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RECENT DEVELOPMENTS IN 2D POSITIVE
SYSTEMS THEORY

Errore FORNASINI*, MARIA ELENA VALCHER*

Two-dimensional (2D) positive systems are 2D state space models whose vari-
ables take only nonnegative values and, hence, are described by a family
(A, B, M, N,C, D) of nonnegative matrices. In the paper, the notions of asymp-
totic and simple stability, corresponding to an arbitrary set of nonnegative initial
conditions, are introduced and related to the spectral properties of the matrix
sum- A + B. Some results concerning the positive realization problem for 2D
rational functions are also presented.

2D compartmental models are introduced as 2D positive systems which
obey some conservation law, and consequently are characterized by the prop-
erty that the matrix pair (A, B), responsible for their state-updating, has a
substochastic sum. A canonical form to which every 2D compartmental model
can be reduced is derived here, thus leading to obtaining interesting results about
stability and positive realizability problems. The relevance of these models is
illustrated by means of a couple of examples.

1. Introduction

The interest in 2D systems goes back to the early seventies (Attasi, 1973; Fornasini
and Marchesini, 1978; Roesser, 1975), and was initially motivated by the relevance
of these models in seismology applications, X-ray image enhancement, image deblur-
ring, digital picture processing, etc. More recently, some contributions dealing with
river pollution modelling (Fornasini, 1991) and the discretization of PDE’s which
describe gas absorption and water stream heating (Marszalek, 1984) naturally in-
troduced a nonnegativity constraint in 2D system equations. Also, two-dimensional
models involving only nonnegative variables were succesfully adopted for describing
the diffusion process of a tracer into a blood vessel (Vomiero, 1992).

This kind of instances stimulated, in the last few years, a systematic analysis of
2D positive systems, i.e. 2D state-space models whose input, state and output vari-
ables take positive (or at least nonnegative) values, where the results presented in
(Fornasini, 1991; Marszalek, 1984; Vomiero, 1992) could be naturally framed. Re-
search efforts in this context were first oriented to extend “positive matrix theory”
to pairs of matrices. As a consequence, the Perron-Frobenius theorem (Valcher and
Fornasini, 1995) and the notions of irreducibility (Fornasini and Valcher, 1997a) and
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primitivity (Fornasini and Valcher, 1997b), as well as some interesting interpretation
of these notions in terms of graphs, are now available also for nonnegative matrix
pairs.

Although these results allow for a satisfactory analysis of the free state evolution
of 2D positive systems and for a complete characterization of their asymptotic stability
(Fornasini and Valcher, 1996; 1997a; 1997b; Valcher, 1997; Valcher and Fornasini,
1995), a number of interesting issues remain still unexplored, and will be addressed
in this paper.

Our objective is twofold. First, we aim to supply a unified discussion of several
topics that can be grouped around the concepts of internal and external stability of
2D systems and the related notion of stable realization. Second, the results we present
are intended to serve as a motivation for the study of 2D compartmental systems, the
central theme of this contribution.

During the last decades compartmental modelling techniques have been increas-
ingly applied to the analysis of biological and chemical processes, and, more generally,
for investigating dynamical systems to which the law of conservation of matter (of
energy, etc.) applies (Jacquez, 1972). As a rule, compartmental models consist of a fi-
nite number of compartments with specified interconnections among them that either
represent fluxes of materials from one site to another or chemical transformations or
both. Consequently, their behavior is described by a finite set of ordinary differential
equations or, in the discrete case, by one-dimensional (1D) difference equations.

There are situations, however, where the physics of the phenomenon one aims to
model has an intrinsic multidimensional nature, as both time and spatial coordinates
are involved. Actually, if the propagation time cannot be neglected, lumped parameter
models are inadequate to describe the system behavior, and we have to resort to partial
differential equations or to multidimensional (nD) discrete systems.

In this paper we start introducing 2D compartmental models by means of some
simple physical examples (Section 4). The structure of the resulting equations in-
duces quite naturally a definition of a 2D compartmental model as a 2D positive
system with the property that its state updating matrices have a substocastic sum.
This constraint, although rather weak, entails far-reaching consequences on the sta-
bility properties of the system. Moreover, it allows us to derive a canonical form for
2D compartmental models which provides deep insights into their asymptotic behav-
lor and, in particular, into the asymptotic contents of various compartments when
no external input is applied (Section 5). Finally, some preliminary results on the
realization problem by means of 2D compartmental models are presented.

Before proceeding, it is convenient to introduce some notation. In order not
to digress too far, the notions of cone, polyhedral cone, positive matrix and directed
graph are only brirefly reviewed for notational purposes: adequate information can be
found e.g. in (Berman and Plemmons, 1979; Brualdi and Ryser, 1991; Minc, 1988).
Also, in an attempt to gain the basic information on the subject as economically
as possible, no detailed account is included on the basics of 2D system theory and
of classical complex analysis. The interested reader is referred e.g. to (Bose, 1985;
Fornasini and Valcher, 1996; Hahn and Epstein, 1996; Kaczorek, 1985).
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Throughout the paper we will denote by R} the nonnegative orthant, namely
the set of all nonnegative vectors in the n-dimensional Euclidean space R™. A set
K C R" is said to be a cone a > 0; a cone is convez if it contains, with any two
points, the line segment between them.

A convex cone K in R™ is said to be polyhedral if it can be expressed as the set
of nonnegative linear combinations of a finite set of generating vectors. This amounts
to saying that a positive integer £ and an n x £ matrix K can be found, such that
K coincides with the set of nonnegative combinations of the columns of K. In this
case, we adopt the notation K := Cone (K).

If M = [mj;] is a matrix (in particular, a vector), we write M > 0 (M strictly
positive), if m;; > 0 for all ¢,5, M > 0 (M positive), if m;; > 0 for all 4,7, and
mpy > 0 for at least one pair (h, k), and M > 0 (M nonnegative), if m;; > 0 for all
1,j. The spectral radius of a matrix M is the modulus of its maximal eigenvalue and
is denoted by p(M), while its indez (Rothblum, 1975) is the smallest nonnegative
integer & for which ker(p(M)I — M)* = ker (o(M)I — M)*+1.

To every positive n x n matrix M we assign (Brualdi and Ryser, 1991) a directed
graph (digraph), D(M), of order n, with vertices indexed by 1,2,...,n. There is an
arc from vertex 7 to vertex j if and only if m,; > 0. We say that vertex j is accessible
from i if there exists a positive integer A such that the (4,7)-th entry of M", [M");;,
is positive. Vertices i and j are said to communicate if each is accessible from the
other. The concept of communicating vertices allows us to partition the totality of
n vertices in D(M) into communicating classes such that each vertex within a class
communicates with every other vertex in the class, and with no other vertex. The
spectral radius of a class C is the spectral radius of the submatrix of M whose rows
and columns are indexed by the vertices in C.

A chain of classes in D(M) is a collection of classes such that each class in the
collection has access to or from every other class in the collection. The length of a
chain is the number of classes in the chain whose spectral radius coincides with p(M).
In the paper, we indicate by

Pri={(21,22) € C : |aa| <ry|ze| <1}

the open polydisc of radius v and by P, its closure. Given a polynomial d(z;,23) €
R[z1, 23], the variety of d, V(d), is the set of all points (a, 8) of C? such that
d(a, B) = 0.

For a pair of nxn matrices, (4, B), the characteristic polynomial is defined
as Aa p(z1,22) := det(I, — Az; — Bzy), and the Hurwitz products, AMu*B, are
inductively defined as

APw®B=4" A>0 and AwW*B=B* k>0 (1)
and, when h and k are both positive,
AMu*B = A(AP'WFB) + B(AMWF 1 B) (2)

It is easily seen that A™*B is the sum of all matrix products that include the factors
A and B, h and k times, respectively.
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2. Stability Properties of 2D Positive Systems

A 2D positive system is defined (Fornasini and Valcher, 1996; 1997a; Valcher and
Fornasini, 1995) as a discrete quarter-plane causal 2D state model (Fornasini and
Marchesini, 1978)

z(h+1,k+1) = Az(h,k+1)+ Bz(h+1,k)
+ Mu(h,k+1) + Nu(h +1,k) (3)
y(h,k) = Cz(h,k) + Du(h, k) (4)

hk€Z, h+k>0

¥ = (A4,B,M,N,C,D) for short, where the doubly indexed local states x(h, k), the
outputs y(h, k) and the inputs u(h, k) are elements of R}, R} and RT, respectively,
and A,B,M,N,C and D are nonnegative matrices of suitable dimensions. Further-
more, the inital conditions are given by assigning a sequence Xy := {z({,—£): L € Z}
of nonnegative local states to the separation set So:= {(£,—£): £ € Z}.

Stability issues for 2D positive systems are naturally concerned with the unforced
state evolutions determined by arbitrary assignments of nonnegative initial conditions
to the separation set Sp. In the special case when the initial conditions on So are all
zero, except at (0,0), the unforced state evolution at point (h, k) is given by

x(h, k) = (AMwu*B) 2(0,0), VhkeN

while for an arbitrary set of initial conditions Xy, the local state at an arbitrary point
(h,k) € Z*, h+k > 0, can be obtained by linearity as

z(h, k) =Y (A"t B) z(¢,—0) (5)
4

where the Hurwitz product A"~4u*+¢B is assumed zero when either h—£ or k+ /¢
is negative. :

Intuitively speaking, a 2D system will be considered positively asymptotically
stable if the free state evolution corresponding to an arbitrary set of nonnegative initial
conditions uniformly extinguishes on the separation sets S; := {({,t — ) : £ € Z},
as t goes to infinity, while for positive stability we only require that all free state
trajectories generated by nonnegative initial conditions are bounded.

It is clear, however, that an unbounded sequence of initial conditions on So
usually determines a free evolution which fulfils neither of these requirements, as
local state vectors on each separation set constitute an unbounded sequence, except
in the case of finite memory systems. So, it is convenient to restrict the family of
admissible initial conditions by assuming that the initial local states z(¢, —£) on Sy
satisfy

0<z(l,-l)<wv, VIETZ (6)
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for some suitable vector v € R} . Under this assumption, the stability definitions are
naturally formalized as follows.

Definition 1. The 2D positive system (3)—(4), or equivalently the pair (A, B) of
nonnegative n x n matrices, is said to be

o positively asymptotically stable if every set Ay of bounded nonnegative initial
conditions determines a free evolution which asymptotically estinguishes, i.e.

z(h,k) =0 as h+k—+4o0

o positively stable if for every € > 0 there exists § > 0 such that any sequence
of initial conditions satisfying 0 < x(¢, —{) < dun, with u, denoting the n-
dimensional vector [1.1 ... 1]7, determines a free evolution for which

0<z(hk)<eun, VYhk€eZ,h+k2>0

The characterization of asymptotic stability given in the following proposition
was first derived in (Valcher, 1997), while (ii). provides a complete characterization
of simple stability which refers to the structure of the digraph D(A + B) associated
with the sum of the two transition matrices.

Proposition 1. Consider a 2D positive system (8)—-(4), with state transition matrices
A,B e R"™"™. Then

i) (A, B) is positively asymptotically stable if and only if p(A+B) <1 (i.e. A+B
is the state transition matriz of an asymptotically stable 1D system);

i) (A, B) is positively stable if and only if p(A+B) <1 and p(A+B) =1 implies
that in the directed graph D(A+ B) there are no chains of length greater-than I,
(i.e. A+ B is the state transition matriz of a stable 1D system,).

The proof requires the following two lemmas.

Lemma 1. Consider the 1D positive system
2(t+1) = Mz(t) (7)
System (7), or equivalently matriz M, is

i) asymptotically stable if and only if the free state evolution corresponding to any
nonnegative initial condition z(0) asymptotically estinguishes, and

it) stable if and only if the free state evolution corresponding to any nonnegative
initial condition z(0) is bounded.

Proof. (i) and (ii) The “only if” parts are obvious. The “if” parts follow from linearity
and the fact that every initial condition z(0) can be expressed as the difference of
two nonnegative vectors: z(0) = z.+(0) — z_(0), for some z(0),2_(0) > 0. n
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Lemma 2. Consider a 2D positive system (3)-(4) with state transition matrices
A,B e R™™. Then (A,B) is

i) positively asymptotically stable if and only if the 1D system
z(t+1) = (A+ B)z(t) (8)
s asymptotically stable;

it) positively stable if and only if system (8) is stable.

Proof. (i) If (A, B) is asymptotically stable, then for every set of nonnegative
initial conditions A the corresponding free dynamics goes asymptotically to zero.
In particular, when the initial local states x(—£,£) are all equal, namely z(-£,£) =
xp >0 for all £€ Z,then x(h,t—h) = 0 as t = co. But z(h,t—h) = (A+ B)tx,
and thus stability implies (A + B)txo — 0 as ¢t — oo, for every nonnegative xo. By
the previous lemma, this allows us to say that (8) is asymptotically stable.

Conversely, assume that (8) is asymptotically stable. If A, is an arbitrary set of
initial global conditions satisfying (6), for some suitable v € R, then

o(h,t —h) = Y (APt~ B)a(—£,0) <> (AP P By
£ £

= (A+B)'v — 0
t—o0
which proves that (A, B) is positively asymptotically stable.

ii) Follows the same lines as part (i). [ |

Proof of Proposition 1. Part (i) follows immediately from the previous lemma. As far
as part (ii) is concerned, by the previous lemma (4, B) is positively stable if and only
if A+ B is stable, but this amounts to saying that p(A+B) <1 and if p(A+B) =1,
then A+ B has unitary index. By a result due to Rothblum (1975), the index of a
nonnegative matrix coincides with the length of the longest chain in the associated
digraph, and this proves the result. n

3. The Positive Realization Problem for 2D Rational Functions

Since the publication of the celebrated paper by Maeda and Kodama (1981), the
positive realization problem for (1D) proper rational functions has been the object of
a wide-spread interest in the literature: just to cite some fundamental contributions on
this subject, let us mention (Farina, 1994; Farina and Benvenuti, 1995; Nieuwenhuis,
1982; Ohta et al., 1984; Zaslavskii, 1989). The problem statement is a very simple
one, namely that of finding, for a given transfer function, a state equation in which the
state variables and the output take nonnegative values whenever the initial states and
the inputs are nonnegative. Despite its simplicity, it was only recently that Anderson
et al. (1996) and Farina (1996) gave a fundamental contribution to the solution of
this problem, by providing an iterative algorithm for testing the positive realizability
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of a given rational function w(z), based on the analysis of the spectral properties of
a family of functions suitably derived from w(z).

Apart from its theoretical importance, the interest for this problem was largely
motivated by its possible applications, as pointed out in several contributions (Gersho
and Gopinath, 1979; Luenberger, 1979; Ohta et al., 1984; Rinaldi and Farina, 1995).
As 2D positive systems are also adopted for modehng physical systems in the context
of biology, bioengineering, chemistry, etc., when the variables involved are functions of
a pair of independent variables (generally time and space or two spatial coordinates),
the relevance of the realization problem in the context of 2D rational functions is
immediately apparent. '

In this section, we will restrict our attention to strictly proper 2D transfer func-
tions, namely rational functions w(z1,z2) € R(z1,22) satisfying w(0,0) = 0. These
functions are those and those only that can be realized by means of a 2D state-space
model with D = 0. The analogous results for proper rational functions follow im-
mediately when expressing each function w(z1,22) as the sum of its strictly proper
part and of D := w(0,0). Also, dealing with SISO systems, we will adopt the special
notation (A4, B,m,n,c’).

The first step toward the solution of the realization problem for 2D rational
functions is given by the following proposition that strictly reminds us of the well-
know result of Maeda and Kodama (1981) (see also Anderson et al., 1996) for the 1D
case.

Proposition 2. Let w(z1,22) € R(z1,22) be a strictly proper 2D rational transfer
function. A necessary and sufficient condition for the existence of a nonnegative real-
ization of w(z1,z) is that there ezist a realization ¥ = (A, B,m,n,c?) of w(z,zs)
and a polyhedral cone K such that the following conditions hold true:

i) AKCK and BKCK;

it) the reachability cone R(X) = Cone(m,n, Am,An + Bm, Bn,....), generated by
the vector coefficients of the power series expansion of (I — Az, —Bz3) ™ (mz +
nza), is included in K;

i) c belongs to the dual cone of K (Berman and Plemmons, 1979), i.e. ¢fv >0
for every v € K.

Proof. (Necessity) If there exists a positive realization of w(z1,23), & = (4,
¢!, and n denotes its dimension, then conditions (i)—(iii) hold true for ¥ := Z
K=R".

+

Q- |

(Sufficiency) Assume that there exist both a realization ¥ = (4, B,m,n,c’) and a
polyhedral cone K such that (i)—(iii) hold true. If n is the dimension of ¥ and
K is an nx{ matrix generating the cone, i.e., K = Cone(K), then condition (i)
guarantees that nonnegative matrices A and B can be found such that AK = KA
and BK = KB. On the other hand, (ii) implies, in particular, m,n € X, and hence
both m = Km and n = K% hold true for suitable vectors m,n > 0. Finally,

condition (iii) leads to &% := ¢TK > 0.
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We aim to prove that the nonnegative 2D state-space model £ = (4, B, m, 7, &7)
realizes w(z1,22). This amounts to saying that ¢7(I — Az — Bzy)~(mz) + fizg) =
¢T(I — Az1 — Bzy) ™' (mz; + nzy), or, equivalently, that the power series expansions
of the two functions coincide. So, it is sufficient to verify the following identity:

& [(AM Ik By + (A" B)a] = T [(AM 1wt By + (4PW* 1 B)n]  (9)

for every pair of nonnegative integers h and k.

It is easy to show, by induction, that for every pair of nonnegative integers, 4
and j, we have K(A'w/B) = (A"wiB)K. Consequently, one gets

&7 [(Ah—lmké)m + (Ahmk—lB)ﬁ] = cTK[(Ah-lm’cB)m + (Ahmk-lf‘;)n]
=T [(Ah“luJ’“B)Km +( Ahmk-lB)Kﬁ]

=cT [(Ah_lLukB)m + (AhLuk_lB)n]

thus proving (9). |

The above proposition deserves some comments. Although it may appear just
as the two-dimensional analogue of the result presented in (Anderson et al., 1996), it
turns out to be a weaker characterization of positively realizable 2D functions. Indeed,
given a positively realizable function f(z) and any of its state-space realizations
(F,g,hT) (for instance, a minimal one), a polyhedral cone can be found satisfying
the 1D analogous of conditions (i)-(iii). In the 2D case, instead, not every 2D state-
space realization of a positively realizable function admits a polyhedral cone K for
which conditions (i)-(iii) hold true. This is quite unpleasant, as it rules out the
possibility of solving the realization problem by analysing one of its realizations, but
it is absolutely natural once we think of how the set of all realizations of a 2D proper
rational functions is organized.

Actually, the state-space realizations of a rational function f(z) can be thought
of as constituting a tree structure whose root is the (essentially unique) minimal
realization, and every other realization can be obtained by the minimal one by suit-
ably increasing the unobservable and/or uncontrollable parts. In the 2D case, the
realizations of a given function w(zy,2;) are naturally viewed (Fornasini, 1978) as
constituting infinitely many different tree structures, each one representing the set
of realizations corresponding to a particular noncommutative power series having
w(z1,22) as commutative image. Of course, noncommutative power series that ex-
hibit some negative coefficients have no positive realization, and conditions (i)~(iii)
cannot be fulfilled by any of their state-space realizations. As every function w(z;, 22)
is the commutative image of a noncommutative power series with some negative coef-
ficients, the testing procedure suggested in the above proposition necessarily fails for
some realizations of w(z1,23). More precisely, if we consider the realizations of the
same noncommutative version of w(zy, 23), either for all of them or for none of them
polyhedral cones K can be found satisfying the three requirements. This situation is
better understood by means of the following simple example.



Recent developments in 2D positive systems theory 721

Example 1. Consider the strictly proper rational function w(z1,22) = z122. It is
immediately seen that

womnr=([3 212 43 [0 o)

is a positive realization of w(z1,22). On the other hand, once we think of w(z1, 22)
as the commutative image of the noncommutative power series 7 = 2£1& — &6,
by applying a modified version of Ho’s algorithm (Fornasini, 1978) we easily get the
following realization of 7 and hence of w(z1, 22):

010 00 1 0 0
(F1,Fy,91,95,hT)={ [0 0 0],{0 O O}, 0 |,|2],[1 0 0]
00 0| [0 00 —-1 0

We aim to show that no polyhedral cone in R*® can be found satisfying (i)—(iii) of
Proposition 2 w.r.t. the realization (Fi,Fs, g1, g2, hT). Suppose, by contradiction,
that such a polyhedral cone K exists, and let '

kT
K=|k'|, hkeR, i=12]3
k3

be a generating matrix of K. Condition (iii) guarantees k1 > 0, while condition (i)
implies that both k; and k3 must be nonnegative, and therefore X must be included
in the positive orthant Ri. But then, as g; is not in R3, condition (ii) cannot be
verified. ¢

As a consequence of the situation now described, the problem of determining
when a given 2D rational function w(z1,22) admits a positive realization is much
more complicated than its one-dimensional counterpart. Interestingly enough, how-
ever, when w(zy, z2) is positively realizable, then, in particular, a positive realization
(A,B,m,n, c’) can be found for which the variety of the characteristic polyno-
mial A4 p(21,22) satisfies the following special constraint: if n(z1,22)/d(21,22) is
an irreducible representation of w(z1,22), and hence V(d) represents the set of all
singularities of w, then

min {r € Ry : P, N V(d) # 0}

min{r € Ry : P, NV(AxB) # 0}
= (R,R), ReR, (10)

This is a quite interesting result, as it extends to the 2D case — a theorem due to
Anderson et al. (1996), saying that any positively realizable function f(z) has a real
positive pole r with maximum modulus and it admits a positive realization (F, g, hT)
with p(F) = r. The proof of this proposition depends on a couple of technical lemmas.

Lemma 3. Let f(2) be a rational transfer function whose power series ezpansion
;';05’ 20 has nonnegative coefficients. If R is the radius of convergence (Hahn and

Epstein, 1996) of the series, then R is a pole of f(z).
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Proof. As f(z) is arational function, its power series expansion Z % fiz' converges
(absolutely and locally uniformly) in every open disc centered at the origin, D(0,r),
whose radius r satisfies 7 < min {|p| : p a pole of f(z)}. Consequently,

R:min{fpl : p a pole of f(Z)} = |po|

for some (possibly complex) pole py of f(z). We aim to show that |pa| is a pole
of f(z), too. For every real o satisfying 0 < a < 1, by exploiting the nonnegative
assumption on the f;’s, one gets

Z fiot|po|* = aiPoI) (11)

+o0
flepo)| = thiOtipr
=0 =0

As the left-hand side of (11) diverges as o — 1, we have f(a|po|) —7 © and
consequently |po| is a pole of f(z). [ ]

Lemma 4. Let w(z1,22) € R(z1,22) be a proper rational 2D tmnsfe'r function,
n(z1,22)/d(z1,22) an irreducible representation of w(z,z) and Eh o WhkZ12E a
power series expansion of w(zy,z;) within a suitable open polydisc, centered at the

origin. If all coeﬁiczents why of the power series expansion are nonnegative and
R :=min{r € Ry : P, NV(d) # 0}, then

i) f(2) :=w(z,2) has a pole of minimum modulus at z = R;

i) w(z1,22) has a (nonessential) singularity at (R, R).

Proof. (i) Observe first that the power series expansion Y% b b0 whi2lzE is absolutely
convergent at every point (z,z), with |2|] < r < R. Consequently, the 1D power

series Eu:o (Z,H_k:,, whk>z" converges for every z with |z| < R and hence f(z)
is analytic in the open disc D(0,R). If f(z) had not a pole at z = R, then, by
Lemma 3, it would be devoid of singularities within the closed disk D(0, R), and

there would be some ¢ > 0 such that R+ ¢ is the radius of convergence of f(z). In
this case, we would have

+co

g(}g:, wn) (R4 3) <o (12)
and hence

- e\t enk

,L{,T;O wie(R+3) (R+3) <oo (13)

This implies that the power series expansion of w(z1, 25) is convergent in Prys, thus
contradicting the assumption that R is the radius of convergence of w(zi, zz)

(ii) As f(z) = w(z,2) has a pole at R, w(z1,2;) has a singularity at (R, R), which
is nonessential by the rationality assumption. [ ]
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Proposition 3. Let w(z1,22) € R(z1,22) be a strictly proper rational 2D transfer
function, which is positively realizable, and let n(z1,z3)/d(z1,22) be an drreducible
representation of w(z1,22). If R := min{r € Ry : P, N V(d) # 0}, there ezists a
positive realization ¥ = (A, B,m,n,c?) with p(A+ B) = 1/R, and when so

R=min{r e Ry : P, NV(Asp) # 0} (14)

Proof. Let S := (A, B,m,7,¢%) be a positive realization of w(z1, z). If the spectral
radius of A+ B does not coincide with 1/R, we must have p(A+ B) > 1/R. Clearly,
1 := (A+ B,m+17,e") is a positive realization of the 1D rational function f(z) :=
w(z,z), whose minimal modulus pole is located at R, as a result of the previous
lemma. From the inequality p(A+ B) > 1/R, it follows that the eigenvalue p(A+ B)
belongs either to the unreachable or to the unobservable part of ;. Suppose, for
instance, that p(A+B) is not observable. Then there exists a nonnegative eigenvector
v of A+ B corresponding to p(A+ B) such that Hv = 0. Without loss of generality,
we can reorder the entries of the state vector of ¥; so that

=l 00], v'=[00 7]
with el and vy strictly positive vectors. Let

o A1+ Bin Ajg+ Bz Az + Bis
A+ B=|Ay + By A+ Byy Azz+ Bas
As1 + Bs1 Azs + B3y Ass + Bss

Because (A+B)v = p(A+B)v, the zerosin v force Aj3+Bs =0 and A3+ Bss =0,
and therefore Ai3, A3, B13 and B3 are zero. But then the zero blocks in ¢ and
A+ B mean that an unobservable part is displayed, and a lower dimension, but still
positive realization of f(z) is provided by

[A11+Bii A+ Bz [mu+ng [T 0]
| A21+ Ba1 Ao+ Bao |’ |ma4mng |t '

Correspondingly,

(A1 Al Bi1 Bis my ny (el 0]
| A21 Aza |’ |Ba1 By |’ |ma|’|ng |t
constitutes a lower dimension positive realization of w(z1,z2s). Similarly, if p(A + B)

belongs to the unreachable part, we can obtain lower dimension positive realizations
both of f(z) and of w(zy,2).

So, starting with an arbitrary positive realization of w(z1, z2), and hence of f(z),
we can reduce it until obtaining a positive realization of f(z), £; = (4+B,m+n,cT)
with p(A + B) coinciding with 1/R. Consequently, & = (A4, B,m,n,cT) will be the
desired positive realization of w(z1, z2).

It remains to show that if p(A+ B) = 1/R, then (14) holds true. The result has
already been proved in (Fornasini and Valcher, 1996) for the case of A+ B irreducible.
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So, suppose now that A+ B is a reducible matrix and reduce it to Frobenius normal
form (Brualdi and Ryser, 1991)

A1 +Byy Ao+ Bis ... Aip+ Bin
As2 + B ... Asp + By

PT(A+B)P = moTmo (15)
Anh + Bhp

with A;; + B, irreducible blocks, by means of a suitable permutation matrix P.
Clearly, there exists some index k such that p(Agx + Bgr) = 1/R, and hence, by the
irreducibility of Agy + Bgs,

R=min{r € Ry : Pr N V(Ay,, B,.) # 0}
On the other hand, one has

min {r € Ry : P, NV(Ag,,.B,.) = min{r € Ry : P, N V(A4 ) # 0}
which proves the result. ]

By combining together the results of Propositions 1 and 3, we get the following
result, which provides a necessary and a sufficient condition for the existence of a
positively (asymptotically) stable positive realization.

Corollary 1. Let w(zi,z2) € R(z1,22) be a positively realizable rational function
and let n(z1,22)/d(z1,22) be one of its irreducible representations.

i) If V(NP1 = 0, there exists a positively asymptotically stable positive realization
of w(z1,z22).

i) If V(d) NPy # B, no stable realization of w(z1,25) can be found and hence, in
particular, there exist no positively stable positive realizations.

Proof. (i) If V(d) NPy =0 and w(z;,2) is positively realizable, then, by Proposi-
tion 3, there exists a positive realization (4, B,m,n,c’) with p(A + B) < 1, which
is positively asymptotically stable, as a consequence of Proposition 1.

(ii) This result follows immediately from the fact that for every realization
(A, B,m,n, CT) of w(z1,22), V(d) C V(AA,B)' n

4. Some Examples of 2D Compartmental Systems

2D compartmental models are 2D positive systems satisfying some additional con-
straints which represent the mathematical formalization of some conservation laws.
Before explicitly investigating the properties of this class of systems, it may be use-
ful to have a couple of physical applications in mind, as examples of the sort of
phenomena we aim to model. In both cases, the derivation involves making many
simplifying assumptions and 2D difference equations provide only crude descriptions.
We will concentrate, instead, on some aspects that illustrate how these examples can
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be viewed as paradigms of a broad class of dynamical behaviors that can be potentially
investigated by applying 2D compartmental systems techniques.

Example 2. (Single-carriageway traffic flow) Our aim is to represent, by means of a
discrete model, the traffic flow along one carriageway of a motorway. To this end we
introduce the following assumptions:

a)

b)

The road is partitioned into elementary stretches of length L and the time into
elementary intervals of duration T'.

At time instant tT, t € Z, the set of cars inside the stretch [¢L,(£+1)L), £ € Z,
is partitioned into groups of equal speed span, say V km/h. This amounts to
saying that the first group consists of all cars whose speed belongs to the interval
(0,V], in the second group there are all cars with speed in (V,2V], and so on.
Also, one more group is considered, which includes all cars that at time tT are
temporarily stopping at a gas station, or in a parking place, etc. The groups are
sequentially indexed from O through n, with 0 denoting the class of stopping
cars, 1 the lowest speed group and n the highest. If v;(-,-) represents the
number of cars belonging to the i-th group, then the “state” at time t7T' of the
£-th stretch, [L,(¢+ 1)L), is given by the vector

’Uo(@,t)
(%1 E,
v(l,t) = ( 2

Un (Z, t)

The number of vehicles is large enough to allow for assuming that the v;’s are
continuous, rather than integer, variables.

Inputs and outputs at motorway intersections are modeled apart. Typically, only
some stretches exhibit an intersection and it is obvious that the output levels in
[tT, (t+ 1)T") cannot exceed the number of cars running through those stretches
in that time interval.

Car drivers belonging to the i-th group at time ¢T' exhibit a propension (prob-
ability) pj; to instantaneously move to the j-th speed class at the beginning of
the next time interval, and to drive at that speed during (¢T), (¢ + 1)T)]. Clearly,
Z?:o pji = L.

The length L of a road stretch satisfiess L > nVT. Consequently, every car that
belongs to the f£-th stretch at time ¢7', at time (¢ + 1)T" belongs either to the
same stretch or to the (£+ 1)-th. If we assume that there are r cars moving
within the i-th speed class during the time interval [t (¢t + 1)T'), and that at
time tT' they are uniformly distributed along the stretch [¢L, (£ + 1)L), then,
only g;r of them, with

_@i-1VT
9ii=

reach the following stretch before (¢ + 1)7. The remaining (1 — g;)r cars are
still in the original stretch at time (¢ + 1)T. ¢
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As a consequence of the above assumptions, when disregarding outflows and

inflows at the interconnections, we get the following model:

v(l+1,t+1) = GPv(l,t) + (Ins1 — G)Po(£ +1,1) (16)

where G = diag{0,91,92,.--,9n}, P = [pi;] and In4:1 is the identity matrix of size

n+

1.

Finally, by resorting to the following transformation:

T 225 Z%: (4,8) = (hk) = (,t — £)

and assuming

z(h,k) == v (T—l(h, k)) =v(hh+k)

we can rewrite (16) as

x(h+1,k+1) = GPz(h,k+ 1) + (Int1 — G)Pz(h + 1,k) (17)

Example 3. (Streeter-Phelps discrete, model for river pollution (Fornasini, 1991)) In
modeling the self-purification process of a polluted river, we introduce the following
assumptions:

a)

The variety of pollutants dissolved in the river can be reduced to one class of
oxidizable substances, whose concentration is measured by the amount of oxy-
gen (BOD = biological oxygen demand) needed for their complete biochemical
oxidation.

The selfpurification process is essentially due to dissolved oxygen (DO) which
oxidizes polluting materials and eventually converts them into abiotic substances
and heat.

As the variations of BOD and DO concentrations on river cross sections can be
reasonably considered less significant than the longitudinal ones, we assume for
the river a (spatially) one-dimensional model. Moreover, hydrological variables
and, in particular, the stream velocity V', are supposed to be constant all over
the river.

The river is divided into elementary reaches of length L. The time step T and
the elementary reach L are connected through the stream velocity V' by the
equation

TZ—V“

so that the water element centered at ¢L at time ¢t7 will be centered at (£+1)L
at time (t+1)T. ¢
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We denote by B(£,t) and §(¢,t) the concentration of BOD and the deficit of
DO w.r.t. the saturation level, respectively, in the elementary reach centered at £L

at time ¢T. BOD and DO values at ((e + 1)L+ 1)T) are obtained on the basis
of a discretized balance equation accounting for different contributions. In fact:

¢ Diffusion is modeled by assuming that the BOD content of the elementary water
volume, centered at £L at time ¢7', undergoes in [tT, (¢t + 1)T") a variation pro-
portional to the differences 8(£ —1,t) — 8(¢,t) and S(£+1,t) — B(4,t). The same
assumption is made for the DO diffusion process.

e Self-purification: in the time interval [tT", (¢ +1)T") the BOD concentration in the
£-th river reach is decreased by the same amount:

alTﬂ(é,J t)

the DO deficit is increased.

e Reaeration takes place at the water-atmosphere interface. We assume that in
[tT, (t +1)T) the DO deficit is reduced of the amount given by

agTd(Z, t)

e BOD sources: effluents, local run-off, etc., modifying the BOD concentration,
determine an exogenous input to the system, which is denoted by wug(-,-).

By making the above assumptions, we obtain the following model:

[ﬂ(£+1,t+1)] _ s [ﬂ(z,t)] D [ﬁ(@—l,t)}

S(l+1,t+1) 5(¢,1) §(6—1,1)
B£+1,1) M
+D |:5<€+ l,t) + 0 ’ulﬁ(f,t) (18)
where
1 _[1—aT—2DT 0
§ = lsiliy = { o T 1-asT - 2D5T]

DgT' 0

Notice that, as M ,a1,a2,Dg and Ds are positive and T is small, all matrices in the
above equation are positive.

The model (18) can be reduced to an equivalent one having the same structure
of (17). Actually, defining

[ 82
B+t Sy e | w261
260 =\ "5 and o ulhn= {U(2If+ UJ

5(20+1,1)
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we get
z(l+1,t+1) = Az(£,t) + Bz({ + 1,t) + Ma(L,t) (19)
where
[din s 0 0 7
b0 dy 0 0
A= 0 s2 dea S22
L 0 O 0 dyy
rdiy 0 0 0 7 M 0
| s11_dn 0 0 10 M
B:= 0 0 dys 0 |’ M= 0 0
L s21 O 899 dgg i 0 0

Finally, by applying the same coordinate transformation 7 as in Example 2, and
letting

z(h, k) :

Il

(T (h, k)) = 2(h,h + k)

u(h,k) == @(T 7 (h,k)) = @b, b+ )
we get the following equation:

z(h+1,k+1) = Az(h,k+ 1) + Bz(h+ 1,k) + Mu(h,k + 1) (20)

5. Structure of 2D Compartmental Systems

Both processes analyzed in the previous section have been modeled by means of a 2D
positive system, described as in (3)-(4). Models (17) and (20) exhibit an additional
property: the sums of the state transition matrices, namely GP + (I — G)P in the
first example and A + B in the second, are (column) substochastic, i.e. the sum
of the entries in each column of GP + (I — G)P and of A + B does not exceed
one. This property represents the mathematical formalization of the fact that the
number of cars as well as the amounts of chemical components cannot increase unless
external inputs are applied. More precisely, the i-th component, z;(h, k), of the state
x(h, k) influences only the states at (h+ 1,k) and (h,k + 1), and its contributions,
ai;zi(h, k) at (h+1,k) and b;jz;(h,k) at (h,k+1), i=1,2,...,n, cannot sum up
to a quantity greater than the original z;(h, k). A complete conservation corresponds
to a stochastic matrix sum, whereas leakages or losses motivate the fact that some
columns in the matrix sum are not stochastic.

"It is clear that this kind of systems represent a two-dimensional analogue of
discrete time 1D compartmental models, thus motivating the following definition.

Definition 2. A 2D compartmental system is a 2D positive system (3)—(4) with
A + B substochastic.
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Although this requirement on A 4+ B does not give any information on the zero-
patterns of A and B, it introduces, however, strong constraints on the spectral
properties of the pair (A4, B) we aim now to investigate. To this end, it is convenient
to make the (not restrictive) assumption that the matrix sum A+ B is in Frobenius
normal form

My, My ... M,
Moy Ms.

A+B= . : (21)
My,

with irreducible diagonal blocks M;;, i =1,2,...,7.

Proposition 4. Let A+ B € R}*" be a substochastic matriz, with the block-
“triangular structure given in (21). Then

i) p(My) <1 for every i € {1,2,...,7} and p(A+B) <1;

i) if p(My;) = 1, then Mj; s stochastic, Mj; = 0 for every j # 4, and the mazimal
modulus eigenvalues of A + B are simple roots of the minimal polynomial of
A+ B.

Proof. (i) If M is any substochastic matrix, there exists a nonnegative matrix A
such that M 4+ A is stochastic, and hence p(M), the spectral radius of M, satisfies
p(M) < p(M +A) =1. Since A+ B is substochastic and this property is inherited by
all diagonal blocks M;;, we have p(A+B) < 1 and p(My;) <1 forall i€ {1,2,...,r}.

(i) Assume p(M;;) =1, and suppose, by contradiction, that M;; is not stochastic.
Then there exists a nonnegative matrix A # 0 such that M;; + A is stochastic, and
the irreducibility of Mj;; guarantees (Minc, 1988) that p(My) < p(My + A) =1, a
contradiction. So, as each column of M;; has already a unitary sum, all entries in the
blocks Mj;, j # i, must be zero. As a consequence, by applying a suitable cogredience
transformation, we can always assume that A 4+ B has the following structure:

[Miy 1
M22 ) %k kK
M, A1 + Bi1l A2 + Bie 22
Msirs+1 Mstis42 oo Mogar | 0 | Agy + By
0 Mgyiosyos  Msior
L M, |
where the M;;’s, 1 =1,2,...,s, are irreducible stochastic matrices, while the M,;’s,

i=s+1,8+2,...,r, are irreducible substochastic matrices with p(M;;) < 1.
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Finally, in order to prove that every unitary modulus eigenvalue e/? of A + B
is a simple root of the minimal polynomial, it is sufficient to show that

ker (e?T — A — B) = ker (/] — A — B)?

Clearly, as 71— Ag, — B3 is a nonsingular matrix, all vectors in ker (e/7—A— B)2,
and consequently in ker (/7 — A — B), have the second block of entries, namely the
one corresponding to (eI — Ay — Byy), identically zero. On the other hand, since
all blocks My;, i = 1,2,...,s, are irreducible and stochastic, ker (e’ — M;;) =
ker (e91 — M;;)?, which proves the result. "]

A 2D compartmental system (3)-(4) described by a pair (4, B) whose matrix
sum has the structure and the properties of matrix (22) is said to be in canonical
form. This form suggests some interesting remarks that further motivate the name
of compartmental models for 2D positive systems with 4 + B substochastic.

Consider first the 1D compartmental system associated with the matrix sum
A + B, block partitioned as in (22),

Z(t+1) = (A + B)z(t) , (23)

Each class of compartments corresponding to some irreducible stochastic block M;;,
i € {1,2,...,s}, presents no losses, by this meaning that the total content of the
compartments in that class cannot decrease as time elapses. On the other hand, the
contents of the remaining compartments decrease to zero, partly due to losses and
partly due to transfers to lossless compartments. As a consequence, for every initial
assignment z(0) of the compartment contents, only the components corresponding
to stochastic blocks can be nonzero in the state vector z(t) as ¢ goes to infinity.

When considering 2D models, it is convenient to think of local states on the
same separation set S; := {({,t — £),£ € Z} as representing the contents at time ¢t
of compartments z,z1,...,z, at the different space locations £ € Z. The content
z;(£,t — £) of the i-th compartment at time ¢ and location ¢ distributes at time
t + 1, possibly with losses, among the compartments at locations £ and £+ 1, with
rates given by the i-th column of B and A, respectively. By recursively applying
this reasoning, it is easy to see that z;(¢,t—{) at time ¢+ N distributes (with losses)
among the compartments at locations £,£+1,...,£+ N, and its total contribution
to the contents of these compartments is expressed by ‘

(A+ B)YNejz;(L,t - 0)

where e; denotes the i-th canonical vector in R®. Again, as t goes to infinity,
all compartments corresponding to nonstochastic blocks are progressively emptied,
whereas those corresponding to stochastic blocks accumulate the whole content, apart
from losses, of z;(¢,t — £).

Similar results hold true, by linearity, when taking into account the simultaneous
contribution of all local states on S;, thus making clear in what sense the conservation
laws hold true when spatial diffusion processes have to be taken into account. As we
can expect, the conservation laws which govern the state updating of 2D compart-
mental models entail interesting consequences in terms of stability properties.
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Corollary 2. A 2D compartmental system with state transition matrices A and
B is always positively stable, and is positively asymptotically stable if and only if
p(A+B) < 1.

Proof. Since A + B is substochastic, its spectral radius never exceeds 1. Moreover,
as A+ B is cogredient to the Frobenius normal form (22), there cannot be chains of
length greater than 1. So, both conditions of point (ii) in Proposition 1 are met, and
all 2D compartmental systems are stable. The second statement of the corollary has
already been proved in Proposition 1. ]

To conclude, we aim at solving the following problem: Suppose that w(z;,z2) is
a positively realizable function, under what conditions w(z,23) can be realized also
by means of a 2D compartimental model? Obviously, as a consequence of Corollaries
1 and 2, the variety of the singularities of w(z;,22) must not intersect the open
unitary polydisc. This condition, however, is by no means sufficient. For instance,
the rational function

(1—21)(z1 + 22) + 23
(I=2)?

’U)(Zl ) 22) =

admits the positive realization

oo ([ I3 3 e )

and the variety of its singularities does not intersect the open polydisc P;. However,

(1-2)2z+2% 22-2°
1-2?2 — (1-2)7?

f(z) =w(z,2) =

has a pole of multiplicity 2 at z = 1, and hence cannot be realized by any stable 1D
system. Consequently, w(z1,z2) cannot be realized by means of a 2D compartmental
model (which should be positively stable).

The following proposition provides a sufficient condition for problem solvability.

Proposition 5. Let w(z1,22) € R(z1,22) be a strictly proper rational 2D transfer
function which is positively realizable, and let n(z1,22)/d(z1,22) be an irreducible
representation of w(z1,z22). If V(d) NPy =0, then

i) there ezists a positive realization ¥ = (A, B,m,n,cT) with p(A+ B) <1;
1) if in the Frobenius normal form of A+ B

My M ... M,

- Maa Mo,
M:=PT(A+B)P = . : (24)

MT"I'
M;; being irreducible, with P a permutation matriz, p(My;) = 1 implies

M;; =0 for all j < i, then w(z1,22) can be realized via a 2D compartmental
system.
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Also in this case, we need two preliminary lemmas.

Lemma 5. Let M be a positive nxn matriz, with p(M) < 1. A necessary and
sufficient condition for the existence of a diagonal matriz D = diag{d;,ds,..., dn},
d; > 0, such that D*M D is substochastic, is that some vector v >0 can be found
satisfying vT M < vT.

Proof. Clearly, D™*M D is substochastic, i.e.,
(11 ... 1](D'MD)<[1 1 ... 1]

if and only if

1 1 1

—_— - ... = D <

[dl a5 dn]M <[t 1 1]
or, equivalently, [1/dy 1/dy ... 1,d,]M < [1/dy 1/d» ... 1/d,], which
proves the result. | ]

Lemma 6. Let M be a positive n xn matriz, in Frobenius normal form (24), with
p(Mi;) <1, i=1,2,...,r. A necessary and sufficient condition for the existence of a
diagonal matriz D = diag{dy,ds,...,dn}, d; > 0, such that D' MD is substochas-
tic, is that p(M;) =1 implies Mj; =0 for all j < i.

Proof. Assume that M is similar to a substochastic matrix by means of a pos-
itive diagonal matrix. By the previous lemma, there exists v > 0 such that
vITM < vT and we can express v, according to the block partition of M, as
ol = [oT I ... 7], v; > 0. Let My, i > 2, be a diagonal block with
p(My;) = 1. If there were an index j < 4 such that Mj; > 0, then v} M;; > 0
and hence v;M;; < v?. But as M;; is irreducible, this would imply (Berman and
Plemmons, 1979; p.28) p(M;;) < 1, thus contradicting the original assumption.

Conversely, suppose that corresponding to p(M;;) =1 we have M;; = 0 for all
J <. It is not restrictive to assume that the diagonal blocks of M are ordered in
such a way that

M M Mgy Mygys ... My 7
Mo Moy o Mo,
My My,
M= (25)
Mpyiogr Megre42 ... Mgy
Meyoera Moy
b MTT -

with p(Ml) unitary if 1 =1,2,...,¢, and less than unitary for i = £+1,£+2,...,7.
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We aim to explicitly construct a strictly positive vector v = [vT I ... »T]
satisfying vTM < vT. For each irreducible block M;;, let &7 > 0 be a left eigen-
vector of Mj; corresponding to the spectral radius p(M;;). For i = 1,2,...,¢, set
v, := 9, while for 7 > £+1 construct vectors v; by iteratively applying the following

procedure:

o Set wl = 2;;11 ﬁj-T]iji.

e Consider any real number «; > 0 such that a;(1—p(M;;))8F > w?. The existence
of such an ¢; is guaranteed by the fact that 7 is strictly positive.

i
T. T
i

e Assume v; = a;7; .

It is easy to verify that v obtained in this way satisfies the desired condition, thus
proving that M is similar to a substochastic matrix via some positive diagonal matrix.
|

Proof of Proposition 5. (i) If follows immediately from Proposition 3.

(ii) If we assume that all blocks Mj;, j # 4, in (24) are zero when p(My) = 1,
then M can be described as in (25), with p(Mj;) unitary if ¢ = 1,2,...,4, and
less than 1 for 4 = £+ 1,£+ 2,...,r. This implies that there exists a nonsin-
gular diagonal matrix D > 0 such that D™'MD is substochastic. But then
((PD)~*A(PD),(PD)"*B(PD), (PD)"'m,(PD) 'n,c"(PD)) is a 2D comparti-
mental model realizing w(zy, 22). ]

6. Final Remarks and Conclusions

In this paper, internal and external stabilities of 2D positive systems have been con-
sidered and the related problem of obtaining a positive stable realization for a given
BIBO stable rational function has been analyzed. The above issues have been later
investigated in the special case of 2D compartmental systems, i.e. 2D positive systems
with the property that their state updating matrices have a substochastic sum. A
couple of examples have also been considered, enlightening concrete applications of
the rich body of 2D theory in this area. A distinguishing feature, with respect to
procedures based on the discretization of ODEs or PDEs models, is that a first prin-
ciple derivation of the discrete model is obtained, based on balance equations among
different compartments.

Some theoretical results presented here have only been touched upon and de-
serve further investigation. In particular, a complete characterization of the spectral
properties of minimal positive realizations is still lacking. Future research should
also take into account state reconstruction and feedback control, hopefully leading to
satisfactory algorithms for the monitoring and control of 2D positive systems.
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