases if the activation level increases

E* 0 T " N
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04l \
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!

\
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\ =1
a=4.26

o7t
-08f \
09

4\
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Fig. 2. The basic energy function for one neuron with external input
equal to 1 and gain coefficient equal to 4.26.

Weset g~!%(z) = —g~1(z) if g7}(z) < 0 and g~'*+(z) = g (z) if g~Y(z) >0
In the analog UHANN the additional term E%(u) = S2M_ fom(vm) =1

m=1 Jo m (§m) dém of
the energy function has to be considered. For M =1 and a positive value of the gain

coefficient, E*(u) = [/ () g7 1(€)d¢ can be interpreted as the area under the curve
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wt = g7t (z) (Fig. 2). If the output is changed from 0 to 1, then the activation
energy can be expressed in the form

g(u)=1 g(u)=0.5 g(u)=1
E¥(u) = [ g7 (¢)d¢ = g OdE+ [ gTHE)d¢
[ s [ o
9(u)=0.5 g(u)=1
2 [ gioa=2 [ H©a
0 0.5

Hence, if the activation level of the neuron u has a large value (positive or negative),
the neural output x is close to 0 or 1, and its own activation energy is large. But if
v =0 and z = g(u) = 0.5, then the neural activation energy attains its minimum.
That is why a single neuron without any external inputs and synaptic connections
gets = = 0.5 at its equilibrium point, although its starting activation level u has a
large absolute value. A single separate neuron tends to a calm state, where u® = 0
and z¢ = 0.5. If an external input I is added and I is constant during a neuron’s
relaxation, then the calm state for this neuron is w® = I and z° = g(I). Then the
external input I has the main influence on the calm state which is an equilibrium
point, too. The same result can be produced from the motion equation analysis.

In neural optimization the designed networks should avoid saddle points (false
attractors) of the energy function, because even feasible solutions cannot be then ob-
tained in some cases. In Fig. 4 a saddle point of the basic energy function is presented.
Only two neurons are taken. Synaptic weights are equal to —2 and external inputs
are equal to 1. For this case the basic energy function has two global minimizers and
one saddle point. If the UHANN starts from an initial state, then after relaxation it
reaches an equilibrium point. If this equilibrium point is a global minimizer of the
basic energy function, then the optimal solution of the optimization problem can be
found. But if at an equilibrium point of motion equations a saddle point of the basic
energy function is reached, then z; = 2 = 0.5 and formal constraints z;,z5{0,1}
are not satisfied. Hence the UHANN for optimization should avoid saddle points.
In (Balicki and Kitowski, 1996) the following result to settle this problem has been
stated.

g-1+(x)3

25

2

15f 8w
: 1
E%W)= [¢'€)dE=4+B
1 0
05[
i I l i i i x
% 02 04 06 08 1

Fig. 3. An activation energy for a single neuron.
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Fig. 4. The basic energy function.

Theorem 1. Assume that At — 0 and w < 0. If the initial activation levels
u1(to), .., um(to), .., up(te) in a uniform analog Hopfield network have different
values um(to) # un(to), m = 1, M, n = T,M\{m} and the Buler procedure (7) to
find equilibrium points is used, then the activation levels during the convergence to
the equilibrium points have different values.

Proof. If the initial activation levels uy(to), ..., Um(to),...,up(ts) in a uniform
analog Hopfield network have different values wum(to) # un(ty), m = 1,M, n =
1, M\{m} and the Euler procedure (7) is used to find equilibrium points, then the
activation levels after the first iteration k =1 at to + At (At — 0) are calculated as
follows:

Um (bt + At) = (1 - éf) U (Tr) + WAL % Tm(ty) +IAt, m=1M
! =
Let us change the indices of neurons to hold the decreasing adjustment:
ur(to) > -+ > um(to) > -+ > ups(to)
Then
z1(to) > -+ > zm(to) > -+ > zar(to)

and

M M M
D zalte) <o < Tnto) <... < D @alto)

= n=
# n#Zm ntM

33
==

If wmn =w <0 for n#m, and n,m =1, M, then for t, =ty + At

uy(to + At) > - > um(to + At) > - > up(to + At)
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Since at the moment ¢; = ty + At the decreasing adjustment of activation levels is
kept, similarly at ¢ = t; + At the decreasing adjustment of activation levels holds,
too. At any time t; during the convergence to equilibrium points the activation
levels have different values ui(tg) > -+« > um(tx) > -+ > unp(te) which completes
the proof. ]

Therefore, if uy(to) = ua(to), then z1(to) = z2(to) in the UHANN with two
neurons (Fig. 4). Since Hopfield networks minimize their energy functions according
to the steepest-descent method, the state trajectory converges to a saddle point from
each balanced starting point (c,c), where ¢ € (0,1). In Fig. 4 the unfeasible area
in zero-one optimization for initial states of the UHANN is indicated. Because in
combinatorial optimization problems the solutions should be situated at a vertex of
the hypercube [0,1]™, different values of the initial activation levels in the UHANN
are preferred: um(to) # un(to), m=1,M, n =1, M\{m}.

To satisfy the constraint Zfr{:l z,, = L, a special case of the UHANN can be
used according to the theorem below. This theorem states the main parameters of
the UHANN such as the number of neurons, synaptic wages, and external inputs.

Theorem 2. (Balicki and Kitowski, 1996) If E%ﬂ Tm = L for z,, € {0,1}, I <
M, L =0,1,2,...,M, and a uniform analog Hopfield network has the following
parameters:

wmj:w:_25 maj:1:M> m'_/"J
(9)

In=I=2L-1, m=1L,M

where M is the number of neurons, then

where
w M M M
E(z) = _EZ Z a:n:cm—IZ:Bm
n=1m=1 m=1

is the basic energy function of this UHANN, and

M , M
h(z) = (L - E zm) + Z T (1 = Tpn)
m=1

m=1
is the penalty function for the constraints.

The UHANN with synaptic weights equal to —2 and non-negative external inputs
calculated according to the rule I = 2L — 1 can be called UHANN/L/M, because for
their design the pair (L, M) has to be known, only. Consequently, the signals from
other neurons are converted and their absolute values are increased. Moreover, each
neuron has its non-negative constant input which forces the activation level u* = I
at an equilibrium point.
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5.1. Minimization of the Basic Energy Function in UHANN/L/M

In Fig.5 a minimization of the basic energy function in the UHANN/1/50 is
presented. The trajectory of the energy decreasing versus the iteration number
of the Fuler method is considered. The following parameters are taken: wu(to) =
[50,49,48,...,3,2,1]7, a =10, n = 1, At = 0.01, Kstop, i.€. the stopping condition
E(tx) <€, € <0.001.

2500 7 THE BASIC ENERGY FUNCTION E

(2401
2000 T
1500 T
1000 1

500 T

0876 _ (183;0.001)

0 + + ? t + T
0 25 50 75 100 125 150 175 200

Fig. 5. Minimization of an energy function.

The considered equation is satisfied when the value of the basic enerﬁy function
does not exceed a small threshold e. Then E(z) = —(1/2) Ziil Zﬁz:l TnTm —
IE%zl ZTm < ¢ and h(z) = (L — fozl Tm)? + fozl Zm(l —2m) < e Iz, is
equal to 0 or 1 with a smaller accuracy than ¢, then (L — an‘le Tm)? < e+ Me.

Thus the general constraint E'ﬁ{:l Zm = L is satisfied with an accuracy no worse
than € + Me;.

For the parameters of the UHANN/L/M the basic energy function is minimized
from the initial value E(tp) = 2401 to the value E(tx) < € (¢ = 0.1) during 146
iterations. For a smaller value (¢ = 0.001) a larger number of iterations (183) is
needed. In Fig. 5 we can see that the trajectory of the basic energy function decreases
exponentially. At the beginning it decreases very fast, and then it approaches zero
very slowly.

In Fig. 6 the trajectories of the chosen activation levels u;(t) and ug(t) during
the energy minimization are presented. The activation levels of 49 neurons decrease
from the given initial values to the values —1 < u(t) < —1+ ¢ at an equilibrium
point.

An adequate trajectory for these neurons is ug(t) which tends to n = —1. If
the initial values are greater than —1, the activation levels decrease. If the activation
levels are less than —1, the activation levels increase. Only the first neuron with the
greatest initial activation level has a distinct sort of trajectory wu,(t). After it attains

its minimizer at iterations 137, 138, and 139, its activation level increases to n =1
(Fig. 7).
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Fig. 6. Trajectories of the two first neurons in the UHNN/1/50:
a) activation levels and b) neural outputs.
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Fig. 7. A competition of two neurons on the minimizer’s trajecto-

ry of the activation level for the first neuron in the network

UHNN/1/50.

The neurons in the UHANN/L/M with feasible parameters compete, because
they try to get final states to minimize the energy function. A neuron can obtain
from given initial states either the state ‘off’ (z = 0) or the state ‘on’ (z = 1). For
the first case the individual preferences argue with the whole network’s preferences,

and at iteration 140 the gradient of the activation level changes its sign to become 1
at iteration 97.
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5.2. Initial States

There are two basic problems related to the minimization of the basic energy function
of networks UHANN/L/M. Firstly, parameters for finding a global minimizer of the
energy function have to be found. Secondly, the network UHANN/L/M should fix
this minimizer as soon as possible, e.g. it needs a smallest number of iterations Kmax.

An initial state with distinguished activation levels guarantees for feasible values
of the other network parameters that this network finds an equilibrium point with
a local or a global minimizer. The shorter the distance to an equilibrium point, the
faster the approach to it is (see Table 1).

Table 1. The influence of the initial state u(to) on the number of iterations
Kmax for finding equilibrium points, where o = 10, At = 0.01,
€< 0.001, E(tx) <e, n=1.

No Initial sta.te‘ fOI‘ElE. u(to) Koo
u;i(to) for e =1, M
1 1000 + M —i+1 [1050, 1049, .. ., 1002, 1001]" 320
2 100+ M —i+1 [150, 149, ...,102,101]7 206
3 M—-i+1 [50,49,...,2,1)7 183
4 M-it+1-% [25,24,23,...,~23, —24]T 173
5 (M —i4+1- %)/10 [2.5,2.4,2.3,...,~2.3,—2.4]T 75
6 (M —i4+1- %—)/100 [0.25,0.24,0.23,...,~0.23, —0.24]" | 149
7 1 2D [1,0.96,0.92,...,—0.92, —0.96]" 73
8 1+ (M —i41- %)/100 [1.25, —0.76, —0.75, ..., —1.23, —1.24]7 1
for k£ neurons
-1+ (M—i—i—l— -1‘,})/100
for M — k neurons

If the largest interval for the initial state generation is used, then the maximal
number of iterations for several formulae does not exceed 350 iterations. During
numerical experiments real numbers from the EXTENDED data type in Turbo Pascal
were used. This sensitivity with respect to the initial states is very similar to the same
property of gradient optimization techniques.

5.3. The Gain Coefficient in the Activation Function

The gain coefficient « in the activation function exerts an important influence on the
convergence of the UHANN/L/M to an equilibrium point. We have tanh(oum,) =



582 J. Balicki, A. Stateczny and B. Zak

(exum — emum)/(e*¥m 4 e~*¥m). The activation function gm(um) = (1/2)[1 +
tanh(amu,)], m = 1, M has the domain (—00,00) and range (0,1). It is continuous,
odd, and increasing. Its graph z = g¢(u) has two asymptotes z = 0 and z = 1.
Owing to an increase in the gain coefficient, the shape of the activation function is
very similar to the unit-step function. The relationship between the gain coefficients
and the range of the visible value period [—ug,ug] can be written as

ugr(e, 1)

Ugr = — (10)

where wug(¢,1) is the activation level such that for & =1 one has £ = g(ug(e, 1)).

In practical calculations the gain coefficients take on very large values: 10000
(Cieplifiski and Jedrzejek, 1994) or 20000 (Hertz et al., 1993). But for the UHNN/1/5
with the stopping criterion ksiop such that E(t;) < e = 0.001 it is enough to take
a > ag = 4.26. When the gain coefficient increases, the number K,.x for finding
equilibrium points decreases. For instance, for the UHNN/1/5 with o = 4.26
we have Knj.x = 424. If o = 5, then Kp.x = 229. Similarly, for @ = 10 we
have Kmax = 140. If the gain coefficient is still increased, then an increase in the
convergence is not so large, because for a = 100 one has K., = 101, and for
o = 1000 we get Kpyax = 98. If the gain coefficient is greater than 100, then it does
not influence the speed of convergence to equilibrium points. However, if a < ay,
then networks UHANN/L/M cannot find the minimizers of the energy function.

5.4. The Length of the Integration Step

A recursive procedure of solving differential equations can be written in the form

m(te + At) = up (ty) — At( —wz (un(ts)) I),m:l,_M (11)

'n.:,ﬁm

If the integration step At increases, then Kpna.x decreases in UHANN/L/M. For
instance, for At = 0.001 there is Kyax = 1324, for At = 0.01 we have Kpnax = 132,
and for At = 0.1 we get Kmax = 13. In particular, for At = 0.5, we get the fastest
performance, i.e. Kp.x = 3. However, for At > 0.5 this network oscillates between
two states when none of the minimizers of the basic energy function is obtained.
Consequently, for a given value of the adaptive time parameter 7, an integration step
At should be determined.

If the stopping criterion is ksop such that E(tx) < e for € > 0, then the number
of iterations Kax(E(t:) < €) increases as the accuracy increases (¢ decreases). But,
if the stopping criterion is formulated as the condition that all neural outputs reach 0
or 1 with a given accuracy, then the number of iterations is larger, but still close
to Kmax(E(tx) < €), because from the formula for the basic energy we can find a
relationship between the accuracy of the outputs and the energy. But, to obtain the
same accuracy of neural activation levels, a few times larger number of iterations is
required.
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5.5. The Passive Coefficient 7

Incorrect values of the passive coefficient 7 can cause that a network UHANN/L/M
cannot attain its equilibrium points. For instance, for = —10 a minimizer of
the basic energy function is reached after 20 iterations for the UHNN/3/5, but an
equilibrium point of the motion equation is not obtained, and for the absolute values
of the activation levels it tends to infinity. If 7 decreases to zero, then the activation
levels increase faster. For n = 0.1 the network oscillates. Moreover, for 0.1 <7 < 0.5
the minimizer of the basic energy function is not obtained at equilibrium points.

A passive coefficient has feasible values for > 0.5, and it permits to find a
minimizer of the basic energy. For feasible values of the passive coefficient 1 > 0.5,
the activation levels at an equilibrium point equal 1 or —7. A substantial increase in
the feasible parameter 7 causes a small increase in the number of iterations required
to find a minimizer of the energy function with accuracy e. For example, for n = 1
we have Kyax(E(ty) < e) = 12, and for 7 = 10* we have Knax(E(ty) <€) = 17.
A considerable increase in the feasible parameter 7 causes a linear increase in the
number of iterations required to find equilibrium points with a given activation level
accuracy e.

All cases of a network UHANN/L/M (M < 100) are studied. For the initial
states, the following formula was used:

um(tg)z—l—(M~i+1—M), m=1,M (12)
10 2

Moreover, the recommended parameters are o = 100, At = 0.2, n = 1, kstop
is the condition E(t;) < e for € = 0.01. For the worst case, Kmax(E(tx) < €)
for solving a general equation is equal to 5. These experimental results confirm
that neural networks can be designed as a very efficient method to solve numerical
problems. In particular, for the network UHANN/L/M the number of neurons M
does not influence the increase Kmax(E(tr) < €). Several randomly chosen cases for
100 < M < 1000 confirmed this rule.

Accordingly, the time complexity of the neural method for solving the consid-
ered equations is O(KpmaxM) for parallel algorithms or O(KpmaxM?) for sequential
algorithms. At each basic iteration, the formula for new states

um(tk)

T

M
um(tk + At) = um(tk) — At —w Z g(un(tk)) -1
nEm

is calculated. The most critical part of this calculation time is due to the activation
procedure g(un(tk)). It has to be called M —1 times. If we assume that the activation
procedure takes one time unit, then the other times may be neglected. Hence, in
software implementations, a fast procedure for the activation function has to be used.
Instead of the Euler method, the first-order Runge-Kutta method or another method
for solving ordinary differential equations can be used. Zurada et al. (1996) propose
a relaxation method for the HANN simulation.
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6. Hopfield Networks for Solving Linear Inequalities

In the sequel, we consider the inequality constraint Z] 125 <1 for o = =1,2. In
many optimization problems, its more general form can be con31dered

M
Z Tm < L (13)
m=1

To solve this inequality, an extended uniform Hopfield network can be used. Based
on Theorem 2, the following theorem can be proved (Balicki and Kitowski, 1996).

Theorem 3. (Balicki and Kitowski, 1996) If > _. z,, < L for z,, € {0,1}, L <
M, L =0,1,2,...M, and a uniform analog Hopﬁeld network has the following pa-
rameters:

wmj:_za m:j:]-)M+La m#]
(14)
In=2L-1, m=1L,M+L

where M + L 1is the number of neurons, then

E(z) = h(z) + L?

where
| MALMAL M+L
:-—— Z Z TnTm — 1 Z T,
n=1 m=1

is the basic energy function of this UHANN, and

M+L M+ L

( me)+2wm — )

is the penalty function for this inequality.

From this theorem, a uniform Hopfield network for the inequality Z 1Zm <L
can designed by adding L dummy neurons. Hence all M + L neurons compete, since
only L neurons can be chosen. That is why, in this UHANN/L/M+L, the other
parameters can be taken similarly to the UHANN/L /M.

7. Neural Unconstrained Minimization

Let us consider the linear performance index Fi(z) = Zle Ejzl K;zl;. At the
beginning, we examine the following optimization problem:

2 J
?eijrgZanwg (15)

=1 j=1
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If Fi(z) =YY", 2;21 k;x7; is minimized by an analog Hopfield network under the
constraints E?Zl ZTy; = 1 for v =1,V and ZJJ.-:l z7; <1 for 4 = 1,2, then only
the constraints Ej:l z7; <1 for i =1,2 are active, since the decision variables .,
cannot change the performance index Zil Z;’zl k;zf;. Accordingly, we can use two

networks HANN/1/J+1 to satisfy the constraint Z]J.':l zf; <1, 4=1,2. But in these
networks the external inputs are modified according to the formula:

I(.’E:;)=2J+15—AI($Z), i=1J, i=1,2
where AI(zY;) = £j/Kmax, a0d Kmax is the cost of the most expensive processor.

To understand the above formula, let us notice that if in the UHANN/L/M
one neuron has an external input greater than the others, then the corresponding
neural output becomes 1 at an equilibrium point. Therefore, this is a way to prefer
neurons related to cheaper processors. Thus the additional term decreases the external
inputs when the cost increases. If in a network UHANN/L/M all external inputs are
increased by a small value, then L neurons are still chosen at an equilibrium point.
For L =0, we have ] = 2L -1 = —1. For L =1, we get I = 1. So, according
to the increase L =0,1,2,3,4,..., we have I = —-1,1,3,4,6,..., respectively. For a
bounded L, there exists an interval for the feasible external inputs (2L — 2,2L). The
values of the changed external inputs should fall into this interval.

In Fig. 8, a minimization example for an energy function is given. We have J = 5,
a = 100, n = 1, At = 0.2. Moreover, the cost vector is k = [5, 4, 3, 2, 1], From

the procedure I(z];) = 2J + 1.5 — (kj/Kkmax), J = 1,J, © = 1,2, the external input

vector is I = [0.5,0.7, 0.9, 1.1, 1.3]T. For each node number, a separate network

UHNN/1/J+1 is considered. Let us denote this network by HNN/F1/C. The basic |
energy function decreases very fast, and in the fifth step it attains its minimum.

E
45 -
3,5
2,5

1,5

0,5

1 2 N—

0,51

Fig. 8. Minimization of the basic energy function in an
optimization network HNN/F1/C.
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In Fig. 9 activation level trajectories are shown. The neurons compete around
one state with a positive activation value. Since k = [5, 4, 3, 2, 1]7, we expect that
the inputs I = [0.5, 0.7, 0.9, 1.1, 1.3]7 cause the preferences for the fifth neuron. At
the beginning, the fifth neuron has the lowest activation value. But, because of the
highest external input, it gets the highest activation level, and it wins. It is interesting
that the fifth neuron gets the activation level equal to Is = 1.3 at an equilibrium
point. However, the other neurons have negative activation levels u,, = —2 + I, for
m # 5. The above minimization example confirms that the Hopfield network can be
applied as a numerical tool for solving some optimization problems. A small number
of iterations suggests its large capabilities.

Activation levels
15

u5:15=1,3wm
1

/ el —h—uw2 —X—3
05

——w —8—us

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Kmax

u,=-2+l, for m=S

....................
----------------------

'
1,5 LB T T T ET T rrpeppppapapapaps

Fig. 9. A neurons competition in HNN/F1/C.

8. Hopfield Networks for Quasi-Quadratic Optimization

Let us consider the network HANN/F2 for the minimization of the function Fjy(z)
and assume z € [e, 1 —¢]™, ¢ — 0F. In Fig. 10, the structure of this network is
presented. The correct values of synaptic weights from the comparison of the basic
energy function with the performance index

v v v o2
Fy(z) = Z Z toiTvi®y; + Z Z Z TouZoi(l — Tus)

i=1 v=1u=1 i=1

2
j=lov=1i=

were taken. In this network there are no external inputs (Balicki and Kitowski, 1996).

If a more complex optimization problem is considered, e.g. when a time cri-
terion F3(-) is minimized under the constraints 25:1 Tyi = 1, v = 1,V and
ijl zi; <1, ¢ = 1,2. This optimization problem can be transformed into an
unconstrained optimization problem. The energy functions of neural networks de-
signed for constraint satisfaction or for minimization of a performance index can be
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Fig. 10. Synaptic connections around the neuron z7} in the analog Hopfield
network HANN/F2 for minimization of the function Fy(x).

aggregated in a penalty function:

14 V42
E(@f) = Fa(z) + Y_ BuBu(z) + D BiEi(z) (16)
v=1 =V+1

where (3,, B; are penalty coefficients, E, stands for the energy function of the
network UHNN/1/2 designed to satisfy the constraint 3 -_, z,; = 1, and E; denotes
the energy function of the network UHNN/1/J designed to satisfy the constraint

Sl e <1

In Fig. 11, a network HNN/F2/C for minimization of the problem under consid-
eration is presented. The penalty coefficient have to be known. They can be found
by systematically increasing them from an initial value Sy (usually chosen as 1). If
one of the energy functions related to the v-th constraint is greater then 0, then
this constraint is not satisfied, and the corresponding parameter is increased by Af
(usually 0.05 or 0.1). This process is stopped if all the energy functions of the partial
constraints are equal to zero.

In Fig. 12 experimental results with energy-function trajectories are present-
ed. For § = [2.55, 245, 2.25, 2.25, 7.35, 7.30)7 at the equilibrium point z* =
[1,0,0,1,0,1,1,0,0,1,0,1, 0,07 an optimal value of the performance index
Fy(z*) = 7.0 was obtained. Moreover, a = 200. From this figure, we can see
that the partial energy functions compete with one another. If a penalty coefficient of
the partial network is increased, then the role of this network increases, too. Then the
signals generated by this network try to dominate the signals from other networks.
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:'3—2 ﬂ Vil

Synaptic connections from the network HANN/F2

—————, Synaptic connections and external inputs from the
network UHANN/1/2

- Synaptic connections and external inputs from the
network UHANN/1/J

Fig. 11. Synaptic connections and external inputs for the
neuron z;; in HANN/F2/C.

01 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22

Fig. 12. Trajectories of the energy functions related to a
performance index and constraints.
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9. Hopfield Neural Networks for Generating Pareto-Optimal
Allocations by the Non-Negative Convex Combination
Method

The most widely-used method to generate Pareto-optimal solutions is a non-negative
convex combination of the scalar partial functions:

N .
mig {Z anFn(z)} (17)
n=1
under the constraints ‘
20, n=LN, > ax=1

where a, is a combination coefficient.

A point z* € X is the global efficient point (Pareto-optimal solution) for the
mapping F: X — RV if there exists no other point = € X such that

Fo(z) < Fu(z*), n=1N
Fi(z) < Fi(z*), for some j €1, N

A point z* € X is the local efficient point (Pareto-suboptimal solution) for the
mapping F : X — RN if there exists an gy > 0, such that in the neighbourhood
N(z*,e0) of z* there exists no other point z € X such that

Fo(z) < Fp(z*), n=1N
Fi(z) < Fi(z*), for some j € 1,N

When no distinction is made between local and global efficient points, this point
is called the efficient point. The efficient set X* contains all efficient points. The
efficient boundary Y™* of the output set Y is related to the feasible-solution set X
according to

Y* = {y* €Y |y =F(z), o* eX}

To find one local efficient point for the above problem, we can use a Hopfield ANN
(PHANN). The PHANN can represent one Pareto-optimal solution at an equilibrium
point. An energetic function for the PHANN is constructed according to the formula

N v V42
E(z,8) =Y anFu(z)+ Y B,Eu(x) + Y BiEi(z) (18)
n=1 v=1 i=V+1

For N = 2, the combination coefficients can be systematically changed within
the range (0,1). The performance index and penalty functions can be presented by
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separate partial energetic functions. For the performance index in the non-negative
convex combination method, we get the following formula for the separate energetic
function:

N M M
Z anF(z) = —= Z Z Wi T Ly, — ZI":L‘,« (19)
n=1 1‘_1 m=1

where w}, . is the synaptic weight from the r-th neuron to the m-th neuron related to
the multiplied performance index E,(z,a,) = anFn(z), and I denotes the external
input of the r-th neuron related to the multiplied performance index E,(z,a,) =
anF ().

Similarly, we can obtain the formulae for the partial energetic functions of the

constraint satisfaction. Hence we have the global basic energetic function of the
PHANN:

toln—t

M M V42
Z Z (Z AnW,.,,, + Z ﬂlwr ) TrTm

r=1m=1

n=1

M /N V42
- Z (Z an I + Z ﬂlI,{) Tr (20)
r=1 =1

In the above formula, combination coefficients are systematically selected from
Otol. If oy =1 and ay =0, then we get a network HANN/F1/C. If a; =0 and
ap =1, then we get a network HANN/F2/C. Similarly, we can obtain other synaptic
weights and external inputs which are related to other constraints and performance
indices.

10. HANN for Generating Compromise Solutions with p =1

If an ideal point is normalized as follows:

_ Yn —
yn:‘-@_lﬁ_’ !/2#0, n:]-;N (21)

then the compromise function for p = 1 is as shown below:

2
K=Y [1-7,| (22)
n=1

The problem of finding compromise solutions for p = 1 can be transformed into the
minimization problem

;nei£ Ky (z) (23)

To generate compromise solutions with p = 1, a Hopfield ANN (C1HANN) can
be used. The C1HANN has N = M + S neurons. The compromise criterion with
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P =1 can be written down as

2 vV J

K@) = 5 3 Y mel + 5SS wagan
L j=1 Y2533 j=1
2 vV v
+2oD° D bl - 2 )al — 2 (24)
=1 v=1u=1

The above compromise criterion can be used to design a CIHANN, because it
is taken as an energy function of the Hopfield network. Ideal points are given from
the networks HANN/F1/C and HANN/F2/C. In this way, a special class of Pareto
solutions can be found.

11. Concluding Remarks

In this paper, genetic methods and artificial neural networks for solving several op-
eration allocation problems have been proposed. Formulae to determine the values
of synaptic weights and external inputs for networks satisfying basic constraints and
performance indices are presented. The most widely-used non-negative convex com-
bination methods of finding efficient solutions have been considered. This method
can be implemented as an artificial neural network PHANN. The recurrent ANN at
an equilibrium point represents an efficient point. Moreover, the presented approach
was applied to solving compromise optimization problems with parameter p=1 and

Hopfield models (Kaznachey and Jagota, 1997).

ANN’s were simulated in a PC environment without neural accelerators. It is
possible to use neural accelerators and to improve the performance of neural calcula-
tions. For the integration step length equal to a few #48, a real-time solution can be
obtained.

The designed HANN for optimization can be combined with genetic algorithms.
Therefore, a hybrid genetic-neural algorithm seems to be a very powerful tool for
solving combinatorial problems. Apart from the paper (Balicki and Kitowski, 1996),
a similar approach was independently proposed in (Funabiki et al., 1997).
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