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nD CONTROL SYSTEMS IN A PRACTICAL SENSE

L1 XU*, Osam1 SAITO*
KENICHI ABE**,

In view of the features of practical nD signals and systems, this paper presents
a comprehensive treatment on some theoretical and methodological results and
possible applications for the control of nD systems in the practical sense that
the input and output signals of the systems are unbounded in, at most, one
dimension. Recent results on the basic properties and control problems for
the case under consideration such as practical BIBO and internal stabilities,
practical controllability and observability, feedback practical stabilization by
both the algebraic and the state-space method, and the relation between the
two methods will be summarized. Further contributions to the practical tracking
problem and its applications will also be developed.

The results obtained make it clear that the nD control problems eongid-
ered in the practical sense can be essentially reduced to the corresponding 1D
problems, and thus can be solved, when compared with the conventional nD
system theory, under less restrictive stability conditions and by much simpler
1D methods. In particular, it is shown that the proposed method for 2D prac-
tical tracking control in fact provides a general design approach for a class of
iterative learning control systems and linear multipass processes. Therefore, the
presented control theory for nD systems in the practical sense is of significance
not only from the point of view of practical applications of nD system thecry, -
but also from that of control of such iterative systems.

1. Introduction

In many practical situations of nD (muitidimensional) signal processing, such as
seismic and image processing, the independent variables i1,...,i, of an nD sig-
nal z(i1,...,i,) are usually spatial variables bounded in finite domains, except that
perhaps one variable is the unbounded temporal variable. Based on this feature,
Agathoklis and Bruton (1983) introduced the concept of practical BIBO (bounded-
input bounded-output) stability for nD discrete systems, which proved to be less
restrictive and more relevant for practical applications than the conventional BIBO
stability. Some results on the design of nD digital filters based on practical BIBO
stability have been documented in the literature (see e.g. Reddy et al., 1990).
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Since practical BIBO stability conditions are much weaker than the conventional
ones, there exist systems that are practical BIBO stable but not conventional BIBO
stable (Agathoklis and Bruton, 1983). This fact means that the current design meth-
ods for nD (n = 2) systems, developed under the conventional BIBO stability concept,
cannot be applied to design practical BIBO stable feedback systems (Xu et al., 1994b).
In fact, many new problems need to be investigated if we want to deal with the control
problems of nD systems in such a practical sense.

It has been well-known that a large class of iterative learning control systems
and linear multipass processes can be described by 2D system models (Boland and
Owens, 1980; Geng et al., 1990). As a common feature of these systems, it is observed
that, though the iteration index is not subjected to any boundary condition, the
dynamical processes on each trial or pass are always restricted in finite time intervals.
It is natural, therefore, to consider that it would be possible to establish a simple
and unified approach for the control of these systems under less restrictive stability
conditions derived in some practical sense.

With such motivations, the authors have recently considered some fundamental
control problems of nD systems, such as internal stability (Xu et al., 1996a) and feed-
back stabilization (Xu et al., 1994b; 1996b), in the practical sense of (Agathoklis and
Bruton, 1983), i.e. under the assumption that the system input and output signals
are unbounded in at most one dimension. The results obtained show that these nD
control problems in the practical sense can be essentially reduced to the correspond-
ing 1D problems and solved by the well-known 1D approaches. This property is of
special significance as it implies that for some cases nD control problems may be
unsolvable under the conditions of conventional stability, but can be solved under the
less restrictive practical stability and meanwhile by much simpler 1D methods.

The purpose of this paper is to show the state of the art of the control theory
for nD systems in the practical sense, by summarizing the above-mentioned previous
results and showing some further results on the practical tracking problem and its
applications.

The paper is organized as follows. Section 2 reviews the results on practical
BIBO stability and practical internal stability. Sections 3 is devoted to treatments
of the problem of practical stabilization by both the matrix fractional description
(MFD) algebraic approach and the state-space approach. In Section 4, 2D practical
tracking problem and its applications to iterative learning control systems and linear
multipass processes will be investigated. Section 5 shows some numerical examples
to support the theoretical results.

Troughhout the paper, R denotes the field of real numbers, C is the field
of complex numbers, Z, stands for the set of non-negative integers, Z7 =
{(il,...,‘in) l il,...,in € Z+}, Z;n: {(7,1,,'Ln) | il,...,in € Z+, but if ’ij = +OO,
then i < +o0, §=1,2,...,n, k # j, i.e. no more than one of i1,...,i, can be infi-
nite simultaneously}. U, U, T denote the open, closed unit disc and the unit circle
in C, respectively. U™, U™, T™ stand for the open, closed unit polydisc and the unit
torus in C*, respectively. AT or zT are the transposes of matrix A or vector z;

I is the m xm identity matrix; (i1,...,0;,...,4,) = (b1, 05=1,0, 8501, -+ oy in);
. A .
(D,...,Zj,...,O):(0,...,0,1]',0,..‘,0).
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2. Practical Stabilities

In this section, we review the concepts of practical BIBO stability and practical
internal (asymptotic) stability for nD discrete systems and the corresponding neces-
sary and sufficient conditions shown by Agathoklis and Bruton (1983) and Xu et al.
(1996a).

2.1. Practical BIBO Stability

Consider the class of SISO (single-input single-output) linear shift-invariant nD dis-
crete systems for which the input u(iy,...,i,) and the output y(i,...,%,) are re-
lated by the nD convolution sum:

y(in, . Z thl—kl, Gin—kaJulks,. k) (1)
k1=0  kn=0
where h(i,...,in) is the impulse response. Using the nD z-transform.
F(z1,...,% Z Z fli1, .- yin) z1 ozl (2)
11“‘0 zn_O
we obtain the transfer function of (1)

n(z1,-..,2n)
d(z1,---,2n)

For the nD system (1), the practical BIBO stability is defined by:

H(zl,...,zn): (3)

Definition 1. (Agathoklis and Bruton, 1983) An nD system is practical BIBO stable
if and only if, for all input signals u(i1,...,%,) such that

IU(Zl,,’Ln)‘SM<OO V(’Ll,,’l,n)EZ;n (4)

where M is a finite real number, there exists a finite real L such that, for the output
of the system y(iy,...,%n), the relation

ly (i1, ... in)| S L <00 (5)
is satisfied.

The difference to the conventional BIBO stability which is defined by replacing
Z37" by Z% in (4) (Jury, 1978) is that, for the case of practical BIBO stability, the
behaviour of the system at the points where more than one of the indeterminates take
an infinite value are not considered (see Agathoklis and Bruton, 1983).

It is well-known that the nD system (1) is (conventional) BIBO stable if and only
if its impulse response satisfies the following relation (Jury, 1978):

SN (b, in)] < 00 6)

11=01i2=0 i, =0
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In contrast, Agathoklis and Bruton (1983) have proved the following theorem which
reveals the relationship between the practical BIBO stability and the impulse response
of an nD system.

Theorem 1. (Agathoklis and Bruton, 1983) AnnD discrete system is practical BIBO
stable if and only if the n inegualities are satisfied:

N1 No Np=o00

Ny,
Yod D D (g, ik i) <00, k=1,2,...,m  (7)

i1=0 i5=0 =0  ip=0
where N1, Na,...,Ng_1, Ngy1,..., N, are any finite integers.

Further, the following theorem relates the practical BIBO stability to the singu-
larities of an nD transfer function.

Theorem 2. (Agathoklis and Bruton, 1983) The nD system (3) is practical BIBO
stable if and only if

d0,...,2k,-..,0) #0 Vg €U, k=1,2,...,n (8)

It is well-known that, when an nD system given by (3) has no nonessential
singularity of the second kind (Bose, 1982) on T? when n = 2 (Goodman, 1977),
oron U™ —U"™ when n > 2 (Swamy et al., 1985), the system is conventional BIBO
stable if and only if

d(z1,--52n) 0 V(21,...,2,) € U™ (9)

We therefore see that the condition (8) for practical BIBO stability is in fact
equivalent to the stabilities of n 1D systems, and this is much weaker than the
condition (9) for conventional BIBO stability.

2.2. Practical Internal Stability

Consider the nD Roesser state-space model (Kaczorek, 1985; Kurek, 1985) given by

x'(i1,...,0n) = Az(ir,...,0n) + Bu(iy, ... i) (10a)
y(ir, ... in) = Cx(i, ..., %) + Duliy, ... i,) (10b)
where u(iy,...,i,) € R™ and y(i1,...,in) € R! are the input and output vectors,
respectively; x(i1,...,7,) € R" is the local state vector in the form
ml(il,...,in) ml(il'i']wiZ:"'72.77«)
) ) :Uz(’il,...,in) o ) I:Q(il,i2+1,"-,in)
(i1, .., in) = ) , (1,02, 0n) =

{En(il,...,in) mn(i1>i2a"'7i'n+1)
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with @;(i1,...,in) € R% (i=1,...,n, i =3 7  n;) being the i-th (sub-)vector of
x(i1,...,0n); and
An oo Ain By
Anl T Ann Bn
with A;;, B;, C; and D being constant real matrices of suitable dimensions, in
particular, A;; € R%*™ (4 =1,...,n).
When f(i1,...,in) =0 for (i1,...,in) € Z7, the nD 2z-transform of (2) can also
be written as (Bisiacco et al., 1989)
Flzy,...,za) = > fli,.sin)2l o2 (11)
iy+eetin 20

Applying this to the nD system (10) yields

2(z,... ) = ([ — ZA)~ (ZBu(zl, )+ Xo) (12)
y(z1,..,2n) = Cx(21,...,20) + Du(21,...,2n) (13)
where
Z = block diag(z11n,, 220ng, * » Znln,) (14)
and
Xo = Z x(iy,... i)z - 2in (15)
it tin =0

Let Xy = 0. Then we obtain the input/output relation

Y(21,.. - 20) = G(z1,.. ., 2n) ulz1, -5 2n) (16)
where G(z1,...,2,) is the transfer matrix given by
G(z1,...,2n) =C(I—-ZA)'ZB+ D (17

The characteristic polynomial of the nD system (10) is defined as
p(21,...,2n) = det(I — ZA) (18)
and we have the following relation (Xu et al., 1996a):
p(0,...,2k,...,0) = det(ln, —2xAre), k=1,...,n (19)

Note that, in order to investigate the internal stability in this subsection, it will
be enough to consider only the SISO case. Therefore we assume here m =1 =1 for
the Roesser model (10). Introduce the following notation:

X, = { (i1, ,in) ER \sz—r} (20)
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where it is assumed that z(i1,...,i,) =0 when (i1,...,i,) € Z7%, and x;(i1,...,0;,

vin) =0 (j=1,...,n) except z(0,...,0). Note that this assumption implies that
z(i1,...,1in) € Xy may be of any given value, say zg, for (i1,..-,%) = (0,...,0), but
is zero for (i1,...,4,) # (0,...,0). Further, denote by ||z(i1,...,4,)|| the Euclidean
norm of local state x(i1,...,4,) in the state space R* and deﬁne in the practical
sense of (Agathoklis and Bruton 1983), the following norm for X,

n
“‘i}?‘”ho = II;IL&].:C{H(E(U, e ,ij_l,T - h,ij+1, oo ,’L'.n)” | h :Z ik, _7 = 1, - ,’I’L} (21)
= k=1
(=
where ho is an arbitrary finite positive integer. For brevity, let [|X,|| = || %[5, in
what follows.

Definition 2. (Xu et al, 1996a) For the nD system (10), suppose that u = 0 and
IXOH is finite. Then the systern is said to be practically internally (or asymptotically)
stable if ||X,|| = 0 as r — co for any finite hy.

It might be noted from (21) that, for a certain j € {1,...,n}, giving a finite Ay in
fact implies that only i; may be infinite while 4y,...,4;_, 1j41,-..,0n are restricted
to some finite values. Considering then the situations for any finite hq and for all
J =1,...,n, we see that the defined practical internal stability means that for any
finite |]X0H llz(i1, ... ,in)|| approaches zero as (any) one of the variables i,..., i,
goes to infinity but all the others are finite, or equivalently, as r =iy + -+ +1i, — 00
but (i1,...,in) € Z}".

The following necessary and sufficient condition for practical internal stability
has been shown in (Xu et al., 1996a).

Theorem 3. The nD system (10) is practically internally (or asymptotically) stable
if and only if all the matrices Agk (k=1,...,n) are stable in the 1D sense, i.e.

PO, 2k, .., 0) = det(In, — 2k Aek) #0 Yz €U, k=1,...,n (22)
For the 2D case, another well-known state-space model is the Fornasini-
Marchesini model (Fornasini and Machesini, 1978) described by the equation
z(in + 1,92 + 1) = A1z(iy, 10 + 1) + Aoz (iy + 1,i)
+ Byu(iy, iz + 1) + Bou(is + 1,49) (23a)

y(il,ig) = C.’D(il,iz) + Du(il,iz) (23b)

The characteristic polynomial for the 2D system (23) is p(z1,22) = det(I — 21 4; —
z2A43) (Fornasini and Marchesini, 1978). In the same way as for the Roesser model,
one can also define the practical internal stability for a 2D Fornasini-Marchesini model,
and show that a 2D system given by (23) is practically internally stable if and ouly if
Ay (k=1,2) are 1D stable, i.e. det(I — 2, Ag) #0,Vz, € U, k= 1,2.

The results obtained in Theorem 3 reveal that the practical internal stability of
an nD system is also equivalent to the stabilities of n 1D systems, just like the case
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of practical BIBO stability. When n = 2, in particular, a system given by (10) or (23)
is practically internally stable if and only if

p(zl,O) 36 0) p(O,Zg) 7£ Ov VZl,Zz € [j (24)

In contrast to this, however, a 2D system is internally stable in the conventional
sense (Ahmed, 1980; Fornasini and Marchesini, 1979) if and only if p(z1,22) # 0,
VY(z1, 29) € U?, which is obviously much more restrictive.

It should also be noted that the conditions given in (24) are necessary and suf-
ficient for 2D practical asymptotic stability, i.e. asymptotic stability in both cases
where i; is unbounded (but i bounded) and 4, is unbounded (but ¢; bounded).
If the case we have is known a priori, then only one of the conditions in (24) needs
to be satisfled, as coincides with the result of (Kurek and Zaremba, 1993). A similar
comment also applies to the nD case.

Let G(z1,...,2n) = C(I — ZA)™'ZB + D = b(z1,...,2n)/a(z1,...,2n) be the
transfer function for the nD system (10) when m =1=1, and G(0,...,zx,...,0) =

be(0,...,28,...,0)/ar(0,...,2x,...,0), k =1,...,n. Since cancellations may occur
between the numerators and the denominators, a(z1,...,2,) and ag(0,...,2,...,0)
are not in general equal to p(z1,...,2,) and p(0,...,2k,...,0), respectively. There-

fore, though practical internal stability implies practical BIBO stability, the converse
is not necessarily true. It has been clarified in (Xu et al., 1996a) that a state-space
realization of a practical BIBO stable system is practically internally stable if and
only if it is practically stabilizable and practically detectable, which will be defined in
Section 3.2. Moreover, it has also been shown that, for the 2D transfer function
b(z1,22)/a(z1,22), a practically internally stable (Roesser or Fornasini-Marchesini
model) realization can always be obtained if b(z1,22)/a(z1,22) is practical BIBO
stable (Xu et al., 1996a).

3. Design of Practically Stable nD Feedback Control Systems

Detailed treatments concerning practical stabilization of nD systems by algebraic and
state-space approaches and their relations will be stated in the following subsections.
By practical stabilization, we mean to find a feedback compensator such that the
resultant closed-loop system is practically stable.

3.1. Algebraic Approach

We describe here the MFD approach to the design of practically stable output feed-
back nD systems. Let G be the ring of nD causal rational functions, H be the ring
of nD practically-stable rational functions, i.e.

G:{g | n,d € Rz, ...,z d(o,.._,());éo}

n
d
andlet I={he H|h'eG}, J={hec H|h e H}.

H:{ €G|d0O,...,2%,...,00#£0 Yz €T, k:1,2,...,n}
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Denote by M(x) the set of the matrices with entries in the set * (e.g. G, H).
An element of M (H) is then said to be G-unimodular (respectively H -unimodular)
if and only if it is square and its determinant belongs to I (J). If P € M(G) can
be written as P = N,D,', where D,, N, € M(H) and D, is G-unimodular, we
refer to such N, D, as a right MFD of P (on {G, H,I,J}).

Definition 3. For a right MFD NpyDy 1 we say that N, and D, are right coprime
on H and that N,D*' is a right coprime MFD on H if and only if there exist
W,V € M(H) such that the Bezout equation

WD, + VN, =1 (25)
is fulfilled.

The dual definitions of the left counterparts are given analogously. It is easy to see
that, for any P € M(G), we can always find N,, D, € M(R[z1,...,2,]) C M(H)
with det Dp € I such that P = N,D;!, but N, and D, are not necessarily right
coprime on H. The following theorem gives a necessary and sufficient condition for
the existence of a right coprime MFD of P on H. Suppose, without loss of generality,
Np, Dp € M(R[z1,...,2,]) and det Dp € I. Let Z; denote the ideal generated by
all the maximal-order minors of the matrix

DP(O,...,zk,...,O)

26
NP(O,...,Zk,...,O) ( )

and V(Zy) be the algebraic variety of 7y, i.e. the set of common zeros of the minors,
where k=1,2,...,n.

Theorem 4. (Xu et al,, 1994b) For N,D;' where N,, D, € M(R[z, oo Zn))
and det Dp € I, Dy and Ny are right coprime on H if and only if
VIZ)NU =0, k=1,2,....,n (27)

The proof of this theorem in (Xu et al., 1994b) gives a constructive solution
algorithm for the Bezout eqn. (25):

Algorithm 1.

Step 1. When (27) holds, solve the following 1D polynomial matrix equations by the
well-known 1D methods (Kucera, 1979):

Xi(z1)Dp(0,. ., 25, .., 0) + Vi(2k)Np (0, .. 2, ..., 0) = By (24) (28)
where Xj(2), Yi(zs) € M(R[2]), and

det ®4(zx) #0 Vzr e U, k=1,2,...,n (29)
Step 2. Construct the following solution to (28) for k=1,...,n:

{ Xi(z) = X (2k) + ReNg(21)
Vi(zr) = Yi(2r) — RuDi(2k)
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where Dy (21), Ni(zx) € M(R[z;]) satisfy

D (21) Ni(21) = Np(0, ..., 215 - .-, 0) D710, ..., 2k, .. ., 0) (31)
and are left coprime, and

Ry = Y (0)D;*(0) € M(R) (32)

Note that det Xx(0) = det{®x(0)D;*(0,...,0)} #0, ¥i(0) = 0.
Step 3. Write Xy (z;) as

Kzk) 2 Xi(zx) + Xk (0) (33)

where X;(0) corresponds to the constant terms of X (2;) and Xg(zx)
dAenotes all the other terms which involve the variable zp. Note that
X (0) = 0.

Substituting Xx(zz), Yi(zx) into (28) and premultiplying it by X;*(0)
give the result

Xk(zk)Dp(O, ey ey, 0) Yk(zk)Np(O, ey 2y, 0) = Pp(zr)  (34)

with
Xi(zr) = X7H(0)Xe(zx) = X1 (0)Xn(z) + 1
2 X(z) +1 (35)
Yi(ze) = X (0)Y(zk) (36)
Bi(ar) = X1 (0)8x(2r) (37)

Note that X4(0) =0, Y(0) = 0, and det ®(zx) #0, Vzx € U.

Step 4. We now can construct a solution to the nD polynomial matrix equation

X(21,--y20)Dp(z1,. .oy 20) + Y (21, ..., 20) Np(21, . -, 2n)

=®(21,...,2n) (38)
with
X(21,-2) = 3 Xilaw) +1 (39)
k=1
Y(z1,...,2) = 3 Yi(2k) (40)
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and

B(z1,...,20) = {Zx;(zk) +I}Dp(z1,...,zn)
k=1

_;_{gyk(zk)}Np(zl,...,zn) (41)

Note that det ®(0,...,zx,...,0) = det ®x(2) #0, V2 €U, k=1,...,n,
i.e. det ® € J. Therefore the solution to (25) is of the form

W=0¢"'X, V=0"lv (42)

Using the right and left coprime MFD’s on H, a doubly coprime MFD relation
on H can also be given.

Theorem 5. (Xu et al, 1994b) Suppose P € M(G), and let NyD;, D;1N,, be any
right and left coprime MFD of P on H, respectively. Then there exist W,V, W,V ¢

M(H) such that
Io
0] "

Based on the above results, the output feedback practical stabilization problem
of nD systems can easily be solved (Xu et al., 1994b).

D, -V

N, W

w Vv
"Np ﬁp

Consider the MIMO (multi-input multi-output) nD feedback system shown in
Fig. 1, where N,D;!, with N,, D, € M(R[z1, ...,2,)), is a right MFD on H for
the plant P € M(G), and D;}[Na Ny], with Dq, Nui, Ney € M (H), is a left MED
on H for the controller C'€ M(G). Let y = [y1 427, u = [u1 ug us]T. It is then
easy to see (Vidyasagar, 1985)

Yy = Hyyu (44)
where
Hy = DpA™'Nyg I+ D,A7'D, —D,A N, (45)
N,A™'N,;  N,A"'D,  —N,A"'N,
and
A = NN, + D,D, (46)

If detA # 0 and Hy, € M(H), we say that the nD feedback system of Fig. 1
is practically stable, P is practically stabilizable, and further C is a practically
stabilizing compensator for P. It has been shown in (Xu et al., 1994b) that the nD
feedback system of Fig. 1 is practically stable if and only if A is H-unimodular.
Based on this result, we obtain the following theorem.
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Fig. 1. An nD feedback control system.

Theorem 6. (Xu et al, 1994b) An nD plant P = NpyD;' € M(G) is practically
stabilizable if and only if D, and N, are right coprime on H.

Further, the parametrization of all nD (ouput feedback) practically stabilizing

compensators can be given as follows.

Theorem 7. (Xu et al., 1994b) Suppose that N,D;* and ﬁ;lﬁp are respectively
any right and left coprime MFD on H for a given plant P € M(G), and that W,
V € M(H) satisfy WD, + VN, = I. Then the set of all practically stabilizing
compensators of P is given by

Ce {(W +8N,)Q V - SD,) | Q5 € M(H), det(W + SN,) € 1} (47)
and the set of all possible practically-stable transfer matrices is in the form

[ Dp,Q Dp(W +SN,)—1 —Dy(V—SD,) } (48

N,Q Ny(W +SN,) —N,(V = 8D,)

3.2. State-Space Approach

First, we see some basic properties in the practical sense of (Agathoklis and Bruton,
1983) for an nD system described by the Roesser state-space model. Consider the
linear nD system (10) with the boundary conditions

X = {a;j(il,...,oj,...,in) | i €Z+,k,j=1,...,n} (49)

The practical controllability (reachability) and the practical observability are respec-
tively defined as follows (Xu et al., 1996b).

Definition 4. The nD system (10) is said to be practically controllable (equivalently,
practically reachable) if and only if, for all p = 1,...,n, there exists ¢, > 0 such
that for any finite 4% > 0, kK = 1,...,n, k # p, a local state x,(¢1,...,tp,...,0n)
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can be reached from X, = 0 by using the input signal sequence {u(i1,...,ip,...,in)
[0 <ip <tp}.

Definition 5. The nD system (10) is said to be practically observable if and only if,

forall p=1,...,n, there exists s, > 0 such that whenever » =0 and Xy =0 except
xp(it,...,0p,...,0n) # 0 for any finite ix >0, k =1,...,n, k # p, y(i1,...,sp,
..+,%n) 18 not the same as when w,(i1,...,0p,...,%,) = 0.

The following theorems show the corresponding necessary and sufficient condi-
tions for practical controllability and practical observability (Xu et al., 1996b).

Theorem 8. The nD system (10) is practically controllable if and only if the pairs
(Ay, B;) are controllable in the 1D sense for all i =1,...,n.

Theorem 9. The nD system (10) is practically observable if and only if the pair
(A, C;) is observable in the 1D sense for all i=1,...,n.

By comparing the results of Theorems 8 and 9 with those of (Ciftcibasi and
Yiiksel, 1983; Eising, 1979; Kurek, 1987), we see that practical controllability is
equivalent to r(real)-controllability for any n and implies modal controllability for
n = 2, while practical observability implies modal observability for n = 2.

From 1D system theory and the results of Theorems 8 and 9, it is easy to see the
duality between the practical controllability and the practical observability.

We call the nD system (10) practically internally (or asymptotically) stabiliz-
able, or simply practically stabilizable, if there exists a local state feedback such
that the resultant feedback system is practically internally stable. Further, we call
the system practically detectable if there exists an asymptotic observer for the lo-
cal state x(i1,...,i,) whose estimate error vanishes as iy + -~ + %, — oo but
(41,-..,in) € Z{™ Consider now the practical stabilizability and the practical de-
tectability of (10).

Define the local state feedback:
w(iy,. .. in) = v(i1,...,0n) — Kx(iy, ... in) (50)

where v € R™ is a new input vector and K = [K; Ky - K], K;,i =1,...,n, are
real feedback gain matrices of appropriate dimensions. Substituting (50) into (10)
yields the closed-loop system:

' (i1, yin) = Ac (i, - ,in) + Bo(iy,...,15) (51)
where A, £ A~ BK. Then the closed-loop characteristic polynomial has the form
pe(z1,. .., 2n) = det(I — ZA,) (52)

The following theorem gives necessary and sufficient conditions for (10) to be
practically stabilizable, or equivalently, for the closed-loop nD system (51) to be
practically stable.
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Theorem 10. (Xu et al., 1996b) The following conditions are equivalent:
(i) the nD system (10) is practically stabilizable;
(i) all the pairs (Axk, B), k=1,...,n, are stabilizable in the 1D sense, i.e.
rank[l,, —zxArr 2xBi] =nk Yz € U, k=1,...,n (53)

(i) (I — ZA) and ZB are left coprime on H, i.e. there ezist X(z1,..-,2n),
Y(21,...,20,) € M(H) such that

(I—ZA)X(zl,...,zn)+(ZB)Y(21,...,zn) =1 (54)
Theorem 10 reveals that the practical stabilization problem of the nD system (10)

by the state feedback (50) is equivalent to the stabilization problems of n 1D systems
described by (Ag, Bi), i = 1,...,n. Therefore, the feedback gain matrices Kj,

i=1,...,n, can be determined by well-known 1D methods.
For the characteristic polynomial p(z1,...,2,) of (10), if we define the zeros of
p(0,...,21,...,0), k=1,...,n, as the practical zeros of p(z1, .-, 2n), Or equivalently

the practical poles of (10), and the problem of the practical pole assignment of (10)
as to locate its closed-loop practical poles {zx | pc(0,...,2k,...,0) =0,k =1,...,n},
then it is clear that these practical poles are arbitrarily assignable if and only if the
system, or simply the pair (A, B), is practically controllable.

To realize the state feedback we may need to construct an observer to estimate

the states if they cannot be completely measured. Consider an nD observer described
by

Sil(il,...,’in) = Aﬁ}(ll,,Zn) +B’U,(’Ll,,’bn)

+ F{y(i1, .- in) — 91, -, in)} (55a)

Q(Zla)zn) :Ci(zlayzn) (55b)

where 2(i,...,in) € R* is the local state vector, §(i1,...,in) € R' is the output

vector of the observer, and F = [F{ ---FF|T, F;,i=1,...,n, are real matrices with

suitable dimensions. To estimate the local state @(i1,...,in), we should choose F
such that the error

e(il,...,in): 23(7:1,...,7;“)—.’.&(’il,...,’in) (56)

can be properly controlled. From (10) and (55), the error e(iy,...,in) obeys the
equation

€' (i, ... in) = (A= FC)e(ir,...,in) (57)

According to the results of Theorem 3, if there exists some F' such that (57) is
practically asymptotically stable, the estimate error e(ir,...,in) = 0 as iy +---+
in — 00 but (i1,...,in) € Z1", i.e. the nD system (10) will be practically detectable.
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Theorem 11. (Xu et al., 1996b) The following conditions are equivalent:
(i) the nD system (10) is practically detectable;

(ii) all the pairs (Agx, Cx), k=1,...,n, are detectable in the 1D sense, i.e.

Ck

rank [
In, — 2z Ak

}:nk Vo €U, k=1,....n (58)

(i) (I —ZA) and C are right coprime on H, i.e. there ezist W(z,...,z,),
V(z1,...,2n) € M(H) such that

W(zi,...,zn)(I = ZA)+V(z1,...,2,)C =1 (59)

The results of Theorem 11 show that an observer for (10) in the practical sense
can be constructed by using 1D approaches. Moreover, it is also obvious that the
practical zeros of det(I — Z(A — FC)) can be arbitrarily assigned if and only if the
nD system (10), or simply the pair (4, C), is practically observable.

The observer of (55) can be combined with the feedback controller of (50). Then,
from (56), (57), (55) and (10), the state equation for the overall system is obtained

as
T
e

The characteristic polynomial of this system is easily seen to be

54

e 0 (A-FO)

[m'}:[(A—BK) BK

’ ] (60)
€

det(I—Zfi):det(z_ g 2 A—OBK Aff;g )
= det(I = Z(A - BK))det(I — Z(A — FC)) (61)

Therefore the practical stability of the combined system is guaranteed and the con-
troller and the observer can be designed independently.

3.3. A Connection Between the State-Space Representation and
the Doubly Coprime MFD on H

A matrix A € R"*" is said to be practically stable if det(I — ZA4) € J. By The-
orem 10, there exists K € R™*" such that A — BK is practically stable whenever
(A, B) € R**® x R**m™ ig practically stabilizable. Moreover, by Theorem 11, there ex-
ists I € R**! such that A—FC is practically stable whenever (A, C) € R?*%  Rix7
is practically detectable. A connection between the state-space representation and
the doubly coprime MFD on H is characterized by the following theorem (Xu et al.,
1996b).
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Theorem 12. Suppose that the transfer matriz of the nD system (10) is
Glz1,...,2n) =C(I — ZA)"'ZB € M(G) (62)

where (A,B) is practically stabilizable and (A, C) is practically detectable. Choose
K and F such that A— BK and A — FC are practically stable. Define

Ny(z1,. - 2m) = C[I—Z(A—BK)YIZB (63)
Dp(z1,... ) = I—K[I~Z(A—BK)]_1ZB (64)
Vi(zaye o) 2m) = K[I—Z(A—FC)rlZF - (65)
W(zt,. . 2n) = I-l—K[I—Z(A—FC)]_lZB (66)
Dyt r2n) = I—C[I—Z(A—FC)]_le (67)
N1,y 20) = C{I—Z(A—FC)]_IZB (68)
W(a,...,2) = I+C[I—Z(A—BK)T1ZF | (69)
Vet . 2n) = K[I—Z(A—BK)]_IZF | (70)

Then
1) all matrices defined in (63)-(70) are practically stable;
2) D(z1,...,22) and D(z1,...,2n) are nonsingular;

3) we have

G(z1y..-y2n) = Np(zl,...,zn)Dp_l(zl,...,zn)’

= D;l(zl,...,zn)Np(zl,...,zn) (71)
4) WV || Dy =V |_|T0 -
—NP Dp Np W B 0 I

Similarly as in (Nett et al., 1984), the results of Theorem 12 can be easily gener-
alized to the case of G(z1,...,2,) = C(I — ZA)*ZB + D € M(G).
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4. Practical Tracking Control and Its Applications

In this section, we investigate the nD practical tracking control problem, i.e. the track-
ing control problem for nD systems in the practical sense of (Agathoklis and Bruton,
1983). The proposed solution method is based on the concept of skew primeness on H
and a solution algorithm for the skew prime equation, which can be regarded as a kind
of generalization of the results of the 1D case (Wolovich, 1978). It will also be shown
that the results can be applied, as a unified and general design approach, to iterative
learning control systems and linear multipass processes under much less restrictive
convergence or stability conditions and without requiring any a priori restriction on
the structure of controllers.

4.1. Skew Primeness of Matrices over H

Definition 6. Consider matrices D,N € M(H). D and N are said to be (exter-
nally) skew prime on H if and only if there exist X,Y € M(H) such that

DX+YN=1 (73)

Let a and b be common denominators for the entries of D and N, respectively.
It is obvious that a, b € J for any D, N € M(H). It is also evident that (73) can
always be rewritten in the form of D'X' +Y'N' = I, where D' = Da, N' = bN,
X'=a"'X and Y' =Yb7!, and clearly D', N' € M(R[z1,...,2,]) C M(H) and
X', Y' € M(H). This fact shows that, when studying the skew primeness of D, N
on H, one can limit D and N to be polynomial matrices without loss of generality.
In what follows, therefore, we assume that D, N € M(R[z1,...,z,]).

Theorem 13. Consider D, N € M(R[z,..., zn]) and let D be nonsingular. Then
D and N are skew prime on H if there exist D,N € M(H) such that
ND =DN (74)

where D, N are right coprime and N, D are left coprime on H. When n < 2, the
condition is also mecessary.

Proof. First show the sufficiency. If D, N are right coprime and N, D are left
coprime on H, and (74) holds, then according to Theorem 5 there exist X1, X3, X3,
X4 € M(H) such that the doubly coprime MFD relation

X, X |[ N -Xx I 0]
L 72 = (75)
-D N D X4 0 I
takes place. Obviously, (75) is equivalent to
N -xs || x1 X, I 0]
— = 76
D Xy ] [ -D N } [ 0 I (76)

which gives a solution to the skew prime equation (73) as

DXy +X4N =1 (77)
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Now consider the necessity for the case n < 2. If D and N are skew prime
on H, D and Y must be left coprime on H (and X and N must be right coprime
on H) in view of (73). For the left MFD D~'Y’, we can always find the representation

Dy =p" 'y =vD! (78)

where D", Y", Y and D € M(Rlz1,2]), and D", Y" are left factor coprime and
Y, D are right factor coprime (Xu et al., 1990). :

By using the Cauchy-Binet Theorem, it is easy to see that, for [D' Y'] =
R[D" Y"], D', Y' areleft coprime on H if and only if det R € J and D", Y are
left coprime on H.

Denote by Z; and 7, respectively, the ideal generated by the all maximal order
minors of [D"(z1,0) Y"(z1,0)] and [DT(z1,0) YT (21,0)]7. In the same way, define
T, and I, for the case when z; =0 but 2z is free. Then by the results of (Bisiacco
et al., 1989), the algebraic variety V(Z,) is identical with V(Zx), k = 1,2. Therefore,
if D' and Y are left coprime on H,ie V(Z,)NU =0 (k=1,2), D and ¥ must
be right coprime on H.

In view of Theorem 4, we can find W, V € M(H) such that

WY +VD=1I (79)
From (73), (78) and (79), we have
p vl|[x -v]_ I 0 (50)
-w V||N D | | -WX+VN I
Premultiplying (80) by
T 0
81
WX -VN I } (81)
yields
2 -¥ I
SRR R 0 - (82)
i ~N X N D 0 I

where N =W — (WX —VN)D, X =V + (WX -VN)Y.
The identity (82) obviously implies
I 0
= 83
Y =

X -Y D Y
N D -N X

Therefore we have

ND = DN

with D and N right coprime and N and D left coprime on H. This completes
the proof. |
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In view of Theorem 13, a solution to the skew prime equation (73) will be directly
obtained if D and N satisfying (74) can be found. For brevity, we only consider the
2D case here and show a constructive procedure for the determination of D and N
under the assumptions that D, N € M(R[z1,22]) and D is square and nonsingular.

As shown in (Wolovich, 1978; Xu et al., 1990), our attention can be restricted,
without loss of generality, to the case where D and N are square matrices of equal
order. In what follows, therefore, let D, N € RP**P[z | z5].

Under these assumptions, we can always find D and N such that
ND=DN (84)

with det D = detD in the following way (Xu et al, 1990). Denote by D¥ the
adjoint of D and let A = detD. Then we have ND/A = N[D*]|~! which can be
represented as

ND/A = N[D*|™' = N,.D;' = D' N, (85)

where N,, D, are right factor coprime and D;, N; left factor coprime. Let E be
any greatest common right factor of N and D*. Since D; and N, are left factor
coprime, we have (Morf et al., 1977)

det Dydet E = det D = AP~! (86)
Multiplying both the sides of (85) by A gives
ND =AD; !N, = DN (87)

where D = AD;', N =N,.

Since D; and N; are left factor coprime and ND is a 2D polynomial matrix,
D must also be a 2D polynomial matrix (Morf et al., 1977). Moreover, since det D =
det E - A, it is possible, by the general factorlzatlon theorem (Morf et al,, 1977), t
factorize D as D = DE such that detD = A, detE =detE. If N = EN then we
have the result of (84).

Now, the following theorem can be given in the same way as in (Xu et al., 1990).

Theorem 14. Consider a pair of square matrices D,N € M(R[z1,22]) of equal
order with D mnonsingular. Let ND = DN with detD =detD. Then D and N
are skew prime on H if and only if D and N are right coprime on H, or N and

D are left coprime on H.

4.2. Practical Tracking Control

The objective here is to investigate the tracking problem of 2D systems in the practical
sense of (Agathoklis and Bruton, 1983).

Consider a plant characterized by the input/output relation

y(z1,22) = Ay "By u(zy, 22) + A;leyo(zl, z9) (88)
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where Ap,Bp,Cp € M(Rlz1,22]); Ap is G-unimodular; u, y are vectors over
R[z1,22] corresponding to the input and output sequences, respectively; yq is a vec-
tor over R(z1,22] denoting arbitrary initial or boundary conditions of the considered
plant. Let

AT'B, = BpAT! (89)

with B, and A, right factor coprime.
Similarly, let the class of 2D reference signals 7(21,22) be given by the equation
’I'(Zl, 22) = A;lBsro(zl, 22) (90)

where Ay, Bs € M(R[z1,22]), and let 7o correspond to the initial or boundary con-
ditions of the reference generator.

A general linear 2D controller can be described by
’u,(Zl,Zg) = Ac_chl T'(Zl,ZQ) - A;chzy(zl,zQ) + Ac_lccUO(Zl, 22) (91) )

where A., Be2, Ber € M(H), and ug depends on the initial or boundary conditions
of the controller.

The practical tracking problem to be considered can be stated as follows: Given
Ap, By, A, find A, Ba and B for arbitrary Cpy,, Bs 7o and Ccug such that

o the resultant closed-loop feedback system

y(zh Zg) = Bp (AcAp + BCQBp)-lBClT(Zlv 32)
+ [I — By(AcAp + Bczép)_chz} A Cpyo(21, 22)

+ By(AcAp + Be2Bp) ' Ceuto(21, 22) {92)

is stable, and

e the output y asymptotically tracks the reference signal 7

in the practical sense of (Agathoklis and Bruton, 1983).

In view of the results of practical internal stability and the remarks on its re-
lation to practical BIBO stability in Section 2.2, it is easy to see that the practical
tracking problem is equivalent to the following one: Under the given conditions, find
Aq, Be1, Beo such that the output y(z1,22) of the closed-loop system and the tracking
error e(z1,2) = (21, 22) — y(z1,22) are vectors with entries in H, for any Cpyo,
B,ro and C.ug.

It follows from (90) and (92) that
e(zl, Zz‘) = [I - Bp(AcAp + Bczép)—chl]A;IBs ’I‘Q(zl, Zz)
- [I - Bp(AcAp + Bczép)—chz] A;leyO (Z1 ; 22)

- BP(ACAP+ BCZBIJ)—ICCUO(zlaz?) (93)
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The following theorem gives a necessary and sufficient condition for the solution
of the practical tracking problem.

Theorem 15. Suppose that A; and B, are left coprime on H. Then the necessary
and sufficient condition for the practical tracking problem to be solvable is as follows:

(a) the plant (88) is practical stabilizable, i.e. A, and B, are left coprime on H,
and

(b) B, and A, are skew prime on H.
Proof. First show the necessity. The necessity of (a) is clear from Theorem 6. When

(a) holds, as in the proof of Theorem 13 we can show that A4, and B, are right
coprime on H. Therefore, there exist some A;, B.» € M(H) such that

AcApy+BuB, =1 (94)
Letting ygq = 0, ug = 0, it follows from (93) that
6(21,22) = (I — Bchl)A‘:lBsTo(zl,ZQ) (95)

In view of Theorem 3, for any bounded 7o, e(zi,2) € M(H) only if (I —
B,B:a)A;IBs € M(H). Based on the condition that A, and B; are left coprime on
H, we can show the following relation in the same way as for the 1D case (Vidyasagar,
1985):

(I - ByBa)A;'B; € M(H) & (I — BpBa)AT! € M(H) (96)
Therefore, letting (I — BpB.1) A = Q) € M(H), we obtain
ByBe +QA; =1 (97)

which shows that B, and A, are skew prime on H.

The sufficiency can be shown as follows. When the condition of (a) is satisfied, fip

and Bp are also right coprime on H as mentioned above. According to Theorem 7,

the practically stabilizing controller can be constructed by the solution A., B

of (94). In fact, by Theorems 5, we can get V,W € M(H) such that the double
MFD relation

10 ] (98)

Ac Bc2
—Bp Ap

B, w il oI

A, —V]

holds. Using this result, it is easy to see that, for r = 0, the closed-loop system (92)
can be rewritten as

Y(21,22) = WCpyg (21, 22) + B’I,C'cu(](zl, 29) (99)

with WOy, B,C. € M(H). Due to Theorem 3, it is clear that the closed-loop system
is practically stable for any bounded vy, and u.
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On the other hand, by the results of Theorems 13 and 14, if (b) holds true,
Ba, Q € M(H) satisfying (97) can be obtained. Substituting this result and that
of (98) into (93) yields

e(z1,23) = QBsro(21,22) — WChyp(21,22) — E’,,Cc ug (21, 22) (100)

where QB;, WC,, B,C, € M(H). Obviously, e(z1,2) is practically stable.

The following design procedure for practical tracking control systems can now be
stated:

Algorithm 2.

Step 1. For given A,, B,, verify their practical stabilizability according to Theo-
rem 4. Find A, and B, € M(Rlz1,20]) which satisfy A,'D, = B, A3t
and are right factor coprime by the methods of, e.g. (Morf et al., 1977;
Guiver and Bose, 1982).

Step 2. Solve the Bezout equation (94) by Algorithm 1. Here, first find a particular
solution X, Y € M(H) such that XA, + Y B, = I, then construct the
following general solution to (94):

Ac = X+ 5B, (101)
B =Y -S54, (102)
where S € M(H) is an arbitrary matrix satisfying det A¢(0,0) # 0.

Step 3. Verify the solvability of the skew prime equation (97) and, if it is solvable,
find the solution B.i, @ € M(H), by the methods given in Section 4.1.

4.3. Application to Discrete Linear Multipass Processes

Multipass processes constitute a class of dynamic systems characterized by a series
of sweeps, or passes, through a set of dynamics defined over a finite time interval,
with the output of previous passes contributing to the output of the new current
pass. It has been observed that the effect from the outputs of previous passes may
generate oscillations of the output increasing in amplitude from pass to pass (Rogers
and Owens, 1992). This property makes attempts of direct utilization of techniques
from conventional system theory almost always end in failure (see Rogers and Owens,
1992 and the references given therein).

Connections between linear multipass processes and 2D systems have been con-
sidered by several researchers (Boland and Owens, 1980; Gatkowski et al., 1997; Rocha
et al., 1996; Rogers and Owens, 1992). In particular, it has been shown that 2D sta-
bility is equivalent to the so-called stability along the pass for multipass processes
(Rocha. et al., 1996; Rogers and Owens, 1992). It should be noted, however, that the
stability along the pass would in general be too restrictive for practical applications,
since it is defined for the case where the fact that the pass length is finite is ignored.
Moreover, it seems that no satisfactory design method is currently available for the
" control of multipass processes.
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In what follows, we give some further results on the connection between multi-
pass processes and 2D systems, and show how we can apply the results for practical
tracking control to design a control system for multipass processes.

Consider the so-called non-unit memory discrete linear multipass processes de-
scribed by the state-space model (Rogers and Owens, 1992)

M
@it (6 + 1) = Azpy1 () + Bugya (i) + ZB] 1Ypy1-5(2) (103a)
J=1
Yr41(8) = Cxpq1(3) + Dougyr () + ZD]yk_] (103b)

0<i<N, x(0)=dg, k>0

where ug(i) € R, y,(i) € R™, and x,(i) € R? are the input, output and state
vectors on the k-th pass, respectively; A, B, C, B;, D; are constant matrices with
suitable dimensions, and the pass length N is a fixed ﬁnite constant.

By defining x4 (i) = x(i,k), y,(i) = y(i,k) and ux(i) = u(s,k) in (103) and
applying the 2D z-transform, we can have the input/output relation (Rogers and
Owens, 1992)

Y(21,22) = G(21,22)U(21, 22) (104)

where G(z1,22) is the m x [ transfer matrix given by

—1
Gz, 2) = ( ZG 2 zg) Go(z1) (105)
with
Go(z1) = CIp — 21A) ™ 21B + Dy (106)
Gj(zl) = C(Ip - ZlA)_llej_l + Dj, 1 _<_] S M (107)

and zi, z; can be regarded as backward shift operators.

The multipass process (103) is said to be asymptotically stable if and only if,
for any given bounded initial output y,(7),0 < ¢ < N and initial states dy, k > 0,
the sequence of outputs {y;} converges to an equilibrium output y., (Rogers and
Owens, 1992). It has been shown in (Rogers and Owens, 1989), by using an abstract
function analysis approach, that (103) is asymptotically stable if and only if

M
oz det( -3 D;z ) £0 Vel (108)

ji=

—_

It has been known (Xu et al., 1994) that the non-unit memory multipass processes
given by (103) can be simply represented as a 2D Fornasini-Marchesini model. In fact,
let

£6,K) = [o760), TLa6), o, vla)] € mrm (109
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It then follows immediately that

EG+1,k+1) = A£G,k + 1) + A£(i + 1, k)

+ Biu(i,k+1) + Boui + 1,k) (110a)
y(i, k) = C&(4, k) + Dou(i, k) (110b)
where

[A By By -+ Bum-1] 0 0 - 0 0
o o 0 -- 0 C Dy -+ Dy-1 Dy
Ai=10 0 0 . Ay=1]0 I 0 0
: o : 0 0
L0 0 0 - 0 | 0 0 1 0

B =[B%,0,...,07, By=[0, Do, 0, ...,0]T, C=[C, D, ...,Dpy]

Though the manipulation is rather tedious, it is trivial to show that the transfer
matrix G(z1,22) of (110) satisfies the relation

G(z1,22) = é(Ip+mM — A — 221‘12)_1(»21];1 + 22B2) + Do

il

M -1
(Tm =32 Gi(2)2h) Gol) = Glea, 22) (111)
i=1

In view of the structures of A;, Aa, B, B, and the results of (Fornasini and
Marchesini, 1978; Kaczorek, 1985), it follows immediately that the 2D Fornasini-
Marchesini model of (110) directly corresponds to a Roesser model which is in fact
simply equivalent to the ones shown by Rocha et al. (1996) and Galtkowski et al.
(1997). It should now be clear that the class of multipass processes is just a special
case of standard 2D systems, and all the well-developed results of 2D system theory
can be applied directly.

For G(z1,2) given in (105) or (111), it is trivial to see that
G(Zl,O) = Gg(Zl) (112)

M
G(0,25) = adj (Im -3 Djzg) p—(l?z‘;—) (113)
J=1

We then have that G(z1,2) is practically stable if and only if G(21,0) and G(0, 23)
are both 1D stable. In particular, the latter is equivalent to the condition (108).
Therefore, the asymptotic stability for linear multipass processes may be viewed a
special case of the practical (internal) stability. Further, by practical stability theory,
if we also need to consider the stability as the pass length N — oo but the iteration
index k is finite, then the 1D stability condition of G(z1,0) has to be satisfied. It
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is reasonable to consider such a situation since it has been observed (also see Kurek
and Zaremba, 1993 for a similar situation) that, if the pass length N is large, there
may exist the cases where the system output value is excessively large for large i and
small iteration number k. The practical stability theory, therefore, not only shows
some significant insights but also supplies a rather reasonable design requirement for
linear multipass processes. In the following, we consider the control problem of linear
multipass processes under the condition of practical stability. That is, consider the
problem how to find an (output) feedback controller for a given multipass process
such that the resultant closed-loop system is (asymptotically) stable and the output
converges to a sequence of specified reference signals with finite pass length.

In fact, it is easy to formulate the above problem as the practical tracking problem
stated in Section 4.2. A reference signal 7 (7) for multipass processes with finite pass
length N can be regarded as 2D signal 7 (¢, k) in the form

] 0<i<N
ri gy = O O<i<N) (114)
0 (i > N)
Applying the 2D z-transform to r(i,k) yields
N o '
r(z1,22) = Z Z r(i,k)2b2t € M(R(zz)[zl]) (115)

=0 k=0

i.e. the entries of r(z1,22) are polynomials in 2; having polynomial fractions in 2
as coeflicients. Therefore, we can always have

(21, 22) = A7 (22) By (21, 22) (116)

where As(z2) € M(R[z;]) and Bg(z1,22) € M(R[z1,22]). Suppose that Ag(z)
and Bg(z1,22) are left coprime on H, which means that [As5(z2) Bs(0,29)] and
[As(0) Bs(21,0)] are full rank for any 23,22 € U.

Letting G(21,22) = A" (21, 22) Bp(21, 22), we see that the problem under consid-
eration is equivalent to the 2D practical tracking problem with the reference signal
specified by (116), so Algorithm 2 can be applied directly.

4.4. Application to Iterative Learning Control Systems

A discrete iterative learning control system (ILCS) for a given (1D) plant is demanded
to repetitively track a specified output trajectory yq(i) on a finite discrete-time in-
terval 7 € [1, N] with the system performance improved based on the evaluation of
the performance in previous iterations. Some design approaches to ILCS have been
proposed based on either artificial intelligence or conventional control system design
principles. However, it has been indicated that the techniques involved for conver-
gence analysis and learning system design are of an ad hoc type, and few of them
show insights into the fundamental properties of ILCS, such as stability, learning con-
vergence and so on (Geng and Jamshidi, 1990; Geng et al., 1990). This is mainly due
to the lack of mathematical model for the entire ILCS which could explicitly describe
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both the dynamics of the control system itself on the time interval and the behaviour
of the learning process along the direction of iterations (Geng et al., 1990).

Geng et al. (1990) and Kurek and Zaremba (1993) have recently shown that
2D system theory may offer a highly promising approach to ILCS by revealing the
following facts. Namely, the two kinds of dynamics involved in ILCS can be easily
characterized by a 2D model, and 2D stability theory provides a useful method for
analysing the learning convergence and stability of ILCS. However, although Geng
et al. (1990) proposed a general type of learning controller structure based on the
2D model and showed a convergence condition for the learning controller in terms of
2D stability, no constructive procedures for the test of the condition and the design
of such a general learning controller were provided except for a very restricted par-
ticular case. In fact, it would be extremely difficult, if not impossible, to find such
general procedures, since the convergence condition itself contains the undetermined
parameters of the controller under design. Further, the feature that the length of the
time interval for i is finite was not taken into account in (Geng et al., 1990) and the
conventional 2D stability was directly applied to the analysis of learning convergence,
which is in fact too restrictive (Kurek and Zaremba, 1993).

The objective here is to show the possibility to design an ILCS, by the method
proposed previously for 2D practical tracking systems, under less restrictive condi-
tions of practical stability and without requiring a priori restriction on the controller
structure.

Consider the 1D system given by
z(i + 1) = Az (i) + Bu(i) (117a)
y(i) = Cx(i) + Du(s) (117b)

where u, y, T are the input, output and state vectors, respectively; 4, B, C, D
are real matrices with suitable dimensions.

The problem may now be formulated as follows: Given the system (117) with
boundary condition x(0) = o, and a reference output trajectory y,(i) (i =
1,...,N), find a learning control scheme such that the tracking error y(i) — y,(4)
for all i € [1,N] converges asymptotically to zero along the direction of learning
iterations.

Denote by j the iteration number, and by @(i,7), 9(i,7), Z(i,5) the values
of the input, output and state vectors at the time point ¢ of the j-th iteration,
respectively. Then the plant (117) can be viewed as a 2D discrete system in the form

(1 +1,5) = Ax(i,§) + Ba(i,j) (118a)
9(i,5) = C (i, 5) + Du(i, j) (118b)
where the boundary conditions can be considered as #(¢,0),0 < i < N and

z(0,7),7 > 0. Similarly, denote by §4(i,j) the reference trajectory. Since the iden-
tical y4(¢) is used for all iterations, §4(¢,j) can be represented in the form

gd(i,k)z{ ya()) (0<i<N)

0 (1> N) (119)
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Further, define the tracking error &(i,j) as

Applying the 2D z-transform to (118) gives

Y(21,22) = [C(I -2 A7 2B+ D] U(z1,22) + C(I — 1 A)7VS  2(0,7)2]  (121)

M

0

i

J

Find Dy(21),Cp(z1) € M(R[z1]) which satisfy C(I — z214)™" = D, (z1)Cp(21),
det D,(0) # 0 and are left coprime. Then (121) can be rewritten as

Y (21,22) = DY (21)Ny(21)U (21, 22) + Dy 1 (21) Cp(21) Ko (22) (122)

where Np(zl) = Cp(zl)le + Dp(zl)D and XO(ZZ) == z;il) 51(0,])2;
The 2D z-transform of (119) is given by

Va(z1,22) = (1 — )~ Zydz 0)2f = (1 20)~ Zyd

2 (1 - 2) Walz) (123)

Obviously, the entries of Y;(z1) are 1D polynomials of N-th degree in 2.

Considering that a general learning controller may depend on the information of
the input and the tracking error in both the present iteration and a finite number of
previous iterations, we use a general linear controller structure as follows:

U(zl,m) = D;l(Zl,ZZ)N61(21722)Yd(21722)
— D (21, 22)Nea(21, 22)Y (21, 22) (124)
where D, N.1, N € M(H).

Similarly as in previous discussions for multipass processes, besides the conver-
gence of ILCS in the direction of learning iterations, it is also reasonable to consider
the stability of the system in the time direction (¢ — o00) at a fixed iteration. It
should be clear that, in this case, the problem will be equivalent to the 2D practical
tracking problem.

In view of Algorithm 2, D, and N, can be determined by solving the equation
De(21,22)Dy(21) + Nea(z1, 22) Np(21) = I (125)

where Ny(21)D; ' (21) = D, (21)Np(21), Dy(21), Ny(z1) € M(Rz1]), det Dy(0) #
0. If the 1D plant 17) is stabilizable, there exist X;,Y7,®; € M (R[z;]) such that

(1
X1(21)Dp(21) + Yi(21)Np(21) = @1(21) (126)
with X1(0) = I,Y1(0) = 0,det &, (2,) #0,Vz € U.
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It is clear that ®;(0) = D,(0). On the other hand, since D,(0) and N,(0) are
real matrices, the equation

X3(22)Dp(0) + Ya(22)Np(0) = B2(22) (127)

will always be solvable for the solution Xj(z3) = I,Y2(22) = 0, ®2(22) = D,(0) and
det ®5(z2) = det D, (0) # 0. Therefore, the following general solution to (125) can be
obtained.

De(21,22) = &7 (21) X1 (21) + S(21, 22) Np(21) (128a)
Nea(z1,22) = 871 (21)Y1(21) — S(21, 22) Dp(21) (128b)

where S(z1,22) € M(H) is an arbitrary matrix satisfying det D.(0,0) # 0.
Further, due to Theorem 15 and (123), N, can be obtained by solving

Np(zl)Ncl (z1,22) + T(21,22)(1 — 22) = I (129)

Several features for the design method proposed above can be observed. Since
D.(z1,22), Nei(z1,22), Nea(21,22) € M(H) and det D.(0,0) # 0, we can have

Ulz1,22) = D.(21,22)U(21,22) + Niy (21, 22) Ya(21)
12(21,22)Y (21, 22) (130)
for some D', N!;,N!, € M(R[z,2,]) and D(0,0) = 0. It then follows that

sy (D) dz5 (D) sy (Ngp) dzg(Nyp)
a(i,j) = Z Z Qera(i —q,j — 1)+ Z Z Lyya(i —
(q 7)#(0, 0)
dzy (Ngg) dey (Nop)

Z Z Mmpy —m,j —p) (131)
where d,(x) denotes the maximum degree of polynomial entries of the matrix * in
zi, and Qgr, Lii, My, correspond to the coefficient matrices of Dy, N, ' and N,
respectively. In most existing design methods for ILCS, the updating control input

(i, ) = i, § - 1) + Aai,j — 1) (132)

is used where the input modification A%(z,7—1) is a (linear) function of the tracking
errors in previous iterations (see e.g. Geng et al., 1990). Comparing (132) with (131),
we see that (132) may be considered as a special case of (131). In consequence,
with the use of the proposed method, it is possible to obtain a more general learning
controller without requiring any a priori restriction on its structure, and the conver-
gence of the learning process and the stability in time at a fixed learning iteration are
guaranteed according to the practical internal stability.

Another interesting and important feature is that the proposed design procedure
does not require any information about the value of the reference trajectory. As a
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matter of fact, besides the model of the plant, what we need is just to know that
the reference signal is restricted in a finite time interval and it does not vary with
the iterations. This means that, for a given plant, it is possible to design a learning
scheme such that the resultant ILCS tracks repetitively an arbitrary trajectory as
long as it is restricted in a finite time interval.

5. Numerical Examples

Examples on practical stabilities and practical stabilization can be found in (Agath-
oklis and Bruton, 1983; Xu et al., 1994b, 1996a). Here we only show a few regarding
practical tracking control and its application.

Example 1. Construct a learning controller with the structure of (124) for the plant:
y(3) — 1.96y(i — 1) + 1.06y(i — 2) = 0.06u(i) (133)

Suppose the boundary condition is zero. The transfer function p(z1) of (133) is
as follows: ‘
ﬁp(zl) — 3
dp(z1) 5327 — 98z + 50

p(z1) = (134)

Solving (125) and (129) in scalar form for the above plant, we can obtain the controller:

do(z1,22) = W(z1) + s(z1, 22)7ip(21) (135a)
Nea(21,22) = 5(z1) — (21, 22)dp(21) (135b)
nei(z1,23) = %2 (135c¢)

where @(z1) = 1/50 and 0(21) = 21(—5321 + 98)/150 is a particular solution to
(125).

Let s = z;. For the desired trajectory given by

(& 1<'<N
N =t=7

. . N\ 4 N . 3N
. 3N\ 4 3N |

| -1+ (=) TSy

where i (1 <4 < N = 50), the output and the tracking error of the designed ILCS
is shown in Fig. 2. Further, it has been verified by simulation that, using the very
same controller given by (135), the system can also track various kinds of different
trajectories in a finite time interval. In particular, Fig. 3 shows the simulation results

for a reference signal similar to the one used in the example of (Geng and Jamshidi,
1990). ¢
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Fig. 2. Simulation results of Example 1.

Next, we would like to show a numerical example for practical tracking control -
of a 2D plant. It should be noted that the reference signal used here varies not only
in the direction of time, but also along the direction of iterations.

Example 2. Consider the 2D plant given by

p(z1,22) = (5, 7) (137)
14
where
dp(21,22) = 2(—272z122 + 2521 + 2525 + 75)/25
by(z1, 22) = (252322 — 2523 — 4z12 + 1002, + 100)/25

Design a controller such that the system output tracks the following 2D reference
signal:

r(i,) = sin Lua(i) (138)

where yg(é) is just the one defined by (136).



L. Xu, O. Saito and K. Abe

936

$~

iy

iyt

........n....nn......

Uittty ety

i ) as&$s
/]

.5
gty
I
ss........«.......:....ﬁ..a
pitt
U AT
ity oy gl
ittty gy
iyttt thog gl
sw:%:%:&::
Tl
ittty Yoyt
aﬁwﬂwaaaawaﬁass
,gsgaasas.as

a55

Fig. 3. Simulation results of Example 1 for another trajectory.

we simply have the following solution

?

(z1,22) 1is practical stable

Gp

Since
for (125).

(139a)

zluzz)

n(

o

)

ac(z1,22) = 1/ap(21, 22) + s(21, 22

(139b)

_5(Z17 22)ap(zl, ZZ)

bea (21, 22)

On the other hand, the z-transform of r(3,j) is as follows:

1

+

)

2z sin(m/8)Yy(z1)
23 — 225 cos(m/8

7(21,29) =

(140)

(21, 22)
(21, 22)

A bs

Qs

) becomes

Therefore, the skew equation (97

(141)

1

) + t(zl: ZZ)as(zlz Z2)

22

bp(21, 22)nc1 (21,
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and its solution can be obtained as follows:

be1(z1,22) = —*——————1;((:11’53
_ v(z1,%)
t(thz) B ¢(21,Zz)

where
w(z1,22) = 25 — 2.847759z; + 3.847759
v(z1,22) = 3.8477592% — 4.029
b(z1,22) = 2225 — 0.41421427 25 — 0.162123

+ 0.4556412; 23 — 0.615641212; + 15.391036

(142)

(143)

(144)
(145)

(146)

Let s = z3/2. Then we have the simulation results shown in Fig. 4, from which

excellent tracking performance for the desired 2D trajectory can be confirmed.

y(3,5)
1

0.5

-0.5
-1

.

A

Fig. 4. Simulation results of Example 2.

¢
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6. Concluding Remarks

A comprehensive treatment has been presented of some theoretical and methodologi-
cal results and their possible applications for the control of nD systems in the practical
sense that the system inputs and outputs are unbounded in, at most, one dimension.
Some recent results have been reviewed on the basic properties and control problems
such as practical BIBO and internal stabilities, practical controllability and observ-
ability, practical stabilization by both the algebraic and the state-space method, and
the relation between the two methods. Moreover, further contributions to the practi-
cal tracking problem and its applications have been shown.

The results obtained reveal that the nD control problems considered in the prac-
tical sense can be essentially reduced to the corresponding 1D problems, and thus
can be solved, when compared with the conventional nD system theory, under less re-
strictive stability conditions and by much simpler methods. In particular, it is shown
that the proposed method for 2D practical tracking control provides in fact a general
design approach for a class of iterative learning control systems and linear multipass
processes. Therefore, the presented control theory for nD systems in the practical
sense is of significance not only from the point of view of practical applications of nD
system theory, but also from that of control of such iterative systems.

It should be remarked here that the problems considered in this paper are the
most basic ones for the control of nD systems in the practical sense, and there remain
many problems to be solved for actual applications.

First of all, the results are mainly based on considering the steady-state perfor-
mance of the resultant control systems, therefore no guarantee is provided for the
transient performance. Optimal control would be naturally considered as an effec-
tive way to improve the system transient performance. As a special case of the 2D
LQR (linear quadratic regulator) problem, the 2D minimum-energy problem in the
finite-horizon case (both variables bounded) and its application to multipass processes
have been considered in e.g. (Kaczorek and Klamka, 1986; Li and Fadali, 1991). The
obtained optimal control for this case, however, is an open-loop one. The 2D LQR
problem in the infinite-horizon case (both variables unbounded) have also been con-
sidered in (Bisiacco, 1995; Bisiacco and Fornasini, 1990) where, however, a substantial
difficulty is encountered; namely: an infinite-dimensional global state feedback is in
general required. Therefore, it is found again that it would be réasonable to consider
2D optimal control in some more practical sense, such as for the case where one vari-
able is bounded while the other is unbounded. Such research is now in progress and
some preliminary results can be found é.g. in (Yamada et al., 1996).

Also, for actual situations, the ability to obtain, in an appropriate way, the
model of the underlying system is of great importance and an adaptive scheme would
be desirable. To this end, some efforts and interesting results have recently been
reported (see e.g. Geng et al., 1990; Heath, 1994).

Finally, we would like to mention that, in the case where the conventional 2D sta-
bility is required e.g. to design a controller for a multipass process under the stability
along the pass (Rogers and Owens, 1992), the well-developed results for 2D stabiliza-
tion (Bisiacco et al., 1986; Guiver and Bose, 1985; Lin, 1988; Xu et al., 1994a) and
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2D tracking control (Xu et al., 1990) can be directly applied in the way shown in this
paper.
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