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CONTROL SYSTEMS THEORY FOR LINEAR
REPETITIVE PROCESSES — RECENT PROGRESS
AND OPEN RESEARCH PROBLEMS

Eric ROGERS*, KrzyszTor GALEKOWSKI**
Davip H. OWENS™

The unique feature of a repetitive process is a series of sweeps, termed passes,
through a set of dynamics defined over a finite duration known as the pass
length. On each pass an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes to, the next pass profile.
This, in turn, is the source of the unique control problem for these processes in
that the output sequence of pass profiles can contain oscillations that increase
in amplitude in the pass to pass direction. It has long been recognised that
this general problem cannot be removed by standard control action and hence
the need for a rigorous control theory for these processes which are of both
theoretical and applications interest. This paper critically reviews progress to
date and identifies a number of key areas for short to medium term further
research/development work.

1. Introduction

Repetitive, or multipass, processes are uniquely characterised by a series of sweeps,
termed passes, through a set of dynamics defined over a finite fixed duration known
as the pass length. On each pass an output, termed the pass profile, is produced
which acts as a forcing function on, and hence contributes to, the next pass profile.
Industrial examples include long-wall coal cutting (first ‘identified’ as a multipass
process by Edwards (1974)) and metal rolling operations and algorithmic examples
include classes of iterative learning control schemes. More recently, it has been shown
by Roberts (1996) that a repetitive process problem formulation can be used to study
properties of iterative solution algorithms for classes of dynamic nonlinear optimal

control problems based on the maximum principle.
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It is necessary to use two co-ordinates to specify a variable in a repetitive process,
i.e. the pass number, or index, k£ > 0, and the ‘position’ ¢ along a given pass which,
by definition, is finite and fixed and denoted here by «. Suppose also that yz(t), 0 <
t <, denotes the pass profile produced on pass k. Then in a repetitive process yy(¢)
acts as a forcing function on, and hence contributes to, the dynamics of the next pass
profile ygy1(t), k> 0.

Repetitive processes also exist where it is the previous M > 1 pass profiles
which explicitly contribute to the current one. An example here is bench mining
systems used to extract coal from ‘relatively rich seam’ coal mines (Smyth, 1992).
Such processes are termed non-unit memory with memory length M. In this paper,
however, it is only the unit memory case (i.e. M = 1) which is considered since the
analysis presented generalises in a natural manner to non-unit memory examples.

The essential unique control problem for these processes arises directly from
the explicit interaction between successive pass profiles. In essence, the sequence of
pass profiles generated can contain oscillations that increase in amplitude in the pass
to pass direction. Such behaviour is easily generated in simulation studies and in
experiments on scaled models of industrial examples (Smyth, 1992).

Early attempts to control these processes consisted, in effect, in direct application
of standard linear systems techniques. The essential basis of this approach was to use
the concept of the total distance traversed to write the process dynamics as an infinite
length single pass process and then, for example, apply the Laplace transform to
obtain a transfer function description of the resulting standard, or 1D, linear system.
The basics of this approach can be found in (Edwards, 1974) and the relevant cited
references.

Other work subsequently showed that this and other approaches based on direct
application of 1D linear systems tools are incorrect (except in a few very restrictive
special cases). The precise reason for this is that such an approach essentially ignores
the key features of their underlying dynamics, i.e. the fact that they repeatedly operate
over a finite duration and the influences/consequences of the resetting of the pass
initial conditions. These features are similar to those of 2D linear systems recursive
over the positive quadrant, i.e. systems which propagate information in two separate
directions (usually termed ‘horizontal’ and ‘vertical’, respectively).

The fact that these processes cannot be analysed/controlled by direct application
of existing theory/techniques has resulted in a considerable volume of work on the
development of appropriate tools for their analysis and control, starting with a suitable
stability theory which obviously defines the system to be stable if the sequence of pass
profiles does not contain oscillations that increase in amplitude in the pass to pass
direction (in a well-defined sense). The main purpose of this paper is to critically
review the work to-date and identify areas for short to medium term further research
effort. One key message to emerge is that direct application of 2D linear systems
theory is not always possible, even for special cases which can be directly modelled
by one of the well-known state-space models for 2D linear systems recursive over the
positive quadrant.
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2. Background

The essential unique feature of a repetitive, or multipass, process can be illustrated
by considering machining operations where the material, or workpiece, involved is
processed by a sequence of sweeps, or passes, of the processing tool. In particular,
suppose that the necessarily finite pass length (or duration) « is constant and let
yk(t), 0 <t < a, where t is the independent spatial or temporal variable, denote the
output vector or pass profile produced on pass k& > 0. Then in a repetitive process
yr(t) acts as a forcing function on, and hence contributes to, the dynamics of the new
pass profile yx41(t), k> 0.

An industrial example is long-wall coal cutting which is the main method of
extracting coal from deep cast mines in Great Britain. In long-wall coal cutting,
roadways are machined and maintained open (a non-trivial task) at each end of the
coal seam. The coal is then removed by a series of sweeps of a cutting machine
along the coal face which is perpendicular to the roadways in plan view. During this
operation, the machine (which can be up to 5 tonnes ‘dead weight’) is hauled along
the coal face resting on the so-called armoured face conveyor (AFC)—a collection of
loosely joined steel pans—which transports away the coal cut by the rotating drum.
A nucleonic coal sensor, situated some distance behind the cutting head, provides
the primary feedback control signal, where the basic objective is to steer the head
within the undulating confines of the coal seam. Aside from the obvious objective of
maximising the amount of coal cut, penetration of the stone-coal interface must be
avoided on both economic and safety grounds.

At the end of each pass, the so-called pushover phase takes place in preparation
for the next pass of the coal cutter. This phase begins by hauling back the machine in
reverse at (relatively) high speed to its starting position. Hydraulic rams in the roof-
floor support units are then used to ‘snake over’ the complete installation—machine,
conveyor, and support units—such that it rests on the newly cut floor profile ready for
the start of the next pass of the coal face. A simple consideration of the basic system
geometry and dynamics confirms that long-wall coal cutting is indeed a repetitive
process.

In this particular application, the pass length & can be up to 300 m in some cases
and the pass profile is the height of the stone coal interface above a fixed datum. Then
with the further assumption that the conveyor moulds itself exactly onto the newly
cut floor profile (the so-called ‘rubber conveyor’ assumption) a simple model of the
process dynamics is

Uk+1() = —k1yer1 (t — X) + koyn(t) + k1 Rer1(t), 0<t<a, k>0 (1)
with (assumed with no loss of generality) pass initial conditions
Yrr1(r) =0, —-X<7<0 2)

In (1), k1 and k; are positive real constants, Rgy;(t) is the control input signal
(or the reference signal closed loop), X is the transport lag (time delay) by which
the sensor lags the centre of the cutting drum in the along the pass direction, and
Yk (t)—the pass profile—is the height of the stone /coal interface above a fixed datum.
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In modelling studies on coal cutting operations, it is common to judge the system’s
response to the input signal (or reference signal closed loop)

Rk+1(t) = -1, yo(t) = O, 0 S t S a, k 2 0 (3)

i.e. a downward unit step applied at ¢ = 0 on each pass and zero initial pass profile.
Using this signal it is possible (by suitable choices of k; and ks) to generate examples
where, for example, the first profile which is an acceptable ‘classical’ response, but
oscillations are present in successive passes which increase in amplitude at a ‘massive’
rate in the pass-to-pass direction. This feature can only be caused by the interaction
between successive pass profiles and is a simple demonstration of the essential unique
control problem for repetitive processes.

Of course, an in-depth analysis based on the assumptions introduced above is un-
realistic, since it completely ignores the considerable distortion caused to the previous
pass profile by the machine’s weight during the ‘snake-over’ phase. This is termed
interpass interaction, and the modelling of this dynamic behaviour is a non-trivial
task. Several promising models have been developed, however, for a range of coal
cutting and other physical examples where significant interpass interaction also oc-
curs (Smyth, 1992). In all these cases, the paramount task is to include the crucial
interpass interaction explicitly.

Despite its simplicity, the model for the long wall coal cutting process given above
has played a very useful role in the basic understanding of the underlying dynamics.
In particular, it predicts the basic unique control problem for repetitive processes in
that the output sequence can contain oscillations that increase in amplitude in the
pass-to-pass direction. Physically this problem appears as severe undulations in the
newly cut floor profile which means that cutting operations (i.e. productive work)
must be suspended to enable their manual removal. This problem is one of the key
factors behind the ‘stop/start’ cutting pattern in a typical working cycle in a coal
mine.

Early attempts at stability analysis for repetitive processes represented by linear
models basically first attempted to transform them into standard linear systems—
here termed 1D linear systems. These were based on first writing repetitive process
variables, such as yx41(t), in terms of the so-called total distance traversed, using the
single variable V' = ka + t. This converted the dynamics into those of an equivalent
‘infinite length single pass’ process to which it was claimed that standard techniques,
such as Nyquist diagrams, could be used to predict stability and hence on to controller
design. For example, in terms of the total distance traversed, the simplified model of
the long wall coal cutting process is

y(V) = —kiy(V = X) + kay(V — o) + k1 R(V) (4)

and the claim then was that this repetitive process is stable if, and only if, the system
of (4) is stable in the standard, or 1D, linear sensé.
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In fact, this claim is false (Smyth, 1992) except in a very few and highly restrictive
special cases. The basic reasons for this is that it completely neglects

1. the ‘stabilising influences’ of resetting the initial conditions on each pass—for
example, the long wall coal cutter starts each pass from a fixed height above
the stone coal interface; and

2. the essential finite pass length ‘repeatable’ nature of these processes.

Given this most basic systems theoretic problem, there is clearly a pressing need
to develop a rigorous stability theory for repetitive processes on which to base the de-
velopment of a rigorous control theory and hence controller design algorithms. Smyth
(1992) and the relevant cited references give a detailed treatment of the modelling
and related analysis of long wall coal cutting and other physical examples of repetitive
processes such as metal rolling operations. Also recent years have seen the emergence
of so-called algorithmic examples which have the structure of a repetitive process.
One such case is iterative learning control as discussed below.

Iterative learning control has its origins in the analysis and control of systems
which are required to continually perform the same task. The general objective is
to sequentially improve performance. Physical examples can be found across a wide
range of areas and, in particular, the general area of robotics. A simple example in
this last case is a robot manipulator which is required to repetitively follow the same
geometric trajectory or path (Arimoto et al., 1984).

Suppose now that a standard (or ‘normal’) feedback control law is applied to
such a problem. Then clearly the resulting closed loop system would exhibit the
same performance on each repetition or trial. Motivated by human learning, the
basic idea of iterative learning control (denoted by ILC from this point onwards) is to
use information from previous trials to improve performance from trial to trial. The
ultimate aim (in theory) is to learn the precise input needed to achieve the desired
output (which can, of course, be vector-valued) over the trial length which is, by
definition, finite. In practice, the objective will be to reach the reference signal within
a given accuracy or tolerance (suitably defined).

Intuitively, improvements to performance in this setting mean reductions (in
some well-defined sense (such as point-wise or average)) in the error between the
actual and desired system outputs over the trial length. Given the essential basis
of ILC schemes, signals/measurements from previous trials are a natural choice of
data for use in constructing the inputs for the current trial. The control system is
hence said to ‘learn’ by remembering the effectiveness of previously employed inputs
and uses data on their success or failure to construct new trial inputs—suggesting
an inherent repetitive process structure. It is important to stress that the learning
mechanism is by iteration and what is learned is the control input which, in theory,
ensures that the system output equals the desired output at all points along the
trial length. Hence in contrast to adaptive control, ILC schemes do not attempt to
explicitly identify the plant dynamics, but only change or adapt the control input.

Generally speaking, the available results on ILC can be divided into two classes,
the first of which is a special class of nonlinear dynamics which arise in particular
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application areas such as robotics (Arimoto et al., 1984). The other class is linear
systems treated in a general setting and hence well-known and extensively used analy-
sis tools, such as frequency domain methods, are available. Considerable progress
has been made using these methods but they do not allow the use of combinations of
feedforward; i.e. from the results of previous trials, and feedback, i.e. from the current
trial error, action which, intuitively, should yield much superior performance. Recent
work has shown that treating ILC schemes in a repetitive process framework allows
such action to great effect. The basics of this analysis is as follows.

The mathematical definition of the ILC schemes considered in this work is as
follows.

Definition 1. Consider a dynamical system with input u and output y. Suppose also
that U and Y denote the input and output function spaces respectively andlet r € Y
be a desired reference signal from this system. Then an ILC scheme for this system is
said to be successful if, and only if, it constructs a sequence of control inputs {u}x>1
which when applied to the system (under the same experimental conditions) produces
an output sequence {yk}k31 with the following so-called properties of convergent
learning
lim yp =7, lim ux = ue _ (5)
k—oo k—oo
Here convergence is interpreted in terms of the topologies assumed on U and Y
and ue is termed the learned control. Note also that this general setting simulta-
neously describes linear and nonlinear dynamics, continuous or discrete systems, and

time-varying or time-invariant dynamics. A detailed treatment of this aspect can be
found in (Amann, 1996).

Suppose now that e denotes the tracking error on trial k,i.e. ex = r—yx. Then
one class of ILC schemes whose properties have a natural repetitive process structure
are those which construct the input wg41 on trial £+ 1, & > 0, as a function of
the current and previous errors and possibly the previous inputs, e.g. a recursive
functional mapping of the form ugy1 = f(ex+1,€x,ur). Also Definition 1 essentially
refines the intuitive concept of ‘improving performance progressively’ from trial to
trial into a convergence condition on the learning error of the form

Jim flex(-)]] =0 ()

where [|(+)|| denotes the norm on the underlying function space.

Ideally the algorithm used should produce an error sequence {ex}r>1 with the
monotonic property that |lext1]] < |lex]l, £ > 1. It is possible to show that this
condition can be achieved in certain cases but, in general, it is restrictive (Amann,
1996). A more practically relevant alternative is to ask that convergence is geometric
in the sense that it can be bounded above by a geometric expression of the form M \*
for some choice of real numbers M >0 and A € (0,1).

The stability theory for linear repetitive processes finds direct application in
characterising the convergence properties of the ILC schemes introduced above. Note
also that the results obtained are, as shown in the next section, far superior to those
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available by any other approach. This analysis is, in effect, based on the application of
the general stability theory for linear repetitive processes (Rogers and Owens, 1992a)
to the sub-classes of so-called differential and discrete linear repetitive processes. Here
we only consider the differential case (since the results for the discrete case follow
naturally) where the state space description of a differential linear repetitive process
has the structure

Gpi1(t) = Azpp1 (8) + Buges (t) + Boyi(2)
Yrt1(t) = Czpa (1) + Doyr(t), 0<t<a, k>0 (7)

Here on pass k, z(t) is the n x 1 state vectdr, yi(t) is the m x 1 vector pass profile,
and wug(t) is the I x 1 vector of control inputs.

To complete the description of a differential linear repetitive process, it is neces-
sary to specify the ‘initial conditions’, i.e. the initial pass profile and the initial state
vector on each pass. The simplest possible form for these is

zr+1(0) =dpyr, k>0

y)=ft), 0<t<a (8)

Here diy; is an nx1 column vector with constant entries and f(t) is-a known
function of t.

Applications do exist, however, where it is necessary to consider pass initial con-
ditions which are a function of the previous pass profile. An example here is the use
of the theory of discrete linear repetitive processes to study the convergence proper-
ties of iterative solution algorithms to dynamic nonlinear optimal control problems
based on the maximum principle (Roberts, 1996). A more general set of pass initial
conditions for differential linear repetitive processes is

Tr41(0) = dpg1 + Ko y(0) + Zijk(tj) + /DQK(t)yk (t)dt 9)

i=1

Here Ky, K,...,K, are constant n xm matrices, K(t) is a piecewise-continuous
n x m matrix function of ¢ on the pass interval 0 <t < a,and 0 < t; <ty <--- <
tq £ o are g sample points.

A special case of (9) can be used to establish a link between differential linear
repetitive processes and a class of 1D linear systems with a delay in the state. It
will, however, be established later in this paper that the pass initial conditions alone
can destabilise a differential (and discrete) linear repetitive process. Hence adequate
modelling of the pass initial conditions is essential in the analysis of differential (and
discrete) linear repetitive processes.

3. Stability Theory and Its Application

As noted in the previous section, the stability theory for linear repetitive processes
(of constant pass length) has been developed (see (Rogers and Owens, 1992a) for the
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definitive treatment) using an abstract model of the underlying dynamics in a Banach
space setting. A key fact is that this representation contains all such processes as
special cases. Here we introduce this model using the differential linear repetitive
process state space description (7)—(8) as a basis.

Let E, denote the Banach space of bounded continuous mappings of the interval
0 <t < « into the vector space C™ of complex m-vectors with norm

lyll == sup [ly(t)flm (10)
0<t<a
where |- [| is any convenient norm in C™, e.g. ||p|lm = maxi<i<m |p|. Now write

(7)—(8) in the equivalent form

. i
Yr+1(t) = CeAtdk.H + C/ eAlt=7) (Boyk(’i’) + Bugy: (T)) dr
0
+Doyi(t), 0<t<a, k>0 (11)

Also define the bounded linear map L, in E, by

(Lat)(t) = Doy(t) + C / A=) By () dr (12)

and the vector b1 by
t
bra1(t) = Cettdyy + C / A Buy i (1) dr (13)
0

Then the differential linear repetitive process (7)-(8) takes the abstract form
Ye+1 = Layk + bey1, k>0 (14)

In the case when the state initial conditions on each pass are given by (9) we have
that
¢
(Lay)(t) = CMY 4 C / At Boy(r) dr )
0
where

¥ = Kay(0) + Y Kyults) + / K(r)y(r) dr (16)

and by is again given by (13).

Consider now any initial profile y, € E, and any disturbance sequence
 A{bk}k>1 € E, with limit denoted by bs. Then the system of (14) is said to be
(uniformly) asymptotically stable if, and only if, the resulting sequence of pass pro-

files {yr}r>1 converges strongly to an equilibrium, or so-called limit, profile yq,
defined by

Yoo = LaYoo + boo (17)
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and this property holds for all pperators, say La ‘sufficiently close’ to L,. Following
Rogers and Owens (1992a), it can be shown that this property holds if, and only if,

r(La) < 1 (18)

where 7(-) denotes the spectral radius. Also if asymptotic stability holds, the resulting
limit profile is the unique solution to (17).

To apply Theorem 1, it is necessary to calculate (or characterise) the spectral
values of L,. One way of doing this is to consider the equation

(B - La)y = 2 (19)

and construct necessary and sufficient conditions on the complex scalar 8 such that
this equation has a solution V z € E, which is bounded in the sense that |jy|| < kol|z]|
for some real scalar ko > 0 and Vz € E,. In the case of differential linear repetitive
processes of the form (7)—(8), the following result characterises asymptotic stability.

Theorem 1. The differential linear repetitive process of (7)-(8) is asymptotically
stable if, and only if,

r(Do) < 1 (20)

Corollary 1. Suppose that the differential linear repetitive process (7)—(8) is asymp-
totically stable and the control input sequence applied {ur}r>1 and the sequence of
state initial conditions {di}r>1 converge strongly to uc, and de, respectively. Then
the resulting limit profile is simply the solution of the differential state space equations

Goo(t) = (A + By (I, — Do) ™" c) Zoo(t) + Bueo(t), Teo(0) = duo

yOO(t):(Im_DO)_l Czoo(t), 0<t<a, k>0 (21)

This limit profile description is just a 1D linear systems state space model. Hence if
a differential linear repetitive process (with pass initial conditions of the form given
in (8)) is asymptotically stable then, after a ‘sufficiently large’ number of passes, its
repetitive dynamics can be replaced by those of a standard linear system. This fact
has obvious implications in terms of the structure and design of control schemes for
these processes which is returned to in the conclusions section of this paper.

These asymptotic stability results are counter-intuitive in the sense that they
are independent of the system state space model matrices A, B, By and C and, in
particular, the eigenvalues of A which clearly have a very significant influence on the
dynamics produced along any pass. The reason for this is that the pass length « is
finite by definition and it is easy to generate examples where asymptotic stability does
not even guarantee that the resulting limit profile is stable in the 1D linear systems
sense—for example, consider cases when Dy = 0.

Clearly this ‘weakness’ will not be acceptable in all cases of interest. For such
cases a stronger concept of stability along the pass is required which is discussed later
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in this section. Note, however, that asymptotic stability is a necessary condition for
stability along the pass in all cases.

Asymptotic stability on its own turns out to be strong enough for a number of
cases of interest. One example here is the convergence properties of iterative solution
algorithms to nonlinear dynamic optimal control problems based on the maximum
principle—see (Roberts, 1996) and related papers for a full treatment of this appli-
cation. A second application is to certain classes of linear ILC schemes which is
discussed next. The key point to emerge is that repetitive process based stability
theory is far superior to other analysis settings for these schemes.

As noted previously here, many approaches to the design of linear ILC schemes
use only feedforward action, i.e. information generated from the results of previous
trials is used to construct the current trial input. The use of the repetitive process
framework, however, uniquely allows learning laws which also take into account the
current trial error. The result is learning laws which are a combination of feedforward
(from the previous trial outputs and/or inputs) and feedback (from the current trial
error) action. One immediate benefit from the presence of feedback action is that all
the usual advantages of such action (i.e. improved robustness) are potentially avail-
able. The following discussion shows how one general class of feedforward/feedback
linear ILC control schemes can be formulated such that their stability and conver-
gence properties are equivalent, mathematically, to the asymptotic stability properties
of discrete linear repetitive processes of the form (7)—(8).

In this paper the plant to which an ILC scheme is assumed to be strictly proper
with plant dynamics defined by the state space triple (4, B,C) (see Amann et al.,
1996) for the extension of the results given here, plus other techniques, to more general
model structures). Suppose also that the vector r(t) € R™ is to be tracked over the
trial interval 0 <t < @ < +oco. Then if y(¢) € R™ denotes the plant output on
trial k, the corresponding error vector is

ex(t) = r(t) — yu(t) (22)
and the state space model of the resulting error dynamics can be written as
Trp1(t) = Azg(t) + Bug(t), zx(0) =0

er(t) =r(t) — Czr(t), 0<t<a, k>0 (23)

Here on trial k, zx(t) is the nx 1 state vector, ux(t) is the I x 1 vector of control

inputs and the ‘simple’ state initial conditions on each trial incur no loss of generality.

Of all the candidate learning algorithms available, this paper only considers the

following one which, in effect, is a (static and dynamic) combination of previous input
vectors, the current error, and a finite number of previous errors:

N N
uk(t) = Z a,;uk__i(t) + ZKi [ekki] (t) + Ky [ek] (t) (24)
i=1 i=1

In addition to the ‘memory’ N, the design parameters are the static scalars a,
1 <1 < N, the linear operator Kj[ex] () which describes the current error con-
tribution, and the linear operator Kj[ex—;](t), 1 < i < N, which describes the
contribution of the error on trial &k — i.
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The error dynamics of (23) can be written in convolution form as
ex(t) =r(t) —Glug)(#), 0<t<a (25)

where
t
Gly(t)=C /0 eAt=T) By(r) dr (26)

Using this description, it is easily shown that the closed-loop error dynamics can be
written as

N

ex(t) = (I - GKo) ™ {Z (il — GK;) [ex—i)

=1

or, equivalently,

€rt+1 = Lok +b (28)
where

. T

€k (t) = {6{+1_N(t), T eg(t)] (29)

is the so-called error supervector, and

Ly = : : : : (30)
0 . 0 I
EoENy - EgEy EoE;

with
Eo[y) (t) = (I +GKo)™ [y] (2)
E)(t) = (s - GK) ] (), 1<i<N (31)
and
N T
b= [0,0, o (1 = ai>rT(t)] (32)

It follows immediately from the structure of (28)~(32) that the closed-loop ILC
error dynamics in this case can be studied as a linear repetitive process of the abstract
form (14), where E, is as before with C™ replaced by CM, M = mN. Hence the
following stability result can now be stated.
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Theorem 2. The ILC scheme defined by (28)-(82) is stable in the sense of (18) if,
and only if, the polynomial

Pa(z) = 2N — 2V — V- oy 1z —an (33)
satisfies
Pa(2) #0, Ve[ >1 , (34)

Note again the counter-intuitive basis of this result, i.e. stability is largely inde-
pendent of the plant and the controllers. The reason for this is that the trial length
is finite, over which a linear system can only produce a bounded output—even if it
is ‘unstable’. In the definition of stability used here, these ‘unstable’ outputs are still
‘acceptable’ (see also below).

Suppose now that Theorem 2 holds. Then the following corollary characterises
the resulting limit profile (or the ‘steady state’ error dynamics).

Corollary 2. Suppose that the ILC scheme of (28)-(32) is designed such that it
satisfies Theorem 2. Then the error sequence generated {ex}r>1 converges strongly
to the limit profile

eo(t) = (I + GK,) ™ [r] (t) (35)

where the so-called effective controller K, is given by

K

Ke=— 36
= (36)
with
) N N
ﬁ:Zai’ K:ZKZ (37)
=1 =0

As already noted, the stability theory leading to Theorem 2 does not absolutely
guarantee that e (t) is stable (in the 1D sense) and/or better than e;(t), i.e. that
learning actually produces an improvement. To absolutely guarantee an ‘acceptable’
eco(t) (for all trial lengths) requires the stronger conditions of stability along the
pass (see also below). In effect, this property imposes additional conditions on the
operators E;, 1 =0,1,2,--- | N which take into account the structure of the plant
and the learning control law.

In a large number of cases, see (Amann, 1996) for more details on this point, the
stability theory based on Theorem 2 suffices and in such cases further key aspects of
closed-loop system performance can be established. This is a unique feature of the
repetitive process theory for this application which is detailed fully in (Amann, 1996).
Here we restrict attention to two key aspects, i.e. the magnitude of the limit error
exo(t) and the convergence rate of the error sequence {ex}r>1 to e (t).

Consider first the magnitude of the limit error. Then further analysis using the
repetitive process theory setting, see (Amann, 1996) for the details, shows that there
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is a ‘trade off” between the magnitude of ey () and the rate of convergence, i.e. the
ratio
llex+1 — eooll

_ 38
L P (38)

To detail this, it is convenient to introduce the parameter

p= max |\ (39)
where A;,1 <4 < N, is aroot of p,(z) of (33). Then if p is ‘close to unity’ a small
exo(t) can be expected and if p is ‘close’ to zero ‘fast’ convergence is enforced with
a ‘large’ terminal error.

It is easy to show that zero terminal error can only be achieved if & = 0 and
hence only if Zfil a; = 1. In which case it follows that z = 1 is a solution of
po(z) = 0 and consequently the spectral radius of L, can, at best, be equal to one.
This situation is reminiscent of classical control where the inclusion of an integrator in
a controller, which puts a forward path system pole on the stability boundary, results

in zero error for constant disturbances.

In terms of the convergence rate to the limit error, the following result is proved
by the use of standard bounding techniques for linear operators in Banach spaces and
can again be found in (Amann, 1996):

Theorem 3. Suppose that Theorem 2 holds for the ILC scheme defined by (28)-(32).
Then the error sequence {ex}r>1 converges in norm to e, defined by (35)-(37) and
the error sequence {ey — e} is bounded by an expression of the form

lex — ecoll < M (max (lleol, - lew—111) + Malrl}) A* - (40)

for any X € (i, 1) where My and My are positive real scalars which depend on the
choice of .

Using this last result, it follows that the error sequence approaches e, at a
geometric rate governed by the parameter A. Also if A is ‘small’ convergence is ‘rapid’
with a geometric upper bound of the form Ms\* where Mj is another positive scalar.
Note also that the resulting limit error is, in general, non-zero and K, (the effective
controller) can have ‘very high’ gain—hence it cannot be argued that it should have
been used on the first pass.

It is instructive to relate convergence here to classical concepts. Consider, for
simplicity, the case of N = 1. Then if u — 07 convergence is ‘fast to, essentially,
the first trial error. Hence ILC schemes are of little benefit in such cases and will
simply lead to the normal ‘large’ errors encountered under ‘standard’ feedback control
schemes.

This last conclusion suggests the selection of a p ‘close to’ one with the result
that K. has a ‘high gain’ structure and, in general terms, a ‘small error’ will result.
There is, however, a conflict in this argument which has major implications on the
underlying systems theoretic/control structure both in terms of the underlying theory
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and its application. This is that ‘small’ learning errors require ‘high’ effective gain in
the system which must remain stable under such gains.

One way of describing the essential detail of the high-gain aspect here is by the
associated root locus. In particular, standard theory shows that for stability the
plant must be minimum phase and have relative degree one or two. The first of these
constraints cannot be removed and the second is such that it precludes the use of ILC
schemes with ‘high’ effective gain for systems of ‘high’ relative gain. Such systems
simply need a different class of ILC schemes.

Suppose now that the plant is minimum phase and has relative degree one or
two. Then there is also a key difference between plants of relative degree one and
those with relative degree two. This is most conveniently presented here by restricting
attention to the single-input single-output (SISO) case.

If the system is SISO and relative degree one, it is easily shown, by pole-zero
residue calculations that the convergence is uniform in both magnitude and deriva-
tive (particularly if the poles and zeros are interlaced when plotted on a pole-zero
diagram). Conversely, if the system is SISO and relative degree two, the convergence
is uniform in magnitude but non-uniform in the derivative. In particular, the limit
error has a ‘small’ amplitude of the order of (1 — )}/ but oscillates at a (‘high’)
frequency proportional to (1—/)'/2, i.e. in practical terms, as fi — 1 from below, the
limit error exhibits a high frequency ‘jitter’ around the specified reference frequency.

As noted previously, asymptotic stability of a differential (or discrete) linear
repetitive process guarantees the existence of a limit profile described by a standard
(1D) linear systems state space model (21). It does not, however, also guarantee that
this limit profile has ‘acceptable’ dynamics along the pass and, in particular, that the
limit profile is stable, i.e.

sIn—A—By(I;m — Do) C|#0, Re(s)>0 (41)
A simple example is the following single state process
Eha1(t) = —Zre1(8) + w1 (8) + (1 + p)y(t), zr41(0) =0
yp+1(t) = zp1(t), 0<t<a, k>0 (42)
This process is clearly asymptotically stable with resulting limit profile
Yoo (t) = PYoo(t) +uco(t), 0<t<a (43)
Setting ux(t) =1 and 4p(t) =0, 0<t < @, k > 1, gives
nt)=1-¢"*, 0<t<a
Yoo(t) =p~ 1 (e =1), 0<t<a (44)

Hence in this case the first pass profile y;(t) is a quite acceptable ‘classical’ re-
sponse to the unit step input command. The limit profile can, however, have quite
unacceptable dynamic characteristics. For example, if p > 0, the limit profile dynam-
ics grow exponentially and can be said to be ‘unstable along the pass’ in an obvious
intuitive sense.



Control systems theory for linear repetitive processes—recent progress and . .. 751

The natural definition of stability along the pass for the above example is to ask
whether (21) defining the limit profile is stable (in the standard linear systems sense),
ie. § < 0 if we let the pass length o — oco. Unfortunately, this simple appealing
idea does not apply in any simple manner to a wide range of cases, such as the coal
cutting model. Consequently the definition of stability along the pass employed is, in
effect, based on the rate of approach to the limit profile as the pass length becomes
infinitely large.

Definition 2. The linear repetitive process (14) is stable along the pass if there
exist finite real numbers My, > 0 and Ay € (0,1) such that Va > 0 and for each
constant disturbance sequence bgy, = b the output sequence {yx}r>0 satisfies the
inequality

: beo
o = vl < M (ool + 250} k20 (43

In effect, this definition requires that the rate of approach to the limit profile has
a guaranteed geometric upper bound independent of the pass length « > 0. (This is
in contrast to asymptotic stability which can be shown to require only that the rate
of approach to the limit profile has a guaranteed upper bound for the given value of
pass length.) Several equivalent sets of necessary and sufficient conditions for stability
along the pass exist but here we only use the fact that this property is equivalent to
the existence of real numbers (which are independent of &) Mo, > 0 and Ao € (0,1)
such that

IZEl < MooAE,, VE>0, Va>0 (46)

Using this last equation as a basis, it can be shown that necessary and sufficient
conditions for stability along the pass of (14) are

Teo :=8Supr(Ly) <1 (47)
a>0
and
M :=sup sup || (BI = L) || < o0 (48)
a>0|8]>

for some real number y € (1, 1).

Note that condition (47) of this result is equivalent to asymptotic stability Va > 0.
Also condition (48) does, of course, imply (47) but in a large number of the cases
considered to-date the former condition has proved much easier (in relative terms) to
interpret than the latter. Hence the main reason for retaining their separate identities.

‘The boundedness condition (48) of this last theorem is equivalent to the existence
of a v € (reo, 1) such that (19) has a uniformly bounded, with respect to «, solution
y € Eq for all choices of z € E, satisfying sup, ||z|| < 400 and V|8] > ~. In
general, this condition could prove ‘very difficult’ to interpret but for differential
linear repetitive processes with ‘simple’ pass initial conditions the following result
can be obtained.
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Theorem 4. Suppose that the pair {A,Bo} is controllable and the pair {C, A}
is observable. Then differential linear repetitive processes of the form (7) with pass
initial conditions defined by (8) are stable along the pass if, and only if,

(a) r(Do) <1 (49)
(b) |sIn — A| #0, Re(s) >0 (50)

(c) all eigenvalues of the transfer function matriz
G(s) = C (sI, — A" By + Dy (51)
have modulus strictly less than unity s = w, Yw > 0.

All of these conditions can be tested by direct application of 1D linear systems
tests. Note also that, in general, all three conditions must hold—the example of (42)
only fails condition (c). Also they have well-defined physical interpretations which
are discussed next.

Consider first condition (a) and consider, without loss of generality, the SISO
case. Suppose also that zero state initial conditions and control inputs are applied,
Le. dgy1 =0, upy1(t) =0, 0 <t <, k > 0. Then the initial output on each pass
is given by

y1(0) = Dyo(0), k>0 (52)

Hence in physical terms asymptotic stability of (7) requires that the sequence
{yx(0)}x>0 of initial pass profiles does not become unbounded (in a well-defined
sense) as k — +oo.

Condition (b), in effect, demands that the contribution to the dynamics along the
current pass from the input term is uniformly bounded (in a well-defined sense) with
respect to the pass length. In the case of condition (c), apply the same conditions
as in the discussion of condition (a). Then it can be shown (Smyth, 1992) that the
process dynamics can be expressed in the form

yr(w) = G*(w)yo(w), k>0 -~ (53)
where y(s) denotes the Laplace transform of y(t). Hence this condition requires that
each frequency component (as opposed to just the d.c. gain for asymptotic stability)
of the initial profile is attenuated from pass to pass. Also it is easy to show that
stability along the pass guarantees that the resulting limit profile is stable as a 1D
linear time-invariant system.

Stability along the pass can, of course, be applied to the ILC problem considered
earlier in this section. This aspect is extensively treated in (Amann, 1996) where
the links to other stability theories for ILC schemes are also explored to great effect.
In particular, the links with the long standing He.-based stability theory for ILC
schemes are fully investigated.

In terms of the control of differential linear repetitive processes, it is clear that
stability along the pass will, in general, be required. The work (Smyth, 1992) has
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also concluded that computable information on the following aspects of system per-
formance would also be highly useful:

1. The rate of approach of the output sequence of pass profiles {yx}r>1 to the
resulting limit profile yeo.

2. The magnitude of the error yi; — yso On any pass k.

Rogers and Owens (1992b; 1992c) have shown that easily computable information on
these aspects is available at the expense of sufficient, but not necessary, conditions
for stability along the pass. These tests are based on the assumed availability of

t
W (t) :c/ e Bydr + Dy, t>0 (54)
0

i.e. the step-response matrix of the standard 1D linear system with state-space de-
scription parameterised by the state space quadruple (4, By, C, D). The key task
then is the computation of the total variation of each entry in W (¢)—a task which
can be achieved in a computer-aided analysis environment using numerically reliable
algorithms.

Using this general approach, it can, for example, be shown for no extra compu-
tational cost that, if the control input sequence {uy}r>1 is constant from pass to
pass (for example, a unit step applied at ¢ = 0 in one or more channels on each pass
satisfies this condition), then

1. {yr}r>1 approaches y., at a geometric rate governed by a single computable
scalar; and

2. in norm terms, the error y; — Yoo On pass k lies in a computable band whose
width decreases from pass to pass at a geometric rate governed by the same
computable scalar.

Note that this ‘worst case’ error band can be replaced by a set of individual
channel bands which are, in general, less conservative. The effective use of these
computable measures in controller design is still very much an open research question.
Also it is possible to give (by Parseval’s theorem) a frequency domain interpretation of
the convergence information of 1. above performance for both differential and discrete
linear repetitive processes—see (Owens and Rogers, 1995) for the differential case, and
(Rogers and Owens, 1996) for the discrete case. These are based on a so-called 1D
Lyapunov equation characterisation of stability along the pass. In the differential case
the central results are as follows.

Theorem 5. The differential linear repetitive process (7) with pass initial conditions
of the form of (8) is stable along the pass if, and only if,

(a) conditions (a) and (b) of Theorem 4 hold; and

(b) 3 a rational polynomial matriz solution P(s) of the Lyapunov equation

GT(—s)P(s)G(s) — P(s) = -1 (55)
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bounded in an open neighbourhood of the imaginary azis with the properties that

() P(s) = PT(~s) (56)

(ii) B3I > P(w) = PT(—w) > BI, Yw>0 (57)
for some choices of real scalars B; > 1, 1 =1,2.

Note that the numbers §; play no role in the stability analysis but, together with

the solution matrix P(s) of the so-called 1D Lyapunov equation (55), they are the
key to obtaining bounds on expected system performance. This is developed next.

Suppose that (7)—(8) is stable along the pass. Then standard factorisation tech-
niques enable P(s) to be written as :

P(s) = FT(=5)F(s) (58)
Also, without loss of generality, we take
lim F(s) = PY/? (59)
|s}—+4o00

where lim P(w) = Py and Po = PT >0 is real and solves

|w| =400
DIPoDy = Py = -1 (60)

It also follows that F(s) is both stable and minimum phase and hence has a stable
minimum phase inverse.

Given these facts, return to (7)—(8) in the case when the current pass input term
is deleted. Then the process dynamics are described by

Ye+1(s) = G(s)ye(s), k>0 (61)
Also let
Gk (s) = F(s)yx(s), k>0 (62)

denote ‘filtered’ (by the properties of F(s)) outputs. Then the following result gives
(frequency domain) bounds on expected performance of (7)—(8).

Theorem 6. Suppose that the differential linear repetitive process (7)—(8) is stable
along the pass. Then Vk >0

k10125 0,400y = T2 50,400y = I¥EIT 32 (0,4.00) (63)
2

and hence the ‘filtered’ output sequence {||Jx|lzz(0,400) x>0 18 strictly monotonically
decreasing to zero and satisfies, for k > 0, the inequality

k)l 0,00) < A¥llG0ll 2 (0,400 . (64)

where

A= (1-62)"2 <1 (65)
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Also the actual output sequence {Hyk”Lg‘(O,+oo)}k20 is bounded by

lwillzg 0,400y < M (lyollzg (0,400) (66)

where
M= Bp7t > 1 (67)

This result provides a frequency domain description of the convergence of the output
sequence of the differential linear repetitive process (7)—(8) to the resulting limit
profile under stability along the pass. The main features are as follows:

1. The sequence of ‘filtered’ outputs {fx}r>0 consists of monotone signals con-
verging to zero (under zero control inputs) at a computable rate in LZ*(0, +00).

2. The actual output sequence {y}z>0 converges at the same geometric rate but
is no longer monotonic. Further, the deviation from monotonicity is described
by the parameter M computed from the solution of the frequency dependent
(or 1D) Lyapunov equation of Theorem 5.

In computational terms, the results of Theorems 5 and 6 are not computationally
attractive due to the need to examine the underlying Lyapunov equation (55) for all
points on the imaginary axis of the complex plane. Recent work (Rogers and Owens,
1997) (building on some basic methods first used by (Agathoklis et al., 1990) in the
case of 2D linear systems described by the Roesser state-space model) has used the
matrix Kronecker product to develop tests for stability along the pass via Theorem 5
which can be applied using generalised eigenvalue computations for constant matrices.
Hence the existence (at least) of the convergence information of Theorem 6 is available
for the same computational cost as the testing of the conditions of Theorem 5, and
these may well prove to be computationally more attractive than the tests based on
Theorem 4 in some cases of practical interest.

In contrast to 1D linear systems, more than one class of Lyapunov equations arise
for linear repetitive processes/2D linear systems. As an alternative to the frequency
domain (1D) Lyapunov equation of Theorems 5 and 6, it is possible to employ a
constant coefficient, or 2D, Lyapunov equation to characterise stability along the pass
of (7)—(8). This approach, see (Rogers and Owens, 1995) for a detailed treatment, is
based on the so-called augmented plant matrix for (7) defined as

A By
C Dq

P= (68)

Introduce W = W) @ Wy and @ as real positive-definite symmetric matrices,
where @ denotes the direct sum of Wi and W, i.e.

W, 0
0 W,y

W= (69)
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Then the candidate 2D Lyapunov equation for (7)—(8) is
PTWH 4 wOpP 4 PTWOIPp - WOl = (70)

where W10 = W, @ Oppxrm and Wo! = 0,,, ® Ws. Then, using the results first de-
veloped in terms of the concept of a strictly continuous bounded real transfer function
matrix (denoted by SCBR here) from circuit theory (see (Anderson and Vongpanith-
lerd, 1973) for the details), the following is the 2D Lyapunov equation stability result
for (7)-(8).

Theorem 7. Differential linear repetitive processes of the form (7)-(8) are stable
along the pass if 3 positive definite symmetric matrices W = W, ® W, and Q which
satisfy the 2D Lyapunov equation (70).

This result, i.e. that the SCBR property of G(s) implies stability along the pass
but not vice versa, parallels that previously reported for 2D linear systems described
by the Roesser state-space model (Anderson et al., 1986). In particular, the fact that
this result is sufficient but not necessary for stability along the pass is established
by straightforward (but numerous) modifications to the analysis of (Anderson et al.,
1986). There are, however, a number of relevant special cases where the theorem is
both necessary and sufficient and by far the most important of these is if (7)—(8) is
SISO. Also alternative characterisations of the SCBR property exist in terms of, for
example, algebraic Riccati equations.

The development of efficient algorithms for solving (70) is still an open research
area to some extent. The fact that Theorem 7 is, in general, a sufficient but not neces-
sary condition for stability along the pass reduces the usefulness of the 2D Lyapunov
equation in terms of stability tests. It still, however, has potentially a major role
to play in certain other critical aspects of the control-related analysis of differential
linear repetitive processes. One of these is to develop the first significant results on
the wide-ranging problem of constructing ‘informative’ stability margins. This is still
very much an open research area and is one to which much profitable research effort
could be directed—see also the conclusions section of this paper.

A unique key feature of differential (and discrete) linear repetitive processes is
the fact that the initial conditions alone can act as a destabilising mechanism. This
(at first somewhat surprising) fact follows from developing necessary and sufficient
conditions for asymptotic stability of (7) under the pass initial conditions of (9). Also
a special case of (9) provides an as yet under-exploited link with a class of delay
differential systems.

No loss of generality occurs here in considering the special case of (7) when
Yrr1(t) = zp41(t), ie. m =n, C =1I,, D =0, and Dy = 0. In order to obtain
necessary and sufficient conditions for asymptotic stability in this case, it is necessary
to find the spectral values of the corresponding L,. This can be achieved as follows.

First note that (19) in this case can be written in the differential form
W(t) = Aw(t) + Boz(t), w(0) =Y

Pyt) =w(t) +2(t), 0<t<a (71)



Control systems theory for linear repetitive processes—recent progress and . . . 757

Consider first the case when z(t) =0 and § # 0. Then (71) can be written as

By(t) = elA+0T Boty (72)
where
q a
{:Bln — Ko — ZKje(A*'ﬁ_lB")tf - / K (r)elA+h™ Bo)r dr}ff =0 (73)
=1 0

It now follows immediately that if 8 is any non-zero solution of

q . «

'ﬁ]n — Ko~ Y KelA+07 Bolts —/ K (r)elA+A Bo)r dT| =0 (74)
i=1 0

then (73) has a non-zero solution vector ¥ generating a non-zero solution y(t). This

is impossible if I — L, is to be injective and hence we must have all solutions to (74)

in the spectrum of L.

Suppose now that § is not a solution to (74) and that z is not necessarily zero.
Then a similar analysis to that just given yields an equation of the form

g
{ﬂ[n — Ko— Y KjelA+07 Bty _ /a K (r)elA+8 " Bo)r d'r}
=1 0

=(G2)(), 0<t<a (75)

where G is a bounded linear operator mapping E, into itself. This equation leads
t0 a unique solution for Y satisfying ||Y|| < ¢1]|2]}, V2 € E, and some real scalar
¢1 > 0. Also the solution to (71) can be written in the form

(a3
y(t) = B! {z(t)+e(A+ﬂ'lBo>tff+ / e<A+ﬂ“‘Bo><t—f>/a—1Boz(r)dT} (76)
0

which implies the existence and boundedness of (8I — L) .

The above analysis shows that the spectrum of L, in this case is simply the set
of all solutions of (74). This result, in terms of asymptotic stability, is stated formally
as follows.

Theorem 8. Differential linear repetitive processes of the form (7) (with yr.1(t) =
zry1(t) ) and state initial conditions of the form (9) are asymptotically stable if, and
only if, all solutions to (7)) have modulus strictly less than unity.

Proof. The analysis above had characterised the spectrum of L, and asymptotic
stability holds provided that r(Ly) < 1. Conversely, if r(L,) < 1, the continuity of
the left-hand-side terms in (74) mean that the spectrum of L, can have no cluster
points on the boundary of the unit circle of the complex plane, i.e. 7(Ly) < 1. ]

Note 1. The compactness of L, could be used to provide an alternative characteri-
sation of its spectrum.
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Note 2. Theorem 8 and its consequence discussed below generalise in a natural man-
ner to processes described by the full form of (7) and (9), i.e. without any restrictions
on the presence and structure of the matrices in the output equation.

Theorem 8 immediately shows that asymptotic stability, and hence stability along
the pass, of a differential linear repetitive process is critically dependent on the inter-
action between pass profiles and boundary conditions as expressed by Ky, K;,--- , K,
and K(t) in (9). For example, if Ko = K; = ---K, = 0 and K(t) = 0, the only
solution of (74) is § =0 and the process is asymptotically stable independent of the
matrices A, B, and By. If, however, K} = Ky = --- = K, =0 and K(t) = 0, it
follows immediately that the spectrum of L, is simply the eigenvalues of K and in-
stability can be easily induced by choosing this matrix such that one of its eigenvalues
is outside the unit circle in the complex plane.

This analysis clearly shows that it is the pass initial conditions which distinguish
differential (and discrete) linear repetitive processes from other classes of linear dy-
namic systems. In particular, the pass initial conditions in a given application must
be ‘adequately modelled’ in order to avoid erroneous results. This is not to say, how-
ever, that the structure of the pass initial conditions cannot be used, as discussed
next, to show links with other classes of linear dynamic systems which may then be
exploited to mutual benefit.

Consider the subclass of delay-differential systems in R™ defined by the state
space equation

#(t) = Az(t) + Boz(t — a) + Bu(t), t>0
ot —a) =z0(t), 0<t<a | (77)

Here A, By, and B are constant n xn, nxn, and n x! matrices, respectively, and
this subclass of delay-differential systems can be regarded as a special case of differ-
ential linear repetitive processes with a special case of the pass initial conditions (9).
To show this, introduce the change of variables

uk+1(t) = u(ka + t)
() =z((k—-Da+t), 0<t<a, k>0 (78)

Hence (77) can be treated as a special case of (7) with n = m, C = I,,, D = 0,
Dy = 0, and pass initial conditions

zr1(0) = zp(a), k>0 (79)

i.e. a special case of (9).

Suppose, therefore, that the delay-differential system (77) is regarded as a differ-
ential linear repetitive process with state-space model

Eg41(t) = Azgy1(t) + Bugpy(8) + Bozi(t)
2541(0) =zx(a), 0<t<a, k>0 (80)

Then Theorem 8 enables the following stability equivalence result to be stated.
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Theorem 9. The delay-differential system (77), when regarded as a differential linear
repetitive process of the form (7), is asymptotically stable if, and only if,

8L, — 4+ B 20, Vs> 1 (81)

To write this last result in more familiar terms, write 8 = e*® where s denotes the
Laplace-transform variable. Then (81) reduces to

;sIn - A- e_mBoI #0, Vs: Re(s)>0 (82)

which is just the ‘characteristic equation’ condition that would arise from directly
applying the Laplace transform to (77). Hence in this case, the ‘normal’ and repetitive
process concepts of asymptotic stability coincide.

This link to delay-differential systems is potentially very powerful and is, as yet,
under-exploited—see also the conclusions section of this paper. Note also that (9) can
also be used to establish links with other classes of linear systems—see (Owens and
Rogers, 1997) for more details. It must be stressed again, however, that such links
can only be exploited if the pass initial conditions are appropriately chosen. If this is
not the case, incorrect results will be obtained. Also the variety possible here more
than justifies the study of differential linear repetitive processes as a class of linear
dynamic systems in their own right.

4. Systems Theory for Discrete Linear Repetitive Processes

The state-space model of a discrete linear repetitive process is given by
Tr1(p + 1) = Azpy1(p) + Burt1(p) + Boyw(p)

Yi+1(P) = C211(p) + Dugs1(p) + Doyr(p), 0<p<a, k>0  (83)

Here on pass k, zxy1(p) is n x 1 state vector, yx(p) is the m x 1 vector pass profile,
and ug(p) is the I x 1 vector of control inputs. Note again that it is possible to specify
two distinct types of pass initial conditions, write the resulting process state-space
description in an abstract form, and apply the stability theory. The details are given
in (Owens and Rogers, 1997; Rogers and Owens, 1992a). In the case of the simple
pass state initial conditions, i.e. Tx11(0) = dp+1, (83) is asymptotically stable if, and
only if, the matrix Dy satisfies Theorem 1, and the following is the stability along
the pass result.

Theorem 10. Discrete linear repetitive processes described by (83) with pass state
initial conditions of the form zj1+1(0) = dgy1, k> 0 are stable along the pass if, and
only if,

(a) r(Do) <1, r(4)<1 (84)
(b) all eigenvalues of the transfer function matriz
G(2) = C(2In — A)™' By + Dy (85)

have modulus strictly less than unity V|z| = 1.
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These conditions can also be tested by direct application of 1D linear systems tests and
all other stability results given in the previous section for differential linear processes
extend in a natural manner to the discrete case—see, for example, (Rogers and Owens,
1993; 1996).

The dynamics of discrete linear repetitive processes clearly share some basic
characteristics with 2D discrete linear systems recursive in the positive quadrant,
i.e. systems which propagate information in two separate directions, often termed
‘horizontal” and ‘vertical’ respectively, over the grid Z? = {(i,j) : 4 > 0,5 > 0}. In
particular, they basically propagate information in two separate directions, i.e. from
pass to pass (k direction) and along a given pass (p direction). Hence one possible
approach to the analysis of discrete linear repetitive processes is to treat them as 2D
linear systems recursive over Z2. A key difference, however, is the fact that the pass
length of a repetitive process, which corresponds to the duration of one direction of
information propagation in the 2D systems representations advocated here, is always
finite by definition.

The modelling or representation of 2D linear discrete systems is somewhat more
involved than the 1D case, see, for example, (Rocha, 1990) for a detailed treatment.
At a basic level, the types of possible representations can be classified according to
whether or not

1. an input/output structure is included; and
2. latent (auxiliary) variables are included in addition to the system variables.

As in the 1D case, state-space models are a very important class of internal repre-
sentations of the system dynamics and several distinct versions exist, where the most
commonly used are the Roesser model (Roesser, 1975) and the various forms of the
Fornasini-Marchesini models (Fornasini and Marchesini, 1978).

The Roesser state-space model (omitting the output equation which has no role
here) has the structure

zp(h+1,v) = Ayzp(h,v) + Aszy (R, v) + Biu(h,v)
Ty(h,v 4+ 1) = Azzp(h,v) + Aszy(h,v) + Bau(h,v) (86)

Here h and v are the (integer-valued) horizontal and vertical coefficients, zj is
the n x 1 vector of horizontally transmitted information, z, is the m x1 vector of
vertically transmitted information, and u is the I x 1 vector of control inputs.

In the Fornasini-Marchesini model structures, the state vector is not split into
horizontal and vertical components. Again the output equation is not required in this
work and with z(4,j) denoting the appropriately dimensioned state vector the basic
model of this type has the structure

z(h+1,v+1) = Asz(h+1,v)+ Agz(h+1,v) + Bsu(h+1,v) + Byu(h,v+1)  (87)

where, as in (86), u is the (appropriately dimensioned) vector of control inputs. Note
also that every Fornasini Marchesini model can be transformed into a Roesser model
and vice versa.
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Another work (Rocha et al., 1996) has argued that (83) is a Roesser (and hence
Fornasini-Marchesini) model. In the case of the former, this claim is based on in-
terpreting the state vector z as horizontally transmitted information and the pass
profile y as vertically transmitted information. Using this ‘equivalence’, it is possible
to show (Rocha et al., 1996) that the same set of conditions result from the following
operations:

1. Applying a set of necessary and sufficient conditions for stability along the pass
to processes described by (83).

2. Applying a set of necessary and sufficient conditions for bounded-
input/bounded-output (BIBO) stability (see, for example, the relevant refer-
ences cited in (Rogers and Owens, 1992a) for the basic theory) of the Roesser
model of (86) with the matrices Ay, As, A3z and A4 replaced by A, By, C
and Dy, respectively (or a Fornasini-Marchesini model equivalent).

?

This fact enables the interchange to great effect of stability tests between these
two areas. It does not, however, show that (83) has the structure of a Roesser or
Fornasini-Marchesini model which is what is required in order to use 2D linear systems
theory to address key systems theoretic questions such as what controllability of
discrete linear repetitive processes actually means.

The general problem of modelling the dynamics of (83) by 2D discrete linear
state-space models has been extensively investigated recently (Gatkowski et al., 1998).
This work has shown that an appropriate place to start is the so-called augmented
state vector for (83) which is defined as

Z(k,p) = [7 (0), yT )] (88)

Then it follows immediately that the dynamics of discrete linear repetitive processes
with state space model (83) can be written in the form

EZ(k+1,p+1)=AsZ(k +1,p) + AgZ(k,p) + Bsu(k + 1,p) (89)

1 A

" 0 ) AB = 0
0 0 C -Iy
and 0 denotes the zero matrix of appropriate dimensions.

This is a singular version of the model of (87) (with A5 = 0, B; = 0). Note
also that there is a considerable volume of literature on systems theory for 2D linear
discrete systems described by singular versions of the Roesser or Fornasini-Marchesini
models—see, for example, (Kaczorek, 1992; 1994). One key aspect of this work
has been detailed investigations into the role and interpretation of singularity for
these representations and the construction of nonsingular (sometimes termed regular)
representations from their singular counterparts.

The work (Gatkowski et al., 1998) has concluded that singularity is not an in-
trinsic feature (in a well-defined sense) of discrete linear repetitive processes. This, in

where

0 By
0 Dy

E= , Ag= , DBy = {(90)

D




762 E. Rogers, K. Galkowski and D.H. Owens

turn, has led to the development of a ‘transformation’ theory for constructing nonsin-
gular Roesser and Fornasini-Marchesini state space descriptions from their discrete
counterparts. These nonsingular representations have then been used to establish a
formal equivalence (unlike the work of (Rocha et al., 1996)) between stability along
the pass of processes described by (83) and BIBO stability of their 2D Roesser or
Fornasini-Marchesini state space model interpretations which clearly must form the
basis to investigate, for example, the potential role of 2D feedback control schemes
for (83)—see also the conclusions section of this paper.

One key role for the Fornasini-Marchesini singular state-space model interpreta-
tion of the dynamics of (83) has been in the development of a transition matrix (also
termed the fundamental matrix sequence) and hence an analytic expression for the
trajectories generated by such processes in response to a given control input sequence
and initial conditions. The following are the main results on this aspect with a full
treatment in (Gatkowski et al., 1998).

Consider first the transition matrix. Then this matrix, denoted by T35, has the
form :

BT AT 11+ AgTo, 1 +1, i=5=0 o1)
i,j =
AgTi__l,]’_l + ASTi,j—la ) 75 0 and/or J 75 0, ¢> —Ui, J 2 —Ho

where (i1, u2) denotes the index of (89)~(90). To delineate this concept, first consider
the Laurent expansion about infinity of the so-called characteristic matrix of (89)—
(90), i.e.

E(z1,2) = (m122E — 21 Ag — Ag) ™" (92)

where z; and z; are shift operators in the p and k directions respectively, written
formally in the following form:

(o0 o0 .
E(z1,29) = zl_lzz“l Z Z Ti,jzfizz_j (93)

i=—py =g

Lewis (1992) has shown that a sufficient condition for the existence of an expression
of the form (93) with finite lower limits on the double summation for a two variable
polynomial, say, A(z1,z22) is

deg (A(z1,22)) = deg,, (A(z1,22)) + deg,, (A(z1,22)) (94)

where the degree of the two-variable polynomial A(z1,22) is defined as the degree in
z of A(z,2) and deg,, (A(z1,22)) denotes the degree in z,. This means that the
highest degree in z; and 2 occurs in the same term and two-variable polynomials
with this property are termed principal. It can be shown, using the transfer function
description (for which (92) is the characteristic matrix), that the 2D linear systems
models of the dynamics of (83) are also principal and it is this fact which is the key
to showing that nonsingular 2D linear state-space models for these processes exist.
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To evaluate (91), first partition T ; as follows
Tht b2 . :
PO (95)

where T j is of dimension nxn and T is of dimension m x m. Then it follows
immediately that the index (u1,p2) in thls case is defined by pu; =0, pz =1 and
hence Tp,—1, i.e.

To,—1 = {O O} _ (96)

0 I,

is the initial matrix in this case. The following result gives the formula for computing
T’i,j) i > 07.7 > 1.

Theorem 11. The transition matriz for discrete linear repetitive processes described
by (83) at point (i,7), 1> 0,7 > 1 is given by solving the following set of equations
for T;;:

Tll».’??\ = ATi];;\—l + BoT'z——Al,j—la A= 17 2 . (97)
and the following set of equations for Tj jy1:
T2/\ CTI)\ + DOT 1,50 A= ])2 (98)

Under pass state initial conditions of the form (89), the techniques of (Kaczorek,
1992) can be used to show that the model of (89)—(90) for a process (7)—(8) has a
solution for any control input sequence if, and only if,

|2122E —_ ZlAg - Agl ¢ 0 ‘ (99)

Here it is assumed without loss of generality that (89)—(90) has a unique solution,
in which case the following result gives the general response formula for this for this
model.

Theorem 12. Consider the model (89)-(90) for the dynamics of discrete linear
repetitive processes. Then the general response formula for this model is given by

k-1 p—1
Z(k,p) = T; jBsu(k —i,p—j — 1)
=0 j=-1
k—1 k—2
+ ) Tip-14sZ(k—1,0)+ Y Tip14eZ(k—i—1,0)
=0 =0
p—2
+ Z Tk_l,jAgZ(O,p -7 — 1) + Tk-l’p_lAQZ(0,0) (100)

j=-1
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In order to use this transition matrix to define and characterise the so-called local
reachability and controllability of discrete linear repetitive processes, the following
partial ordering of two-tuple integers will be used:

(4,5) < (k,p) iff i<p and j<p
(i,7)=(k,p) iff i=p and j=p
(i,5) < (k,p) iff (i,5) < (k,p) and (i,5) # (k,p) (101)

The dynamics of (83) evolve over
D.:={(kp): k>0, 0<p<al (102)

but in practice only a finite number of passes K* will actually be undertaken. Hence
a natural definition of reachability /controllability for these processes is as follows:
Given admissible boundary conditions and a sequence of control inputs, is it possible
to achieve all vectors in the rectangle whose boundary in the pass to pass direction
is defined by 0 < k£ < K* and in the along the pass direction by 0 < p < a? The
formalisation of this idea for local reachability follows next where for (a,b), (c,d) the
rectangle [a,b], [c,d] is defined as

(@), (e d)] = {(a,t) < (.5) < (.0} (103)

In general, the properties of reachability and controllability for the 2D discrete
linear systems/discrete linear repetitive processes under consideration here can be
distinct. Here, for brevity, only the definition of local reachability is introduced—for
a detailed treatment see (Kaczorek, 1992; 1994) for the 2D discrete linear systems
case and (Galkowski et al., 1997) for discrete linear repetitive processes.

Definition 3. The dynamics of discrete linear repetitive processes modelled by
(89)-(90) is said to be locally reachable in the rectangle [(0,0),(h, f)], 0 < h < K*,
0 < f < «a if for admissible pass initial conditions (8) and every z; € R*+™3
a sequence of control input vectors u(k,p) on (0,0) < (k,p) < (h,f) such that
Z(h, f) = 2.

The properties of local reachability/controllability of discrete linear repetitive
processes can be characterised by direct application of results for the the equivalent
properties for 2D Roesser/Fornasini-Marchesini models due to Kaczorek (1992; 1994),
resulting in matrix rank based conditions, see (Gatkowski et al., 1998) for details. A
currently open general research problem is the implications (if any) of local reachabil-
ity /controllability properties on, for example, the structure and properties of current
pass state feedback control laws with, for example, the structure ug+1(p) = Fzry1(p).
Some initial work on this problem has also highlighted the need for the so-called si-
multaneous controllability which is defined as follows.
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Definition 4. Let K* be an arbitrarily chosen pass index for the discrete linear repet-
itive process state-space model of (83). Then processes described by this state-space
model are said to be stmultaneously, or pass, controllable if for admissible pass initial
conditions 3 a sequence of control input vectors u(k,p), 0 < p<a, 0 <k < K*
which will drive the system to a given set, say, {z*(K*,0), *(K*,1),...,z*(K*, o)}
on pass K*.

One immediate approach to characterise this property is to use 2D systems mod-
els. In fact, however, it is not possible to completely characterise this property using
the 2D systems interpretations of the process dynamics. The reason for this is ex-
plained below.

Pass reachability plays the same role for discrete linear repetitive processes as the
so-called global reachability for 2D linear systems described by Roesser or Fornasini-
Marchesini state-space models. In particular, global reachability in these cases is
expressed in terms of the global state vector and hence in terms of an infinite collection
of local state vectors with entries along the separation set. In the case of repetitive
processes, however, this collection of local state vector entries is finite due to the fact
that the pass length is finite by definition. The work (Gatkowski et al, 1998) has
attempted to characterise pass reachability using the 2D systems models which has
shown that it is only possible to completely characterise the weaker concept of the
so-called simultaneous local reachability.

Simultaneous local reachability means that the process is locally reachable in the
rectangle 0 < k < K*, 0 < p < « for each point p on this pass. This does not,
however, guarantee pass reachability since two points (K*,p') and (K*,p?) may be
reached using two different input sequences which cannot be joined together to act
simultaneously.

Given these facts, recent work has developed a 1D representation for the dynamics
of discrete linear repetitive processes (Gatkowski et al., 1997). In contrast to the 1D
models of 2D linear systems developed in (Aravena et al., 1990), this 1D representation
has constant dimensions, and this fact itself makes it a potentially very powerful
analysis base for discrete linear repetitive processes. The basic steps in its derivation
are explained in more detail in (Gatkowski et al., 1997).

Define the so-called global state and input vectors for (83) as

X (k) = [7 (k). 9" (k)] (104)
where

(k) = [¢7(k,1),..., a7 (k,a)] "

(k) = [y" (,0),...,y" (h,a — 1)]” (105)
and

Uk) = [uT(k,0),...,uT(k,a — 1)] (106)
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Note that z(k,0) does not belong to the global state vector and must therefore be
treated as a part of the boundary conditions. Based on these definitions, the dynamics
of (83) can equivalently be described by the 1D state-space model

X(k+1)=AX (k) + BU(k + 1) + e(k) (107)
where
- |0 A . B
A= , B=|. 108
[0 AJ B, (108)
where
( [ By, 0 - 0
ABy By --- 0
Ay = ) ) .
AO‘-lB() -+« ABy By
< - 109
Dy 0 - 0 (109)
CBy Dy -+ 0
Ay = ) :
{ | CA*~ 2B, --- CBy By
( [ B 0 0
. AB B 0
B, = _
A*lB ... AB B
= 110
\ D 0 - 0 (110)
. CB D 0
By = '
{ _CA"“ZB . CB D
and
(25
e(k) = { }:ﬂ(k'{'l,O) (111)
g2
where

o1 = [AT, (A7, (407"

T

oy = [CT,(CA)T,...,(CA*)T] (112)

Note also that the input vector in (107) is updated in a manner directly related to
the pass-by-pass nature of the underlying process dynamics.



Control systems theory for linear repetitive processes—recent progress and . .. 767
Introducing the transformation
X (k) = X(k) — BU(k) (113)
into (107) yields
X(k+1) = AX(k) + ABU(k) + e(k) (114)
where the matrix AB is of the form
P R
AB = 115
h } (115)
where
ey 0 .- 0]
ro r1 - 0
R= (116)
_Ta To—1 " T1 |
[s1 0 0 ]
89 81 - 0
S = (117)
| S Sa—1 " S1 ]
The entries in K and S are given by
ry = BoD
j—2
rj=AT'ByD+ Y AIT?BCA'B, j=2,3,...,a (118)
=0
and
81 = D(]D
s2 = CBoD + DyCB
i—3
sj=CAI?ByD + DyCAT 2B+ CAI'*ByA=*B
1=0
j:374)"‘7a (119)

Hence an equivalent 1D state-space model for the dynamics of (83) is
T (k + 1) = A1 (k) + SU(k) + o2z(k + 1,0)

(120)
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where
X(k) = [8T k), 57 (k)] (121)

The ‘free terms’ o;z(0,k + 1), I = 1,2 depend explicitly on the pass index k.
Hence they must be interpreted as ‘time-varying’ in this sense. This feature is highly
undesirable but, as shown below, these ‘free’ terms can be removed by employing
further appropriate state transformations.

Another feature of this model is the ‘non-standard’ updating structure in the
pass-to-pass direction. In particular, consider the sub-vectors Z; (k) and g (k) which
form the global state vector X (k). Then the latter is computed recursively, i.e.
91(k + 1) is computed from 1(k), but the former is not. Hence in terms of the
structure of the 2D linear systems Fornasini-Marchesini state-space model (in all its
various forms) the sub-vector §; (k) can be interpreted as the state vector and the sub-
vector #;(k) as the output vector. Also in this context z(0,p), v(0,p), 0 < p < «
and z(k,0), kK = 1,2,... are boundary conditions, but y(k,0),k = 1,2,... are not
boundary conditions since they can be uniquely determined from (113). The ‘free’
terms o;z(k 4+ 1,0), I = 1,2 can be regarded as ‘permitted’ inputs.

To remove the time-varying terms from (120), introduce the transformations
w(k) =g(k) + (k)
C(k) = 21(k) +v(k) (122)

Then it follows immediately that w(k) and v(k) must satisfy the following pair of
equations:

w(k+1) = Asn(k) — ooz(k + 1,0)
vk +1)=Ain(k) — oyz(k +1,0) (123)

Also substituting these transformations into the model of (120) gives a 1D discrete
linear system equivalent to the discrete linear repetitive process state-space model
of (83). This result is stated formally as follows.

Theorem 13. The dynamics of discrete linear repetitive processes can be equivalently
described by the 1D linear time invariant state space model

w(k +1) = Asw(k) + SU(k)
¢(k +1) = Ayw(k) + RU (k) (124)

See (Galkowski et al, 1997) for a more detailed discussion of the structure of this
representation, including a transfer function matrix representation. Note also the
existence of alternative derivations of this 1D representation (Xu, 1997).

Since this model is nonsingular, there is no difference between the properties
of reachability and controllability (unlike the case of 2D linear systems described
by Roesser or Fornasini-Marchesini state-space models (see, for example, (Kaczorek,
1994)). It is also a routine to conclude that discrete linear repetitive processes are
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pass-controllable in the sense of Definition 4 if, and only if, the sub-vector w(k) of
their equivalent 1D state space representation is (state) controllable. This result is
stated formally as follows.

Theorem 14. Discrete linear repetitive processes are pass-controllable in the sense
of Definition 4 if, and only if, the so-called pass controllability matriz

Qp =[S, A4S, ..., A™71S] (125)
has rank equal to am.

Again see (Gatkowski et al., 1997) for some further developments of Theorem 14 in
the form of important special cases where a further simplification is possible.

5. Conclusions and Open Research Problems

Early approaches to the analysis and control of linear repetitive processes were based
on first ‘transforming’ them into equivalent 1D linear systems. This approach was
based on using the concept of the total distance traversed to, in effect, remove the
dependence of the system variables on the pass index. Subsequently it was shown
that this approach is incorrect except in a few very restrictive special cases.

This fact led, in turn, to the development of a rigorous stability theory for linear
repetitive processes of constant pass length. Also this theory is based on an abstract
model of the process in a Banach-space setting which includes all such processes as
special cases. Hence it is of sufficient generality to form the basis for the develop-
ment of a rigorous control theory and, in due course, attendant controller design
algorithms/software for sub-classes of particular interest.

In the special cases of differential and discrete linear repetitive processes, the
resulting stability conditions can be tested by, in effect, direct application of 1D
linear systems tests. Also if the process under consideration is stable then, after
a ‘sufficiently large’ number of passes, its dynamics can be replaced by those of a
stable 1D linear system (differential or discrete as appropriate). The implications
of this key result in the formulation and solutions of control/regulation schemes for
these processes has not been investigated yet beyond a very superficial coverage of a
number of special cases.

Extensive work has been undertaken on the development of performance bounds
or measures for differential and discrete linear repetitive processes. This has yielded
computable bounds or bands in the time domain and convergence rate information in
the frequency domain via a 1D Lyapunov equation formulation of stability. As yet, lit-
tle progress has been made on the definition and characterisation of useful/physically
meaningful stability margins for these processes. One possible approach here is a
further development of the so-called 2D Lyapunov equation interpretation of stability
where the work to-date appears to provide a potential starting point.

Differential and discrete linear repetitive processes have clear structural links
with, in particular, a subclass of delay differential systems in the case of the former -
and 2D discrete linear systems recursive over the positive quadrant in the latter. This
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leads to the assertion that these processes can simply be analysed by direct applica-
tion/modification of the existing systems theory. In fact, however, differential and
discrete linear systems can be totally distinct from other classes of linear systems.
The essential mechanism for this is the pass initial conditions which alone can, as
demonstrated in this paper, destabilise these processes. Hence the pass initial con-
ditions must be ‘adequately modelled’ in any given case to avoid the probability of
incorrect results at the most basic systems analysis level.

Provided the pass initial conditions are appropriately selected/modelled, it is
possible to establish structural links with other classes of linear systems which can
then be used to mutual benefit. In the differential case, the links with a subclass of
1D linear systems with a delay in the state vector have not been fully exploited yet.
Given the wealth of results on delay differential systems, both in terms of the basic
theory and its applications, it is expected that further research in this general area
will prove highly profitable. Possible topics for short to medium term work include
further development of the 2D Lyapunov equation based approach to stability analysis
and controllability /observability.

Under ‘simple’ pass initial conditions, the dynamics of discrete linear repetitive
processes can be represented by well-known state-space models for 2D linear systems
recursive over the positive quadrant. In this case (given the currently available re-
sults) it is possible to interchange analysis tools to a great effect between these two
classes of linear systems. The work to-date, in addition to stability tests, has focused
on the construction of a transition matrix and hence on to the definitions and char-
acterisations of systems theoretic properties such as local reachability /controllability.
This work has shown that large elements of the relevant systems theory for 2D dis-
crete linear systems recursive over the positive quadrant can be directly applied to
the corresponding problems for discrete linear repetitive processes.

Unlike the 1D case, there is more than one truly distinct concept of reachabil-
ity/controllability (and related/dual properties such as observability) for 2D linear
systems. This is also true for discrete linear repetitive processes where, for example,
it is so-called simultaneous, or pass, controllability which is the relevant property in
some cases. Also it is known that (at best) only necessary conditions for this property
can be obtained using the 2D linear systems state-space model interpretations of the
process dynamics.

This last fact has led to the recent development of a formal (i.e. the essential
process dynamics are preserved) 1D linear systems representations for the dynamics
of discrete linear repetitive processes. Unlike the 1D models for 2D linear systems
developed previously (Aravena et al., 1990), this 1D representation is characterised
by state-space matrices of both constant dimensions and entries. Also it leads imme-
diately to a simple matrix rank characterisation of the pass controllability property.

The reason that this 1D representation is not ‘time-varying’ in the sense of (Ar-
avena et al., 1990) is due to the fact that the pass length of a linear repetitive process
(which corresponds to the duration of one direction of information propagation in a
2D linear systems interpretation of the process dynamics is finite by definition. This
property alone makes this 1D representation a (potentially) very powerful basis for the
solution of currently open research problems for discrete linear repetitive processes,
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e.g. state and output feedback stabilising control laws (see below), observers, optimal
control, etc. Work is underway on a number of these aspects and will be reported in
due course.

It is also possible to develop 2D transfer function matrix descriptions for the
dynamics of differential and discrete linear repetitive processes (Rogers and Owens,
1992a). One immediate use for these descriptions is that they give simple block
diagram representations of the process dynamics which clearly highlight the crucial
interpass interaction. The more general question of the use of these descriptions
to characterise key systems theoretic properties, and the specification and design of
appropriate control schemes, has received some attention—for example, see (Johnson
et al., 1996) which gives some interesting results on the extension of Rosenbrock’s
system matrix theory to differential linear repetitive processes. Again, however, much
work remains to be done in this general area.

To-date, relatively little research effort has been directed towards the specifica-
tion of control schemes for linear repetitive processes and the development of algo-
rithms/tools for designing the resulting controllers. A key basic problem here is the
specification of physically meaningful general objectives for any such control scheme.
Clearly any such objectives must include stability and, in particular, stability along
the pass as the basic requirement. Hence the stabilisation problem for differential and
discrete linear repetitive processes can be stated as ‘the specification and design of
compensator structures which when applied to the process ensure stability along the
pass.’

Recall that if a differential or discrete linear repetitive process is stable along the
pass then, after a ‘sufficiently large’ number of passes, its dynamics can be replaced
by those of a stable 1D linear system—the limit profile (differential or discrete as
appropriate). This fact leads to the following as one possible general control objective
for these processes:

Drive the process to a limit profile with ‘acceptable’ along the pass dy-
namics in a ‘reasonable’ number of passes and, simultaneously, maintain
a ‘tolerable’ error yr — Yy On pass k.

The terms in quotation marks here are features whose exact interpretation will
be a function of the particular application under consideration. To-date, little work
has been done on refining this general specification into forms suitable for in-depth
control scheme specification, design, and evaluation studies.

Given that differential and discrete linear repetitive processes have clear struc-
tural links with 1D linear systems, appropriately structured feedback control
laws/schemes are a natural approach to solving control problems for these processes.
As in the 1D case, state and output feedback based control schemes can be defined.
In the case of differential processes, a state feedback law takes the following form:

Ups1(t) = Fopqa(t), 0<t<a, k20 (126)

where F' is an | xn matrix to be selected.
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Applying this law to (7) yields a closed-loop state-space model which is closed
in the sense that it has an identical structure to (7). This, in turn, means that the
stability theory can be applied to give conditions for closed-loop asymptotic stability
and stability along the pass. Also the following facts immediately arise:

1. Asymptotic stability, and hence stability along the pass, is invariant under this
state feedback action unless there is ‘direct feedthrough’ from the current pass
input to the current pass profile, i.e. D # 0.

2. Implementation of this state feedback control law requires that each element
in z341(t) must be available for measurement. If not then an observer theory
must be developed or state feedback control laws must be abandoned.

3. Although cases exist where (126) can be designed to ensure closed-loop stabil-
ity along the pass, in general this class of control laws are (potentially) weak.
In particular, they have no influence on the By matrix, i.e. the contribution
from the previous pass profile to the current pass profile or, alternatively, the
instability mechanism which is unique to differential or discrete linear repetitive
processes when compared with 1D linear systems.

The general problem arising under this last point is returned to below after the role
of output feedback control schemes has been briefly discussed.

Consider a ‘point’ ¢ on pass k of a differential linear repetitive process. Then
at this point the information in the following set is causal and can therefore be used
for output feedback pass control purposes:

Y::{yk(T):Ogrgt}u{yh(t):ogtga, 0§h§k~1} (127)

Clearly, the most appealing schemes from an implementation standpoint would be the
so-called local or instantaneously activated schemes, i.e. those which only explicitly
use information at point (t,k). Again it is possible to find cases where the resulting
design problem can be solved in one step and, equally, cases where such a control
scheme, e.g. the natural generalisation of dynamic unity negative feedback control,
cannot even ensure stability along the pass closed loop. In such cases, the obvious next
step is to employ control schemes which explicitly employ information from previous
pass profiles.

Aside from special cases, little work has been done yet in the general area of
the control of linear repetitive processes—except for the ILC application area. The
state and output feedback control schemes discussed briefly above are, in many ways,
a natural generalisation of their 1D linear systems counterparts. Hence they can
be expected to inherit many (if not all) of the strengths and weaknesses of such
schemes. Note also that the work to date on ILC schemes has shown the potential
of 2D ‘predictive control’ type schemes, i.e. a combination of feedback action based
on the current pass state or output error and feedforward action from the previous
pass profiles/inputs/errors. Also there has been some highly promising recent work
(Wood et al., 1997) on studying the stabilisation problem for differential or discrete
linear repetitive processes in terms of systems theory over a ring.
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Overall substantial progress has been made on key elements of a basic systems
theory for differential and discrete linear repetitive processes. Much work remains to
be done on refining/expanding this theory and, in particular, on the control aspects.
Aside from the theoretical interest, the need for such work is motivated by the ever
increasing and diverse range of applications for such theory and its consequences.
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