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KINEMATICS OF FREE-FLOATING ROBOTS REVISITED

IeNnacy DULEBA*

In this paper, a decomposed expression for the kinematics of a free-floating
robot with rotational joints is derived in detail. Some mathematical conditions
on invertibility of a matrix used in a definition of the generalized Jacobian
matrix are derived and proved for a general robot and for a planar robot (an
n-pendulum). For the n-pendulum, closed-form kinematics are given. A com-
parison of the resulting kinematic equations for the simplest free-floating robot
(a planar 2-pendulum), with the simplest mobile robot (a unicycle) is presented.
Being an extended version of (Duleba, 1996), this paper offers a family of models
of nonholonomic systems.

1. Introduction

The kinematics of a free-floating robot is a transformation between the linear and
angular velocities of the robot base (or the end-effector), and the velocities at
the joints (directly controlled variables). Although there are many papers dealing
“with the kinematics of free-floating robots, the resulting equations sometimes dif-
fer significantly. The papers concerned with this subject can be divided into two
main categories: those where derivation of the kinematics is given (Dubowsky and
Papadopoulos, 1991; Mukherjee and Nakamura, 1992; Nagashima and Nakamura,
1992; Papadopoulos and Dubowsky, 1991; 1993; Vafa and Dubowsky, 1990), and those
where the kinematics are used only to introduce a subject of interest (Dubowsky and
Papadopoulos, 1993; Nakamura and Mukherjee, 1991; 1993; Umetani and Yoshida,
1988). The first group can be divided, in turn, according to the principles used to
derive the kinematic equations. Nakamura and co-workers, (Nakamura and Mukher-
jee, 1991; 1993; Nagashima and Nakamura, 1992; Mukherjee and Nakamura, 1992)
opt for a standard robotic approach with items (inertia matrices, positions) expressed
in the coordinate frames attached to the joints. On the other hand, in the works
(Dubovsky and Papadopoulos, 1991; 1993; Papadopoulos and Dubovsky, 1991; 1993)
a barycentric approach is preferred with kinematic equations expressed in barycentric
coordinates. Nevertheless, both approaches start from the angular and linear momen-
tum conservation laws governing the motion of the free-floating robot. Therefore the
resulting equations differ in form and some of them are even inaccurate (Nakamura
and Mukherjee, 1991, eqn. (12), p. 502), whereas for some others a simpler form is
allowed.
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The first aim of this paper is to obtain a decomposed form of the kinematic
equations of free-floating robots. The decomposition separates quantities expressed
in the manipulator’s base coordinate frame from those situating the robot’s base in the
inertial frame. While comparing our equations with any others known in the robotic
literature, one can notice their simplicity and ease of implementation. The kinematic
equations have been derived based on a standard robotic approach—all quantities are
expressed in coordinate frames attached to the manipulator’s joints. The second aim
is to formulate and to prove mathematical conditions on invertibility of a matrix used
in the derivation of the so-called generalized Jacobian matrix (Umetani and Yoshida,
1988). The theorems formulated here impose very weak conditions on the invertibility,
therefore any physical robot satisfies them easily. The third goal relies on finding a
closed form of the kinematics for a family of planar pendulums (a source of models for
free-floating robots). As a by-product of the derivation, we compare the simplest free-
floating robot (a 2-pendulum) with its mobile counterpart, i.e. a unicycle. The results
show, howewer, that although the form of the equations is the same, the equations
for the free-floating robot are computationally much more complex than those for the
mobile robot.

We end this section with a terminology remark. Some authors use the term
“free-flying robots’ as an equivalent to free-floating robots (Mukherjee and Nakamura,
1992; Umetani and Yoshida, 1988). Recently, there has been a tendency to use the
term ‘free-floating robots’ in the context of the robots satisfying conservation laws
(nonholonomic), as opposed to the free-flying robots violating the laws (Dubowsky
and Papadopoulos, 1991; 1993; Papadopoulos and Dubowsky, 1993). The free-flying
robots (holonomic) are equipped with thruster jets or reaction wheels.

This paper is organized as follows. In Section 2 the kinematic equations of a
free-floating robot are given based on a standard robotic approach. In Section 3
some theorems on invertibility of a matrix used in the definition of the generalized
Jacobian matrix are formulated. In Section 4 compact kinematic equations for a
family of n-pendulums are given and conditions for the invertibility of the afore-
mentioned matrix are given. In Section 5 the kinematics of a 2-pendulum, being
the simplest free-floating structure, are compared with the kinematics of the simplest
mobile robot, i.e. a unicycle. Section 6 concludes the paper.

2. Kinematic Equations of a Free-Floating Robot

2.1. Notation

In this paper a free-floating rigid robot equipped only with rotational joints is consi-
dered. Several coordinate frames are introduced: an inertial frame (I), a frame at-
tached to the base of the robot (V), a frame attached to the base of the manipu-
lator (0), frames attached to consecutive joints of the robot (k), an end-effector
frame (E), cf. Fig. 1. For convenience, it is assumed that the inertial frame has
the origin at the mass centre of the free-floating robot. Throughout this paper the
standard Denavit-Hartenberg notation will be adopted.
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Following conventions used in (Mukherjee and Nakamura, 1992) a subscript alone
denotes a variable expressed in a local coordinate frame, a transformation with both
sub- and superscripts denotes a transformation from the frame labelled with the su-
perscript to the frame denoted by the subscript. Below definitions and symbols exten-
sively used are introduced (most of the items have their manipulator base frame (0)
counterparts, cf. z8 « z§):

n  the number of degrees of freedom of a manipulator.
R}  the (3x3) matrix of rotation € SO(3).

zj  the z-axis versor of the k-th coordinate frame expressed in the inertial
frame, zF = R . [0,0,1]7.

my  the k-th link mass. The base of the robot has index 0 and the other indices
run from the base of the manipulator till its end-tip.

st (€ R®) vector connecting the k-th frame origin with the mass centre of the
k-th link (expressed in the k-th frame).

T8 (€ R®) vector connecting the origin of the inertial frame with the mass
centre of the k-th link (expressed in the inertial frame).

d¥ (€ R®) position of the k-th frame origin in the inertial frame.

wj the angular velocity of the k-th frame expressed in the inertial frame.

If  the k-th link inertia matrix (3x 3) expressed with respect to the k-th frame.
‘= 4 the time derivative operator.

6, (€ R%) linear and angular velocity of the mass centre of the robot’s base
expressed in the inertial frame 0, = [d},,d},, d},, wz, wy,w:]T

g (e RY), k=1,...,n, the k-th joint variable of the manipulator.
©2 (€ R™) a configuration of the manipulator [gy,...,qn)T.

JE (€ R¥*™) partial Jacobian matrix (until the k-th link inclusively) for linear
velocities expressed in the inertial frame.

as a superscript denotes an operator introducing the matrix vector product.

0 —; Oy .
For a vector a = [as, ay, aZ]T, a* = [ 0. 0 —ag|; When used as an infix
—Oy Qg 0

operator, x denotes a vector product.

E,; the identity matrix of rank s (sxs).
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2.2. Derivation

Derivation of the kinematics equation for a free-floating robot is based on two con-
servation laws. The conservation of linear momentum states that

n
> ome-if =0 (1)
k=0
while the angular momentum conservation law yields
n
D I rwf +mi e i) =0 )
k=0

For brevity, in eqns. (1) and (2) it has been assumed that the right-hand sides equal
zero instead of a constant. Indeed, this assumption, made by most authors in the
field of space robotics, not only simplifies the resulting equations but also prevents
the free-floating robot from drift and spin. These features are important both from the
control and the communication with the robot perspective. In fact, by a temporary
use of specialized devices (reaction wheels, thruster jets) initial values of momenta,
can be set to arbitrary values.

Having introduced the notation and equations of conservation laws, we are ready
to derive an equation connecting linear and angular velocities of the robot’s base as a
function of directly controlled velocities at the joints. The following definitions, taken
from a primary course of robotics (Craig, 1981; Paul, 1981; Spong and Vidyasagar,
1989) are extensively used in the derivation:

o the definition of the angular velocity w:
R=w"R (3)

¢ an angular velocity transformation between the k-th frame and the manipula-
tor’s base frame valid for a manipulator with rotational joints only:

k
wh =l 4 Z 251 (4)
i=1
e a chain rule of multiplying matrices of rotations (€ SO(3)):
RF=FRIR® where i<j<k, Ri=H, R. =(RHT (5

e a position of the k-th frame origin in the inertial frame:

k
dj = dj+ Rydg = dy + ) Ry 'di, (6)
=1
e a position of the k-th link mass centre, £ =0,1,...,n, in the inertial frame:

8 = Risy + d¥ = RYrk + d9 (7)
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Fig. 1. A free-floating robot with attached coordinate frames.

Let us consider a free-floating robot presented in Fig. 1. The transformation
between frames V and 0 is described by a constant matrix. The transformation
between frames I and V can be viewed as a kinematic pair of zeroth order, i.e.
having six degrees of freedom, whereas the transformation between the (i — 1)-th and
the 4-th frame (for ¢ = 1,...,n) as a kinematic pair of fifth order (1 DOF).

To get an equation relating linear and angular velocities of the robot’s base
with velocities at the joints, a linear velocity of the k-th link mass centre should be
calculated. By taking the time derivative of eqn. (7) and noting that s is time-
independent, we obtain

7} = wi x (Rfsi) +df (8)

Exploiting eqns. (4), (6), (7), the time derivative of eqn. (6) and the properties of the
vector product leads to

k
i =i+ (k=) + 3 (47 < 0 — db) ) s + Rid (9)
=1

It is easy to derive a formula for d§ as in the case of stationary robots (Spong and
Vidyasagar, 1989):
k
ds=Js d=y Jor @ (10)
i=1
where the columns of the linear velocity part Jé;fc of the Jacobian matrix for rotational
joints are defined by the well-known formula
i AT x(dE—diY) for i<k
Joy = (11)
0 for >k
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Substituting (10) into (9) and applying the identity R(a x b) = (Ra) x (Rb) valid
for any vectors a,b € R® and R € SO(3) we see that

k
PE=rltwlx (i =)+ D2 x (rF — df)ds
1=1
k
+ Y (47 (dh - a5 )
i=1
k . .
=i+ < (F =)+ D2 < (F — 4 N (12)
1=1

The last component of (12) is a partial Jacobian matrix (up to the k-th link inclu-
sively) which will be denoted by J¥, and defined as

vaz[j};)’“ Jﬁ’“ 0 .. ()] (13)

where JpF =217l (rh — @i,

The linear momentum conservation law (eqn. (1)) expressed in matrix form is as
follows:

n
k
> mdh

k=1

O, + ©,=0 (14

(Srm)m ~(Emed)

k=0

with 7% =k — 70,

Let us consider the angular momentum conservation law. By substituting (4)
and (12) into (2) and applying I* = REIF(R¥)T the angular momentum conservation
law leads to the matrix equation:

[(imkr’f)x i{m (}) —mm’;)*(r?k)x}} o

0, =0 (15)

+ [Z mk(’r?)x]ﬁ + P

k=0

where Py =[P}, P?,...,Py] and P} = (RYIf(R})T)z.
k=1

With the notation

E c 1 k
m = me, T = — mg Ty
m

E my - 7Y E My - Tf—g mg-ri=m-r$—m- 1}
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where 7§ is a vector connecting the mass centre of the robot with the origin of the
inertial frame, eqns. (14) and (15) can be coupled into a single matrix equation:

mEs - (m(rf - T?)) .
n 0,
(mrg)* S {BEIEEDT - ma(rh)* (r8)}
k=0 J
: kava
+ | F=0 0,=0 (16)
ka('r’;)x Tk + P
k=0 J

If the inertial frame is chosen at the centre of mass of the robot, then Y ;_o my 7% =
0 = r§ = 0. This assumption will be made henceforth. Under this assumption,
eqn. (16) can be rewritten as

mE;3 m(rd)x
n (;)1
0 {BETEENT - mi((r8)7)*}
k=0 d
Z ka}Cv
+ n k=0 C-")2
ka(’r’;)x‘]}cv + PI

k=0

i
o

(17)

This form which can be found in (Mukherjee and Nakamura, 1992) is not the simplest
possible. 1t is easy to derive the formulae:

Jr, = RiJg,, Pr=RiP (18)

where Py is defined as its counterparts P; with subscript O instead of I. Here r¥
can be given a multiplicative form after a chain of transformations:

0= Z ; Z Rk +dY) = kark oy %+ mRYrS (19)
k=0 k=0

where 7§ is a vector connecting the origin of the manipulator’s base frame with the
mass centre of the robot. Substituting (19) into (7) we get

7"1 = RITO RITo = R?(ré‘ —-75) o R?;(’)c (20)

where 1:(’; is the vector connecting the mass centre of the robot with the mass centre
of the k-th link and expressed in the manipulator’s base coordinate frame.
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Based on (20) and using properties of the matrix vector product, the following
formula can be derived:

()" = —RY (17t — 7)) (BT (21)

After substitution of (5), (18) and (21), into (17), applying the identities: (Rz)* =
Rz*RT valid for z € R® and R € SO(3), RY(R%)T = E3, RY-0- (RY)T =0, we get
a decomposed form of the kinematics:

Wi
mEz m(70)* | <o 1 . ka ov )
(R)'©1+Ry | » =0 0, =0 (22)
@ ka(~3)xJ§W+P0

k=0

R}

where a = Y p_ {REIF(RE)T + mi(|7E|2E;5 — 7§(75)T)} and RY = diag {RY, RY}
(this notation will be used throughout the paper). In (22) s1mllar1ty appears twice:
If ~ REIFRE and the mid-term of the matrix premultiplying ©, is similar to the
whole matrix.

In the sequel, we shall use a variant of the formula (22) where uncontrolled
directly variables ©; stand alone. Exploiting formulae for inverting block matrices,
we get

1 JE
—FE3 —(73)* gmk o

n 0, (23
0 E3 (Emk 7‘0 JOv + Po)
k=0

Here we have assumed the invertibility of a. In the next section we formulate condi-
tions which secure its fulfilment.

3. Conditions for the Invertibility of the Matrix
Premultiplying ©,

Nakamura and Mukherjee (1991) argued that the matrix premultiplying ©; in (22)
is invertible. Their arguments come from physical considerations and are as follows:
for real robots and ©, = 0 the momentums of the system are described by the
first component of (22). For a non-zero vector ©; it is physically impossible that
the momentums be equal zero, therefore the matrix should be invertible. We try to
validate the claim from a mathematical perspective. More precisely, some conditions
for the invertibility of the matrix

o =Y {BELE(RET + mi (17 Bs ~ 75(H)T) } e

k=0

will be formulated. -
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Lemma 1. Any matriz component in (24) is symmetric and non-negative definite.

Proof. Obviously, the inertia matrix I,’j is symmetric and non-negative definite.
Premultiplying it by R and postmultiplying by RT (€ SO(3)) do not influence this
characteristics. Assume that 78 = [a,b,¢]T. Then

B2+c*  —ab —ac
7§|° s — 75 (7g)" = | —ab  a® 4+ —be (25)
—ac —be  a®+b?

Clearly, (25) is symmetric and its main minors are
b? + ¢, c*(a® +b* + c?), 0 (26)

All of the minors are non-negative, so the matrix is non-negative definite. [ ]

Technical Lemma 2 taken from (Horn and Johnson, 1986) clarifies out conditions
for the positive definiteness of a sum of symmetric non-negative definite matrices.

Lemma 2. A sum of symmetric, non-negative definite matrices is symmetric and
non-negative definite. Additionally, if in the sum there is at least one positive-definite
matriz, then so is the sum.

Theorem 1. If for a robot any inertia matriz is positive-definite, then so is the
matriz o (and hence it is invertible).

Proof. It is an immediate consequence of Lemma 2. | |

Let us consider a more difficult case when Vk =0,...,n I,’: =03 x 3, i.e. the mass
of each link is condensed at a single point. Before formulating a theorem concerning
the invertibility of the matrix « in this case, let us state an auxiliary lemma.
Lemma 3. For a point-mass system with at least three non-zero masses put at three
non-collinear points, say A, B, C, there are three mass points A1, B1, C1 such that
the centre of mass for the whole system is at none of the points A1, B1, C1, and the
points are non-collinear.

Proof. If the centre does not lie at 4, B, or C, then A1=A, Bl =B, and Cl1=C.
Otherwise, the centre of mass lies at one of these points, say A. In this case, the
definition of the centre of mass guarantees that a non-zero mass at point D can
be found, so that A1 = D, Bl = B, C1 = C, and the points Al, Bl, C1 are
non-collinear. [ |

Theorem 2. If for a robot Yk =0,...,n If = 0343, i.e. the total mass of each joint
s concentrated at a single point, and, ot any time moment, three non-zero masses are
located at non-collinear points, then the matriz o is invertible.
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Proof. Let us consider a sum of two matrices from (25) derived from vectors z =
[a1,b1,¢1]T and y = [ag, b, ca]T. The main minors for the matrix are as follows:

b} +cf + b5 +ch

(2 +c2)(a? + b3 + ¢ +a} + b3 +c3) + (a1bz — aghy)? (27)

(a3 +b% +c +a2 +b2+ c%){(azbl —a1b2)? + (aze; — ajc)? + (breg — bzcl)z}
The second and third minors can be rewritten in a simpler form:

(c + ) (ll® + 1Iyl1?) + (a1b2 — a2b1)?, (=l + llyll*) - lz x yl* (28)

Indeed, (ajbs — azb1)? = ||z x y||* when ¢; = c; = 0.

Theorem 2 and Lemma 3 guarantee the existence of non-collinear mass points
Al, B1, C1, mentioned in the lemma. Three non-zero vectors are constructed by
joining the mass centre with Al, B1l, and C'l. Among them at least two vectors are
non-collinear and these vectors are denoted by z and y. Minor 1 (cf. (27)) is positive
by the non-collinearity of z and y. Minor 3 is also positive by the non-collinearity of
the non-zero vectors z, y, and (J|lz x y|| = ||z|| - [|ly]| - | sin £(z, y)|). Minor 2 has either
both ¢1, ¢y equal to zero, and then its positiveness comes from the same argument as
in the case of Minor 3, or at least one of ¢;’s is non-zero and the first term in Minor 2
is greater than zero. |

3.1. The Generalized Jacobian Matrix for a Free-Floating Robot

In this subsection a functional dependence of the linear and angular velocities of
the end-effector (d7,w?)T on the directly controlled variables ©y will be derived.
Using (4) and computing the time derivative of (6), (10) for k = n, as well as the

time derivative of (7) for £k =0, ..., we get
dn ~ E3 —(d" - So)x ~ . ~ J"v .
=R 0 (RNHTO, + RY 0 | ©: (29)
wp 0 E; 2,2, .., 20

The indirectly controlled variables ©; should be eliminated from (29). To this aim,
(23) is applied. After further calculations, the final form of (29) is obtained:

1
d}l | =—h1+(d} — TS)xa_lhz + Jo | .
=RY| ™ 0, (30)
Wi —athy + [zg,zé, . ,z(’}_l]

where « is defined by (24) and

ho=Y midd,, ha=Y mi(i)*JE + Py (31)
k=0
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or, in general form,
dp X . .
=70, =RY JF 6, (32)

wi

J§ depends on the directly controlled coordinates ¢ and on kinematic (lengths,
etc.) and dynamic (masses, etc.) parameters, but does not depend on any parame-
ter relating the base of the manipulator with the inertial frame. Hence Jg can be
called the generalized manipulator’s Jacobian matriz, whereas J; is said to be the
generalized Jacobian matriz (Umetani and Yoshida, 1988).

Note that in a nonholonomic motion planning (23) and (30) should be supple-
mented by the equation

R} = (w])* " Rj (33)

which indicates that R} (RY) varies as the free-floating robot moves itself.

4. The Free-Floating Planar n-Pendulum

Let us consider a family of pendulums and check how (30) manifests in practice. The
following standard notation will be used:

J J
8;5 = sin (qu), 54 = sin (@ + qu)
k=1

k=1

J J
cij = COS (Eqk), Coij = COS (@ + qu)
k=1

k=1
j j (34)
Sij = E ax Sik, Cy = Zak Clk
k:i. k:i'
J 7
Seij = Y ak So1k; Coi = ) ak cotk
k=i k=i

A pendulum under consideration is depicted in Fig. 2 with the task-space co-
ordinates [z,y,0]T. The pendulum consists of point masses placed at the ends of
appropriate links and it has only revolute joints with axes of rotation parallel to each
other. Denavit-Hartenberg parameters of the n-pendulum are collected in Table 1.

Table 1. Denavit-Hartenberg parameters for a free-floating n-pendulum.

| joint | Q; | o ‘ a; l d; ]
0 0 0 ap
1 q1 0 a1 0
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y
&,
Ya
m,
X,
Fig. 2. Coordinate frames of the n-pendulum.
For the n-pendulum the following equalities are satisfied:
Lorg=df, If=03.3| k=0,1,...,n
co —Se 0O
2. Py =03 yn) Rl=lse co O
0 0 1
3. 13 = (—ao, 0, 0)7, partial kinematics
. -
aiCl4 3
2l ] few
k __ k _ k _ .
TO — Zazsll = ’['Oy —_ Slk 3 k—l,‘..,n (35)
=1 0 0
L O e

4. The indirectly controlled variables (z,y,0)T, (cf. Fig. 2), together with the
controlled variables (g1,...,q,)7 form a state vector.

5. Due to the symmetry of masses along the z-axis and the assumption of parallel
axes of rotations, 2§ = (0,0,1)T, k=0,...,n—1, =0 and (wg,wy,w.)’ =
(0,0,0)7,

According to the above relations the following equations are easy to derive:

~ ~T * % 0 0 0
s = (%,%,0)7, ( * denotes any value), so rfrf = [* * 0] and RO [0] = {Q}.
0 0 0 (S) o
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Substituting them into (22) we get

r.
T
:l,/ n
mE;3 m RY(79)* 0 R} ka.]gv .
i 5 + |, *=0 Q2 =0 (36)
0 S mel7EPEs | |0 S ma (7Y I,
k=1 0 k=0
_é—
The components of (36) are as follows:
~S15  —Sak + —=Six 0 oo 0
Jow = [Cix +ag Cop -+ Cek 0 -+ 0 (37)
0 O -~ 0 0 ---0
0
n _ y 0
ka(réc) J(;cv: n n
k=0 ka(f{;ySm +F§x01k) + ag kaf§$
k=1 k=1
0 0
. ’ . (38)
Z mk(f(’)cysn—l,k + 'Fé:m Cn—l,k) Z mk(;(l)cysnk + ngcnk)
k=n-—1 k=n
* x co(dgy, —76,) + se(dd, — 76,)
Tn"R[I](f((]))>< =M % % 3@(d8y - r’"Sy) - c@(dgz - TE):a:) (39)

* x 0

where the coordinates of the centre of mass for the system expressed in the manipu-
lator’s base frame are

1 n 1 n
Toe = m ( — Moag + Zmicli)y Toy = ., Zmisli (40)
i=1

i=1
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Substituting the above equations into (39), we get
Mz =m- {ce(d(())y - T(cJ'y) + Se(dgz - TSz)}

n n
- ( Z m;Se1: + Seao Z mi)
=1 =1

= (41)
Mz =m- {Se(d(o)y - TSy) - C(—)(dgm - Tﬁm)}
n n
= Zmiceu + coao Z m;
=1 =1
The new variables M;3 and Mo,; are supplemented by Mss defined as
Msz =Yy mulf§* = malrf]® (42)
k=0 k=0

Collecting eqns. (37), (38), (41), (42) and skipping three identity equations in (36),
we obtain the final formula for (36):

> miSesid; + (Zm;)ao se q1
m 0 M13 T j:},’ 7;:% i:%,
0 m Ma||y|= _szicwfij—(zmi)aoc@q'l (43)
0 0 Msg||® n a
- Z Zm, (7o Sji + 7, Ci) (Z m,rgz) ag g1
L 5=11i=j

Now, we formulate conditions for the invertibility of the matrix on the left-hand
side. Clearly, the matrix will be invertible if Mj3s is always positive. M3z can be
rewritten in a simpler form based on the Jacobi theorem. Let a set of pairs (mass, its
position), i.e. (mg,d¥), k=0,...,n be given. The inertia momentum for the set
w.r.t. any point S is given by the formula

Js = mylds — S? (44)
k=0

When S is chosen at the centre of mass, a simpler formula is obtained. We have

Jacobi Theorem. (Balk and Boltyanskii, 1987)
Z memg|ds — d|? (45)
0<z<]<n

For the case of the n-pendulum and S chosen at the mass centre of the mass
system, we have

n } 1 ) )
Mas = ) mulf§P = — 37 mimjldy — (46)
k=0

0<i<j<n
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Now, we can state a condition for Ms3 > 0 in the case of a real free-floating
n-pendulum. This condition will be formulated in a very weak form as follows:

Theorem 3.

n
Jigjo,n—1)Mi, Mit1,0i41 >0 = ka|ﬂ§|2 >0 (47)
k=0

where a; 1is the length of the i-th link.

Proof.
M33=—1— m~m-|di—dj]2>§—m~m< aZ,; >0
mo iMjlGy — dp|” = 2om iMit10,41
For the case of a real n-pendulum it follows that Vie[o,n—1]Mi, Mit1, aig1 > 0. =

5. Kinematics of the 2-Pendulum

In this section a closed-form kinematics of a 2-pendulum being the simplest free-
floating robot will be derived. Additionally, it is assumed that ag = 0. The notation
mi; = m; +m; will be used henceforth.

For the case of the 2-pendulum the components of eqns. (43) are as follows:
e M3 = —miz2a1501 — M2az5012
e M3 = mizaicer + Maazcerz
o Ms3 = {momi2a? + mamgi1a3 + 2momaaiazce}/m
L] T(CJw = {mualcl + mgaéclz}/m

L] Tﬁy = {mlzalsl +m2a2512}/m
2 2 . . .
. Ejzl Zi:j m;Sejig; = {Mi201501 + M2a25e12}d1 + M2a2861242
2 2 . . .
o D ic1 2=y miCojig; = {miza1ce1 + maasce12}di + moascerade

2 ~; ~i .
. 25:1 Ei:j m,-(rf,y S]',; + T C]‘i) = {momua% +m2m01a% + 2m0m2a1a262}q1 /m

+{mamo1a} + momzaiazcs }go/m
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Substituting these equations into (43), we get

T
gl = X1 g+ Xo go=X1-u1 +Xo-up
€]
0 X21(0,q1,92) 0
=10 |u+ | X02(0,q1,¢2) | u2= | 0 | w1
(48)
-1 Xg3((]2) -1
moQ1a2
3 {momi2a1ce152 + MoM2a25012¢2 — Mo1M12a2501}
m M33
—MmMaa1 a9

{—momi2a180182 + MoM2a2c12C2 — Mo1M1282CO1} | Uz
m2M33

—Mmaaz

mM33

The simplest mobile robot (a unicycle) depicted in Fig. 3 has the kinematics of the
form (Laumond et al., 1994):

{moras + moaica}

z 0 cos(0)
g| = |0| ur + |sin(©) | - u2 (49)
e 1 0

with controls u; = v sin(¢) and ug = v cos(¢). Here v is the linear velocity of the
vehicle and ¢ is the steering angle.

Y

Fig. 3. External coordinates of a unicycle.

As can be seen from (48) and (49), the structure of both equations is the same,
but the equation for the free-floating robot is much more computationally involved. A
numerical complexity of models for n-pendulums will grow rapidly with the number
of links n, cf. (43).
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6. Conclusions

In this paper decomposed kinematic equations for a free floating robot with rotational
joints have been presented. In our opinion the equations are the simplest possible,
and therefore suitable for implementation. Conditions for the invertibility of a matrix
used in the generalized Jacobian matrix have been formulated and proved for a general
free-floating robot and its special, planar case, i.e. the n-pendulum. The conditions
are very weak and any real robot easily satisfies them. Kinematics of a family of
n-pendulums have been derived. They can be used as a real model of a nonholonomic
system for testing purposes. As has been shown, the simplest free-floating robot has
much more complicated kinematics than the simplest mobile robot, although both
equations share the same structure.
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