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FUZZY CONTROL OF ROBOTIC MANIPULATORS

MEeNG J. ER*, Nikos E. MASTORAKIS**

This paper presents an Intelligent Control Strategy for an n-degree-of-freedom
(d.of) robotic manipulator. It covers the design and simulation study of a
Fuzzy Controller (FC) for the robotic manipulator with a view of tracking a
predetermined trajectory of motion in the joint space. An industrial robotic
manipulator, Adept One Robot, was used to evaluate the effectiveness of the
proposed scheme. The Adept One Robot was simulated as a three-axis manipu-
lator with the dynamics of the tool (fourth link) neglected and the mass of the
load incorporated into the mass of the third link. The overall performance of the
control system under various conditions, namely variation in payload, variations
in coeficients of static, dynamic and viscous friction and various trajectories
were studied and a comparison was made with the Neural Network Controller
(NNC) of (Er, 1996) and Computed Torque Controllers 1 and 2 of (Craig, 1989)
which are designed assuming full knowledge and partial knowledge of the robot
dynamics, respectively. The FC was shown to be robust and able to overcome
the drawbacks of the NNC and the two computed torque controllers.

1. Introduction

The most common controller used in present robotic control is the Proportional
Derivative (PD) controller as it does not require any detailed knowledge of the ma-
nipulator inertia tensor, the Coriolis and centrifugal coupling forces and coefficients
of friction. To enhance accuracy, computed torque and resolved acceleration control
methods are employed. However, these two methods are model-based control schemes
and the robot parameters must be known accurately. The computed torque method is
an approach that makes direct use of the complete dynamic model of the manipulator
to cancel not only the effects of gravity, but also the manipulator inertia tensor, the
Coriolis and centrifugal forces, and coefficients of friction. For such schemes, we need
to know the dynamic model of the manipulator. However, due to the complexity and
nonlinearity of the dynamics, it is difficult to estimate the parameters of the robot
manipulator such as link lengths, link masses, centres of gravity, coefficients of viscous
friction, etc.

In oder to overcome these difficulties, considerable research on intelligent control
systems with human-like inference and adaptation abilities has been conducted. Ba-
sically, there are two representative approaches to design intelligent control systems.
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Omne approach is to use neural networks which have distinct learning and adaptation
capabilities. The other appproach is to apply fuzzy logic control theory which can
emulate human thinking.

The neural network controller with a nonlinear multi-layer network and adapt-
able weights can be considered as a special form of the adaptive control scheme. In the
neural network, knowledge acquisition can be automatically accomplished by learning
the input-output relation. The neural network control is distinguished by high par-
allelism, fault-tolerance, adaptive and learning abilities. The neural-network-based
approach is independent of the precise modelling of the robot dynamics due to its
learning ability which enables it to learn the inverse dynamics of the robot arm. In
this way, inaccurate modelling estimation may be avoided (Atkeson and Reinkens-
meyer, 1988; Atkeson et al., 1985; Bhat et al, 1990; Chen, 1990; Er, 1996; Goldberg
and Pearlmutter, 1988; Guez and Ahmad, 1988; Horne and Jamshidi, 1988; Karaka-
soglu et al., 1993; Kawato et al., 1987; 1988a; 1988b; Khosla and Kanade, 1985; Kung
and Hwang, 1989; Kuperstein and Wang, 1990; Miller et al., 1990; Miyamoto et al.,
1988; Narendra and Parthasarathy, 1989; 1990; Nyugen and Widrow, 1990; Psaltis et
al., 1988; Setoyama et al., 1987).

In fuzzy control, a precise mathematical model of the plant may not be required.
Also, the Fuzzy Controller (FC) possesses strengths of logic control, linguistic control,
parallelism relaxation, flexibility and robustness. The theory of fuzzy sets as an
extension of the traditional set theory was introduced in (Zadeli, 1965; 1973), together
with fuzzy logic to manipulate fuzzy sets. A fuzzy set allows for degrees of membership
to a set. A membership function defines the grade of membership in a fuzzy set for
all possible members and is typically expressed as a mathematical function or a set of
discrete digital numbers. This representation allows human observations, expressions
and expert knowledge to be more precisely modelled.

Recently, there has been great resurgence of interest in combining neural net-
works and fuzzy logic in robotic control problems. A number of interesting results
regarding using neural networks and fuzzy logic to create intelligent systems have
been reported (Hasegawa et al, 1993; Horikawa et al, 1992; Mizukami.and Fuke,
1991; Psaltis et al., 1988; Watanabe et al., 1996). Horikawa. et al. derived a Fuzzy
Neural Network (FNN) that realizes fuzzy reasoning within a multi-layered hierar-
chical neural network with sigmoidal functions as unit functions. The control rules
can be identified by the data gathered from the plant which is manipulated by an
expert and the parameters associated with the antecedence and consequence can also
be fine tuned. The application of this method can also be found in (Hasegawa et al.,
1993). Note, however, that the method of (Horikawa et al., 1992) cannot be applied
to the case when there are no pattern control data because the generalized learning
architecture of (Psaltis et al, 1988) is utilized to train the neural network. More-
over, their method requires intermediate layers to generate the membership function
in the antecedence because a pseudo-trapezoidal membership function is constructed
by summing two sigmoid unit functions with different signs. Hence, the method is
called a Fuzzy Sigmoidal Neural Network (FSNN). This fact also causes the number
of units in the corresponding intermediate layer to grow as the number of fuzzy labels
increases. The fuzzy arctangential neural network (FANN) studied in (Mizukami and
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Fuke, 1991), in which an arctangential function is used as a unit function, suffers
from the same problem. In (Watanabe et al, 1996), a Fuzzy-Gaussian Neural Net-
work (FGNN) controller that uses a Gaussian function as a unit function, which can
solve the above problem, is described. A specialized learning architecture is used so
that the membership function can be tuned without using an expert’s manipulated
data. Tracking control for the speed and azimuth of a mobile robot driven by two
independent wheels using the FGNN controller is demonstrated. The effectiveness of
the proposed method is illustrated by performing simulation studies of a circular and
square trajectory tracking control. Following a different approach, Kim et al. propose
an adaptive fuzzy control scheme. The proposed fuzzy control system, which consists
of the Fuzzy-Neural Controller (FNC) and a Model Neural Network (MNN), has two
important characteristics of adaptation and learning. In the FNC, the antecedence
and consequence of a fuzzy rule are constructed by a clustering method and a multi-
layer neural network. In the MNN, a multi-layer neural network is utilized to identify
the unknown dynamics of the manipulator. The effectiveness of the proposed scheme
was demonstrated by computer simulations of a cart-pole and a two-degree-of-freedom
(d.o.f.) robotic manipulator.

In this paper, another approach to using neural networks and fuzzy logic is adopt-
ed to control an n-d.o.f. robotic manipulator. Our approach is different from the other
approaches in that the design is carried out in two stages. First, the Neural Network
Controller (NNC) of (Er, 1996) is used to control a robotic manipulator. Next, based
on the performance of the NNC, an FC which incorporates experts’ experience into
fuzzy rules is designed. A comparison is then made with the NNC of (Er, 1996)
and the Computed Torque Controllers 1 and 2 of (Craig, 1989) which are designed
assuming full knowledge and partial knowledge of the robot dynamics, respectively.
Simulation studies were carried out to evaluate the effectiveness and robustness.of
the proposed controller. They show that the proposed method outperforms the NNC
and the two computed torque controllers.

2. Review of Neural Network Controllers

In this section, the operation of the NNC of (Er, 1996) is reviewed. There are basically
two stages in controlling the Adept One Robot. The first stage consists in off-line
training or pre-training, where the neural network learns the inverse dynamic model
of the robot from a set of training data. The second stage is the control phase which
involves real-time control and on-line training of the neural-network-based controller.

2.1. Off-Line Training

In off-line training, an inverse dynamic model of the robot is determined. This is
depicted in Fig. 1. The manipulator receives the desired input torque, 74(¢), and
outputs the resulting trajectory, 6(t). The inverse dynamic model (neural network)
is set in an opposite fashion to that of the manipulator, i.e. the input and output of
the model are the output and input of the robot, respectively. The error signal, e(t),
which is the difference between the desired and estimated torques, is then minimized
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Fig. 1. Direct inverse modelling of a robotic manipulator.
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Fig. 2. Neural network controller.

to train the network. In (Er, 1996), back-propagation with variations in its weight
adjustments is used as the training algorithm.

The inverse dynamics model of the robotic manipulator is modelled by two neural
networks, namely NNC12 and NNC3 which denote neural network controllers for
Links 1 and 2, and Link 3, respectively. The reason why two separate neural network
structures are used is that the inputs of NNC12 and NNC3 are different. Note that
the structure uses a dummy input of —1 and a bias neuron of —1 in the hidden layer.
This is to augment the input vector and the hidden layer by a fixed bias component.

2.2. On-Line Control

Figure 2 shows the block diagram of the NNC of (Er, 1996) incorporating a PD control
strategy. Solid lines indicate signal flows when the neural network is executing the
control action while the dotted lines represent the information flow during on-line
training. As mentioned before, the NNC has two modes of operation, namely the
control mode and the on-line training mode.
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In the sequel, real-time operation of the NNC is described. As depicted in Fig. 2,
a pre-defined trajectory is first fed into the system as the desired motion. It then
goes through the reference signal computation block and the PD architecture. The
reference signal r(t) is generated by the computed torque algorithm given by

T(t) = q(’i’(t) + qu:i(t) + quri(t) (1)

where g¢q,q; and ¢/ denote the desired trajectory, angular velocity and angular
acceleration, respectively. The command signal u(t) is generated as follows:

u(t) = r(t) — Kuq'(t) — Kpq(t) (2)

where ¢(t) and ¢'(t) denote the actual trajectory and angular velocity, respectively.
The command signal is approximately equal to the acceleration generated by the
desired trajectory in the case where the robot dynamics are perfectly modelled. This
command signal together with the robot variables go and ¢ generate the control
mode operation, producing an output torque cm which, in turn, generates a new
set of robot variables, ¢1, ¢{ and ¢i. However, as mentioned before, the on-line
learning mode runs concurrently with the control mode. At the time moment when
the command signal is computed by the neural network to generate the output torque
c71, the network also learns and generates a new learning torque 7 based on the
previous robot variables gq, g; and g¢f.

At the next time instant, the control signal will generate an output torque cmy
and the learning signal will generate a learning torque 75. Note that the learning
torque 7 is actually generated based on the new robot variables at the previous
instant, i.e. q1, ¢{, g which are derived from an input torque ¢y of the robot. This
makes cr; the desired torque and 75 the actual torque due to the neural network
giving an error e; = ¢ — 73. This error signal is then fed back into the neural
network to update the connection weights at the following instant and the process
repeats in the same fashion.

It is important to note that the error signal is found only at the end of the
second instant, i.e. after the desired and actual torques have been computed. Weight
updating, therefore, only starts at the third instant. This is illustrated in Table 1.

Table 1. Time history of torque computation and weight update.

Time ¢ Desired torque Actual torque | Computed error
(ims) | (due to command | (due to learning e=CTi-1—T;
signal) signal)
1 ms cn m -n
2 ms cT2 T2 cTy — T2
3 ms cT3 T3 cTy — T3 |
Weight updating
starts at 3 ms

!
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Fig. 3. Overall block diagram of robotic manipulator control system.

3. Design of a Fuzzy Controller

The general block diagram of the overall control system of the robotic manipulator
is shown in Fig. 3. The chosen inputs are the command signal (c), position error (p)
and velocity error (v). The output is the control torque (7) for all the three joints.
The data for the three crisp inputs ¢, p and v are extracted by simulating the NNC
of (Er, 1996) without any change in parameters from 0 to 1.5 in steps of 1 ms. These
data are supposed to be accurate since the neural network is well-trained. It is then
arranged in ascending torque values for the fuzzification stage. The range of values
for ¢, p, v and 7 for each joint can be estimated and are tabulated in Table 2.

Table 2. Universe of discourse.

Joint # Joint 1 Joint 2 Joint 3
Fuzzy Lower Upper Lower Upper Lower Upper
1/0 limit limit limit limit limit limit
c —5.6829 6.0562 —5.3052 7.0146 —0.8573 0.82
P —3.01E-04 | 1.29E—03 | —1.63E—03 | 2.23E—-03 —1.25E—04 | 0.864E—04
v —0.0132 0.0268 —0.0584 0.0817 —0.918E-03 1.7E-03
T —45.326 48.7527 —7.88081 6.0706 —32.2 270

3.1. Input Membership

The number of input Membership Functions (MF’s) is now determined. Using Joint 1
as an illustration, the input MF’s to represent the three fuzzy inputs (¢, p and v)
are triangular with 1/3 overlapping. As shown in Fig. 4, the two extreme ends are
represented by a flat response to indicate that the output is saturated at those points.
As for Joints 2 and 3, the shapes are similar except for the Universe of Discourse.
For such an MF, each input value has a possibility to fall into at least one and at
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most two different labels. The overlap ratio r, and the overlap robustness 7, are
calculated as follows:

a

Te = — =02
5a
. o area of overlap region fLU(uNs ®pps)  (1/3+1/3)(U - L)
b total area - 2U-L) 2(U - L)
=0.3333

Since the safety regions are 0.2 < r, < 0.6 and 0.3 < r;, < 0.7, the system is
regarded to be relatively stable. Note that the inputs will have fuzzy values known as
grades. The total grades from one or two labels for each input should be less than 1
since the overlap ratio is only 1/3. For r, = 0.5, the grades for each input values will
always sum up to 1.

3.2. Output Membership

Singleton MF’s are used to represent the fuzzy output as shown in Fig. 5. This is
because a singleton is easier to implement in software as it has a simple mathematical
representation. The numerical value of the crisp output 7 can be computed as follows:

Z(fuzzy output); * (singleton position on x-axis)

= (3)
Z(fuzzy output);

1

For the example shown in Fig. 6, the numerical value of the crisp output is given
by

(0.8)(—45) + (0.14)(—26.4) + (0.06)(—7.8)
= 0.8+ 0.14 + 0.06 = —40.16Nm (4)

3.3. Fuzzy Rules

The fuzzy rules are based on observations made about the neural network data. Con-
sider the data marked for Joint 1 in Table 3. Using the membership functions of
Fig. 4, the ¢ value is found to fall into the NM label, the p value into the NM and
NS labels and v into the NM and NS labels. As for the output torque, the value
falls in both the NB and NM labels with reference to Fig. 5. Thus, it will be repre-
sented in the particular positions of the Fuzzy Associate Memory (FAM) as shown
in Table 4. The corresponding FAM for the other two joints can also be represented
using their respective set of data as shown in Tables 5 and 6. To facilitate software
implementation, each label is represented by numbers as illustrated in Table 7.
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Fig. 4. Membership functions of Joint 1.
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Table 3. Sample data extracted from Joint 1.

Time | Torque Position error | Velocity error | Command signal
(s) (Nm) (rad)

1.45 | —30.7430 —9.80E-05 5.68E—03 -3.5790
1.29 | —30.4725 9.00E—06 —2.84E-03 —3.7870

1.46 | —26.1632 —4.12E-05 5.69E—03 —2.9935

Using the set of data indicated in Table 3, the rules listed below were designed:
If ¢ is NM and p is NM and v is NM, then 7 is NB.

If ¢ is NM and p is NM and v is NS, then 7 is NM and NB.

If ¢ is NM and p is NS and v is NM, then 7 is NB.

If ¢ is NM and p is NM and v is NS, then 7 is NM and NB.

The max-min inference method is employed in the software implementation. Hav-

ing obtained grades for the labels of each rule, the rules generated are of the following
form:

1.

If ¢ is0.6 NM and p is 0.4 NM and v is 0.35 NM, then 7 is NB.

2. If ¢ is 0.6 NM and p is 0.4 NM and v is 0.2 NS, then 7 is NM and NB.
3.
4. If ¢ is0.6 NM and p is 0.4 NM and v is 0.2 NS, then 7 is NM and NB.

If ¢ is 0.6 NM and p is 0.4 NS and v is 0.1 NM, then 7 is NB.

The minimum, which is known as the rule strength, is MIN(c,p,v) for each par-

ticular rule and is given as:

MIN[c,p,v] = 0.35 NB Rule 1
MIN[e, p,v] = 0.20 NM, NB Rule 2
MIN{e, p,v] = 0.10 NB Rule 3

[
MIN[c, p,v] = 0.20 NM, NB Rule 4
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Table 4. FAM for Joint 1.
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FAM for Joint 2.

Table 5.
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Table 6. FAM for Joint 3.
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Table 7. Representation of labels.

l Label l Input I Output '

NB -
NM
NS
PS
PM
PB -

W N

(o> T S T B BV S

The maximum of each output label is evaluated as the maximum of the four rule
strengths:

MAX|NB,NM,NS,PS,PM,PB] = [0.35,0.2,0,0,0,0]

This corresponds to the torques of 0.35NB and 0.2 NM. The actual torque value is
computed by defuzzification using the singleton method as discussed before.

3.4. Fine Tuning of Rules

After implementing FAM in software and after completion of defuzzification, simula-
tion studies were carried out to observe whether the robot is able to track the desired
path. Necessary corrections in the rules were made to offset the large initial error.
The final rules are shown in Tables 4-6.

4. Simulation Studies

In this paper, the Adept One robot shown in Fig. 7 is chosen to evaluate the perfor-
mance of the two control schemes. It is a SCARA (Selective Compliance Assembly
Robot Arm) configuration with a nearly full-circle work space of radius 31.5 in and
can carry a maximum payload of 13.21bs, moving it 1in. up, 12 in. over, 1in. down
and back to its starting position in 1.3s. It is unique in that it is the first commercial
robot to implement a direct drive system for actuation. No gears or other mechanical
power conversion devices are used. Instead, high-torque low-speed brushless DC mo-
tors are used to drive the joints directly. This eliminates gear friction and backlash
and allows for clean, precise and high-speed operation.

The Adept One robot is a four-axis horizontal-jointed robot. Its link-coordinate
system is shown in Fig. 8. The vector of joint variables is ¢ = [f) 0 d3 04]7. The first
two joint variables #; and 6, are revolute variables which establish the horizontal
component of the total position p. The third joint variable ds is a prismatic variable
which determines the vertical component of p. Finally, the last joint variable 8, is
a revolute variable which controls the tool orientation R. Using the D-H algorithm
(Schilling, 1990), the link coordinate diagram is constructed and simplified kinematic
parameters are listed in Table 8.
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Table 8. Kinematic parameters of the Adept One robot.

IAxis|0|d‘a1a]Home

1
2
3
4

q1
qz
0

g4

di a1 | @ 0
0 a2 | O 0
g3 | 010 100
de | 0 [ 0] 7/2

The first three axes of the robot position the tool-tip while the fourth axis orients
the tool through a roll motion. To keep the dynamic model relatively simple, it is
assumed that the mass of the fourth link and of any tool attached to it are sufficiently
small in comparison with the masses of the other links and they can be ignored. This
is a reasonable assumption as the links of the manipulator tend to become smaller
and less massive as it proceeds from the base joint to the tool.

By using the Langrange-Euler algorithm (Schilling, 1990), a dynamic model of
the three joints can be derived:

T =

1

where

3

[(El +mg + ms)al + (m2 + 2m3)a; a2 cos(fa) + (E + m3)a§] 61

3

- [(T—Z— + m3)a1a2 cos(fs) + (—:3,— + m3>a§] 6

— a1az sin(fs) [(mg + 2m3)9192 - (%3 + m3)922] + bl(él) (5)

- [(ﬂi + m3)a1a2 cos(f;) + (7_“33 +m3)a§] 5,

bg(dg) = bgd'g + sgn (d3)

2
+ (%3 + mg a2, + (—2— + mg ) araz sin(6:)63 + ba(62) 6)
= mads — gms + bs(ds) (7)
b (61) = 261 +sgn (1) |69+ (b5 — d) exp (“f”)] (8)
b2(62) = 636 + sgn (62) [b% + (b3 — dg) exp ("fz')] )

b¢ + (b —dg)exp( | 3')} (10)
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Ty, To and T3 being the control torques at Joints 1, 2 and 3, respectively. The
terms bY, b¢, b3, € and g denote the coeficient of viscous friction, coefficient of dy-
namic friction, coefficient of static friction, friction parameter and constant of gravity
(= 9.8 ms™?), respectively, and a1, as and d3 are as indicated in Fig. 8.

Simulation studies were carried out for all control schemes. The manipulator was
. . T
commanded to move from the initial position ginjtial = [0" 0° Om] to the final

position gana = [60° 45° 0.15 m]T. The sampling time was chosen to be 1 ms. The
design specifications are that the final position errors for the first, second and third
joint must be less than 52.3E-3rad, 39.27E-3rad and 7.5 mm, respectively. These
amount to less than 5% of the desired destinations. '

The simulations were carried out for the following cases:

1. An ideal situation where there are no payload and no variations in the coefficients
of static, dynamic and viscous friction.

2. The payload was increased from 0kg to 3kg which is approximately half of the
maximum load the Adept One Robot can carry while the other parameters were
kept constant at zero.

3. The coefficient of friction was increased from 0 to a certain value for a particular
joint while the other two coefficients of friction and the payload were kept at
zero. The payload mass as well as all the coefficients of friction for the two other
joints were maintained at zero.

4. Three trajectories, Paths A, B and C which represent the original trajectory,
the trajectory for which the speed of the robotic arm is reduced by half and the
trajectory for which the speed of the robotic arm is doubled were created to test
the robustness of the FC. The FC was also subjected to a sine function trajectory
to test whether the trajectory is invariant.

5. The controllers were subjected to combined variations of the payload and coefli-
cients of static, dynamic and viscous friction.

5. Simulation Results

For brevity, only simulation results of Joint 1 for Cases 1, 2 and 4 will be presented.

5.1. Ideal Situation

Simulation results for the Computed Torque Controller 1 (CTC1), Computed Torque
Controller 2 (CTC2), NNC and FC are shown in Fig. 9. The end-point and total
errors for the four controllers are listed in Table 9.
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Table 9. End-point and total tracking errors of Adept One robot
in ideal situation.

1 8.34465E—05 7.87323E—-02 | —1.28837E—-02 6.58893
2 1.66893E—05 7.16087E—02 | —5.43880E—03 7.28812
3 1.28001E—-05 3.0967TE—02 | —5.18996E-03 6.87389

1 —2.96593E—04 1.18422 1.2815E—04 0.488114
2 —1.63269E—-03 3.19699 1.99974E—-04 0.507885
3 —3.276TTE—05 4.8721E—-02 —4.88758E—-06 | 3.53905E—02

The following observations can be made about the simulation results:

1. The results are in general satisfactory. However, the CTC2 which is designed with
partial knowledge of the parameters of the robot manipulator does not yield as
accurate results as the other controllers. The controller exhibited no convergence
to the desired trajectory for the third joint. The CTC1 is designed using the
inverse dynamics of the robot manipulator with exact parameters. Thus, it is
expected to achieve the most accurate result when compared with the other
controllers in terms of both end-point and total tracking errors.

2. Generally speaking, the FC performed well except for its control torque which
oscillated at a high frequency of 1 kHz. This is not acceptable in practice because
the motors could be overloaded and the manipulator would oscillate. The high
frequency oscillations of the control torque can be eliminated by using MAX-
PROD in place of MAX-MIN in the fuzzy rules. The improvement is illustrated
in Fig. 10.

3 Since the FC is designed using the data obtained from the NNC, it is expected
that the shape of the control torque is quite identical to that of the latter.

5.2. Variations of the Payload Mass

The payload mass was increased from 0 to 3 kg while the coeflicients of static, dynamic
and viscous friction were kept at zero. The simulation results for the computed-torque
controllers, NNC and FC are shown in Fig. 11. The end-point errors and total errors
for the four controllers for Joint 1 are listed in Table 10.
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Fig. 9. Plot of (a) actual and desired trajectory, (b) control
torque, and (c) position error of Joint 1.
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Fig. 10. Control torque obtained using MAX-PROD.

Table 10. End-point and total tracking errors of Adept One robot
in payload variation for Joint 1.

0.0 * 8.34465E—05 | 7.87323E—02 | —1.28837E—02 6.58893
05 * | —1.56164E—04 0.176075 —1.34917E—02 6.54295
1.0 * | —3.92914E—04 0.318514 —1.40797E—02 6.49585
3.0 —-1.31643E—-03 0.929688 —1.63026E—-02 6.42230

0.0 * | —2.96593E—04 1.18422 1.28150E—-04 0.488114
0.5* | —6.41108E—-04 1.83899 4.01497E-04 0.485443
1.0 * | —1.23668E—03 2.74246 4.07100E—-04 0.514085
3.0 —3.59237E—-03 7.34395 6.49571E—04 0.609143

The following observations can be made regarding the simulation results:

1. Both the end-point and total tracking errors increased when the payload was
increased from 0 to 3kg. The third joint experienced a large increase in both
errors. This is due to the effect of the load on its movement by the gravity term.

2. From Fig. 11 it can be seen that for Joint 1 both computed torque controllers
are capable of tracking the trajectory. However, the third joint failed to converge
to the desired trajectory as the load was increased. The NNC experienced a
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Fig. 11. Plot of actual and desired trajectories for Joint 1 under
payload variation.
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convergence problem during the initial stage, but managed to adapt to track the
trajectory after some time.

3. Comparing with the other controllers, the FC achieved reasonably good results
and revealed no convergence problems for all three joints regardless of the payload
increase. This is particularly so when the load was increased to 3kg. As seen
from Table 10, only the FC was able to achieve the specification when the load
was 3 kg.

5.3. Variations of the Trajectory

The performance of the FC was studied and compared with the other three controllers
in terms of the tracking errors of the robot manipulator for three different trajectories,
namely Paths A, B and C. They represent the original trajectory, the trajectory whose
end speed is half of that of Path A, and the trajectory whose end speed is twice as
large as that of Path A, respectively. The FC was also subjected to a sine function
to examine its adaptive capabilities. The payload mass and coeflicients of static,
dynamic and viscous friction were set to zero in this simulation study.

Simulation results for the CTC1, CTC2, NNC and FC are shown in Figs. 12
and 13. The end-point and total errors for the four controllers for Joint 1 are tabulated
in Table 11.

Table 11. End-point and total tracking errors of Adept One robot
under different tracking trajectories for Joint 1.

A 4.29750E—05 3.92004E-02 | —6.45053E—-03 3.22769
B 8.34465E—05 7.87323E-02 | —1.28837TE—02 6.58893
C 1.75953E—04 0.152033 —2.66454E-02 13.56030

A -3.05176E—05 0.27312 6.0451E—-04 0.560862
B —2.96593E—-04 1.18422 1.2815E—04 0.488114
C —3.87697TE—02 67.88790 —7.53403E-03 5.488560

The following conclusions can be drawn from the simulation results:

1. The performance of the controllers improved when Path B was used. Since the
speed of Path B is half of that of Path A, it is expected that the performance is
better. All the four controllers exhibited convergence to the desired trajectories
except for CTC2.
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2. The performances of the controllers deteriorated when the trajectory was changed
to Path C. As the speed for Path C was twice as large as that of Path A, the
control torque was observed to be higher for all controllers. In the case of Path C,
the CTC2 performed even poorer, whereas the second and third joints exhibited
more instances of non-convergence to the desired trajectory. The NNC only
experienced an initial problem of convergence for the first and second joints.

3. When the FC was subjected to a sine function trajectory, it was able to track well
except at the initial stage. The plots of actual and desired trajectories, control
torques and position errors for the joints of the manipulator are shown in Fig. 14.
End-point and total position errors are listed in Table 12. Owing to the fact that
the FC was not redesigned for the sine trajectory, the performance is considered
satisfactory. It is exptected that the performance would be much better if the
FC was redesigned for the sine trajectory.

Table 12. End-point and total tracking errors of Adept One robot
under sine function trajectories.

1 1.05381E—04 27.91250
2 —4.29898E—04 2.91946
3 -5.06508E—-03 134.32800

6. Conclusions

In this paper, an FC for a three-link manipulator has been proposed and simulat-
ed. Simulation results have shown that the performance of the proposed controller
is better than that of the NNC of (Er, 1996) and those of the Computed Torque
Controllers of (Craig, 1989). Furthermore, the controller is shown to be robust. This
is demonstrated via simulation studies under the ideal situation, variations of the
payload and coefficients of static, dynamic and viscous friction, changes in the tra-
jectory and combined variations of the above. However, it was found that the control
torque is highly oscillatory when the MAX-MIN function are used in the fuzzy rules.
These high oscillations could be eliminated by using MAX-PROD in the fuzzy rules.
In summary, another approach of using neural networks and fuzzy logic to control
an n-degree-of-freedom robotic manipulator has been demonstrated via simulation
studies on the the Adept One Robot.
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