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REGULARISATION OF SINGULAR 2D
FORNASINI-MARCHESINI MODELS
BY OUTPUT FEEDBACKS

TaDEUSZ KACZOREK*, NGUYEN BANG GIANG*.

Necessary and sufficient conditions are established for regularisation of the sin-
gular 2D Fornasini-Marchesini model by an output feedback. Some procedures
are presented for testing the regularity and reguldarisability of 2D models and
for computation of the output feedback matrix. The procedures are illustrated
by a numerical example.

1. Introduction

The regularisation of singular linear systems by state and output feedbacks has
been considered in many papers (Bunse-Gestner et al., 1992; 1994; Miminis, 1993;
Ozcaldiran and Lewis, 1990). In (Bunse-Gestner et al., 1994) it was shown that pro-
portional and derivative output feedback controls can be constructed such that the
closed-loop system is regular and has index at most one. The regularity guarantees
the existence and uniqueness of solutions to singular linear systems (Campbell, 1980;
Kaczorek, 1985; Ozcaldiran and Lewis, 1990). The regularisation problem by state
feedbacks for the singular 2D Roesser model and the singular 2D first Fornasini-
Marchesini model has been formulated and some necessary conditions and sufficient
conditions have been established in (Kaczorek, 1985; 1997a; 1997b). The aim of this
paper is to extend the result of (Kaczorek, 1997b) for the regularisation problem of the
singular 2D first Fornasini-Marchesini model by an output feedback. Necessary and
sufficient conditions will be established under which the singular 2D first Fornasini-
Marchesini model can be regularised by an output feedback. Some procedures will
be presented for testing the regularity and regularisability of the 2D model and for
computation of the feedback matrix. The procedures are illustrated by a numerical
example.

2. Statement of the Regularisation Problems
2.1. Regularisation Problem for the 2D Fornasini-Marchesini Model

Let RP*¢ be the set of px ¢ matrices with real entries and RP := RP*!. Consider
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the 2D Fornasini-Marchesini model (Fornasini and Marchesini, 1978; Kaczorek, 1993)
Eziv1,541 = AoTij + A1Titaj + AaTi j41 + Buyj, 1,j € Ly (1a)
Yijg = C:l:ij‘ ’ ‘ (lb)

where z;; € R® is a semistate vector, y;; € R? denotes an output vector, u;; € R™
stands for an input vector, E, 4y € R**™, k =0,1,2, B € R**™, C € RP*™ with
det E =0, Z, is the set of nonnegative integers.

Definition 1. The model (1) is called regular if
det [E,lez — AD — A121 - AQZQ] # 0 for some (Zl, Zg) € (C2 (2)

where C? = Cx C, C being the field of complex numbers. The model (1) is called
singular if :

det [Ezlzg - Ao — Alzl - Ang] =0 for all (21,22) S CZ (3)
Let the output feedback have the form
Uij = F’yij + Vij (4)

where F' € R™*? and v;; is a new input vector.
Substituting (4) into (1a) and using (1b), we obtain

Ezit1,5+1 = (Ao + BFC)zij + A1miq1,j + Ao j41 + Buyg (5)

The regularisation problem for the model (1) can be formulated as follows:

Problem 1. Given matrices E, A, A;, A2, B, C of the singular model (1) with (3),
find an output feedback matrix F of (4) such that the closed-loop system (5) is
regular, i.e. :

det [Ezlzg — Ay — BFC — A1z — Am] # 0 for some ,(zl’ z2) € C? (6)

2.2. Regularisation Problem for the 2D Roesser Model

Consider the 2D singular Roesser model (Kaczorek, 1993; Roesser, 1975)
E:cS) = Az; j + Bu; (7a)
yij = Cmyj (7b)

— — — - — h
where E, A € R™", B € R™™, C € RP*" with detE = 0, z;; = [mi‘j],

n::’]
1 L . . .
w§j> = [:L“" ], xfj € R™ is a horizontal state vector, z7; € R"? denotes a vertical
i1 »
state vector, n; +ny =n, u;; € R™ stands for an input vector, and y;; € R? is an

output vector.
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Definition 2. The model (7) is called regular if
det [E diag [In, 21, In, 22] — fq #£0 for some (z1,2) € C? (8)

where I denotes the k x k identity matrix. Otherwise it is called singular.
Let the output feedback for (7) have the form

uij = Fyij + v ©)

where F' € R™*™ and v;; is a new input vector. Substituting (9) into (7a) and
using (7b) we obtain

E:EE}]) = (/1 + BFC_').T” + Bvij (10)
The regularisation problem for (7) can be formulated as follows.

Problem 2. Given matrices E, 4, B, C of the singular model (7), find an output
feedback matrix F of (9) such that the closed-loop model (10) is regular, i.e.

det [E diag [In, 21, In,22] — A — BFC] # 0 for some (z1,2) € C?

It is easy to show that the model (7) is a particular case of (1) for

0 0 , B:=B
0 I,

I,, 0
0 0

E:=0, Ag:=A, A :=-E , Ay:=-F

Therefore the regularisation problem of the Roesser model (7) is a particular case of
the regularisation problem for (1).

In what follows, we shall consider only the details of the solution to Problem 1.

3. Preliminaries

Lemma 1. (Kaczorek, 1984) The matriz equation AXB = C is equivalent to the
equation (A® BT)z = ¢, where z = [21,%2,...,z)%, c=le1,¢2,...,alt, mi,cj, i=
1,2,...,k, 7 =1,2,...,1 are the rows of the matrices X,C, respectively. The upper
index T denotes the transposition and @ denotes the Kronecker product.

Lemma 2. Let the polynomials

gi(@) = ayahs,  i=1..,m (1)
J

where a;; are given real coefficients and g;(z;) 20, i = 1,...,m, for at least one .
point ; € R, ¢ =1,...,m. Then there ezists a point o € R such that g;(zo) # 0
forall i=1,...,m.
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Proof. From the assumptions of the lemma, the polynomials g;{(z) are not identicaly
equal to zero. Then they can take zero values only at isolated points. Thus there
always exist points at which they have nonzero values (simultaneously). |

Lemma 3. Let the polynomials

KD ,
gi(Z1, ..., Zp) ::Zaij:clJ R i=1,...,m (12)
J
where a;; are given real coefficients and g¢i(%1i,...,%Tni) # 0, @ = 1,...,m, for
at least one point (Zi1i,...,Tn;) € R®, © = 1,...,m. Then there exists a point

(Z10,---,%Zno) € R* such that gi(z10,--,Zno) #0 forall i=1,...,m.
Proof. Let®
gi{T1iy -+, Tni) #0, i=1,...,m, Tk R (13)

Applying Lemma 2 for the polynomials g¢;(z1,2,...,Zn;) in one variable z;
we can find z10 € R such that g¢;(zi0,%2i,...,Zni) # 0 and for the polyno-
mials g¢;(%10, T2, T3i,-..,Tp;) in variable zo we can find zo € R such that
9i(%10, %20, T34, - .., Tni) # 0. Repeating this procedure, after n steps we can find
(:1:.’107 .. .,wno) € R such that gi(mlo,l’go, P ,117’,10) # 0. |}

Lemma 4. The pencils
Gi(21,22) '= Eiz120 — Aoi — A1iz1 — Aziza, 1=1,...,k (14)

are regular if and only if the pencil

diag {G1(=1,22), ..., Gi(z1,2) } (15)
18 regular.

Proof. The lemma will be proved only for k£ = 2. The general case (for k > 2) can
be proved in a similar way.

Sufficiency is trivial.
* Necessity. We will prove that if the pencils

G1(21,22) := Eyz120 — Ao — A1121 — Ao 22 (16)
Ga(z1,22) = Eaz125 — Aoz — A1221 — Asaze
are regular, then there exists at least one pair (zo1,202) € C such that
det Gl (Zol, Zoz) # 0, det G2 (2’01, 202) 75 0 (17)

Let

91(21, 22) = det Gy (21, 22), g2(21, 22) := det Ga(z1, 22) (18)
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where g1(z1,22) and go(#1,2) are some polynomial in variables z; and zp. Define
21 =211 +J2%12, 2o =221+ 70, zmw€R k=12, 1=1,2 (19)
91(21,22) = g11(211, 212, 221, 222) + Jg12(211, 212, 221, 222) (20)
ga(21, 22) = g21(211, 212, 221, 222) + F922 (211, 212, 221, 222) (21)

where j :=v/—1.

It is assumed that
91(z11,221) #0 for (z11,212) € C, 211 = 21, +j22,, 201 = 23, +j22, (22)
92(212,222) # 0 for (212, 202) € C, 212 = 21y + jizdy, 200 = 235 + 522, (23)
Without lost of generality we may assume that

gll(zilazflazéluzgl) # 0, 921(3%27312.2,z%2’z§2) #0 (24)

By Lemma 3 there exists (2}, 2%, 239, 2%,) € R* such that

g11(Z%0,2120,Z%0,Z§0) #0, 921(40,2%0,'2%0%%0) #0 (25)
and

det G1 (210, 220) # 0. det Gy (210, 220) # 0
for 210 := 2}y + j2%, 220 1= 24y + 0. |

Lemma 5. Consider the block matriz in the form

A+ K A,
As Ay

A= ' (26)

where K € R™*™ s arbitrary and A € CP*") A) € CMxm2 | Ay ¢ Cx(n—m) g, €
Cln—m)xnz A, e Cn—n1)x(n—n2) gre given. There ezists a matriz K € R™ %2 gych
that A is nonsingular if and only if the matrices [As, A4] and [jj] have full row
and column rank, respectively.

Proof. Neccesity is trivial.

Sufficiency. It is assumed that the matrices [As, A4] and [42] has full row rank
Ag

and full column rank, respectively. We will show that there always exists a matrix
K such that A is nonsingular.

Let My € Cln—ni)x(n-n1) gnd N, € C(n—m2)x(n—n2) e nonsingular matrices
such that

0 0
MyAyNy = 2
4 A4 Ny l:o Ir4:| (27)



822 T. Kaczorek and N.B. Giang

|1 0 I 0 i e b
A= A = : 28
|:0 M‘J [0 N4] As1 ; 0 : 0 (28)
|
1

where the matrices As; and Asz; havefull column rank and full row rank, respectively.
We have

I 1
[
Ap —ApAzp+K | A 2 0
I 0 —Azg I 0 O | - I ______
A=lo1 0o Al 0o I 0= Az 0 0 | (29)
00 I, —Age 0 I, | | oo Lo
- : 0 L0 I,
| :

Let Ms = [%z;] , No = [Na1 Njp] be nonsingular matrices such that
A
MoAy = [ 020] ) A3 Ny = [Aso 0]

where Aoy and Agp are nonsingular matrices with appropriate dimensions. Let

Moy (A — AgaAgs)Noy Moy (Ay — Agg Aso)N.
May(Ay — ApsAgp)Ny = [ 21 (A1 220As52)Nor Mo (Ar 22 A32) 22]

Moy (Ay — AsgAga)Nor Moo (Ar — Agp Aszg)Noo

Al A
21 Az
MLEN M1 K N2y Mo K Nap Ki, Kj, (31)
oK Ny = =
MoK Ny1 MoK N K K
M2 0 0 N2 0 O Ail + K{l /12 + K:’l?, AQQ O
A=|o 10|d|o 1 o|=|tKn An+tKy 0 0 (32)
01 0 01 Aso 0 0 0
0 0 0 I,

Note that there always exists a matrix K € R™*"2 such that Aj, + K3, is nonsin-
gular, which guarantees that the matrix A is nonsingular. Therefore there always
exists K € R™*™2 guch that the matrix A is nonsingular. ]



Regularisation of singular 2D Fornasini-Marchesini models by . .. 823

Let Ly € RY**P be an arbitrary matrix with real entries and

g—1 g ,9-1,4 _9~1_g—1

T
A(z1,220) = [212d, 2127, ., 20, ] yees 21, 2o, 1]

Lemma 6. Let E, Ag, A1, A € R5*™, s < n be given matrices such that
det G(z1, z3) 1= det [Ez120 — Ag — A121 — Apzs] =0 for all (z1,23) € C*  (33)
and q € Z be the smallest degree of the vector z(z1,22) = L'{H)\q(zlzg) such that
2T (21,2)G(21,22) =0 for all (z1,2) € C2 (34)

Then q < s (where q is the smallest degree of z1 then the smallest degree of z5 is
g < 82).

Proof. Tt is assumed that g is the smallest degree of the variable z;. Let the smallest
degree solution of (34) have the form

T(21,22) = 24(22) 27 + 2yo1(22)2l "+ + z1(22) 21 + To(22) (35)
Define

B(z) i= Bza— Ar,  Aza) = Asza + Ao (36)
From (34) we have

a2l A(z) =0 (37a)

1] E(z) =al  A(%), i=0,1,...,q—1 (37D)

z] E(z0) =0 (37¢)

for all 2z € C.

We shall show by contradiction that the vectors z{ A(22), 73 A(22), ... ,zT A(z,)
are linearly independent for all z; € C. Assume that

:E{A(@) = allETA(ZQ) + agmgfl(zQ) + -+ ak_lmf_lﬁ(zz)

+ p12 4 A(22) + -+ + gzl A(2s) (38)

2¥ A(z9) = 2f_E(22) = a1aT E(2) + a0aT E(z) + - - + ap_12t_oE(22)

+ ak+1${E(22) + .-+ aqwa(z2)

(alccoT =+ a2:c1T + -+ ak-1Tk—2 + ak+1l{ + -+ a:qxg'_l)E(ZZ)

~

_ T T T T T T \g
= (alzo +agzy + - +0k_1Tf_o—Tj_q+0+1T) + - +aqzq_l>E(z2)

~
~T
:Eqﬁl

= i'q_]_E(ZQ) =0 (39)
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L A(z) = (s + gz + -+ apoazl_y — 2l + appaal + - + 0zl ) A(2)

T T T T T
= (azfco + -+ Qp-1Tf_3 — T T OR+1Tf_q F o+ aqwq_2>E(z2)

From the comparison of (39) and (37) it follows that the vector
£(21,22) = Bg-1(22)28 " + Bgoa(22)2l 2 + - + Bo(22) (40)

is a solution of degree ¢ — 1 to (34), so we obtain a contradiction by assump-
tion that ¢ is the smallest degree of the solutions to (34). Therefore the vectors

of A(z), 23 A(z2),...,2T A(zy) are linearly independent for all 2; € C.
We shall show that the vectors zf (22),2] (22),..., %1 (22) are linearly indepen-

dent for all 2z, € C. Assume that

bozg (z2) + b1z] (22) + -+ + bgal (z2) = 0 (41)
Then

blﬂff(Zg)A(Zz) + bgmg‘(ZZ)fI(Zg) + -+ qug(ZQ)A(ZQ) =0 (42)
since @ (23)A(z2) = 0. The vectors z] A(2),2% A(z2),...,2T A(z) are linearly
independent and b; = 0, 7 = 1,2,...,¢. Since g is the smallest degree of vectors
z(z1,22), it follows that zo(23) # 0. From (41) we have by = 0 and the vectors
23 (22),27 (22),...,2T (22) are linearly independent. Therefore g < s.

In the case when ¢ is the smallest degree of the variable z,, the proof is similar.
|

4. Solution to Problem 1

Let P be arow compression matrix of the matrix B, and ) be a column compression
matrix of the matrix C. Define

B.—pp=|D

y C':=0Q=[Cr 04 (43)

0s,m

where B has full row rank, C; has full column rank, 7g < min(m,n) is the rank of
the matrix B, r¢ < min(g,n) is the rank of C, s =n—rp, t = n—rc. Examples of
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such matrices are P = U and Q = Vi, where UL and UZ are the SVD matrices
of B and C:

B=UpSpVy, C=UcScVE (44)
We define
E, E, Aor A
E':=PEQ = , Al = PAyQ =
Es E4 0 ° [Aos Aoy
(45)
A A Ax Ax
Al =PAQ = : L :=PA,Q =
! ! A13 A14 2 ? A23 A24

Theorem 1. The singular model (1) with (8) is regularisable, i.e. there exists a
matric F € R™*P such that the closed-loop model (5) is regular if and only if the
matriz

GMz,20) == [BMz120 — Al — Az — Al 2] (46)
has full row rank for some (z1,z2) € C and the matriz

G (21, 25) = [E' 2120 — Aj — Ajz1 — Ay 2] (47)
has full column rank for some (z1,22) € C, where

EM = [E3 By], Al :=[Aos Ao, A} :=[A13 A1g], A} :=[Ass3 Ass] (48)

By
E,

Ais
1, AY =
A1J ?

Proof. We shall first prove that there exists a matrix F such that the closed-loop
model is regular if and only if the matrices

Aso
Asy

B = (49)

coay= Al ar =
Aos

(50)

GMz1,20) == [Ehzlzg — Ag — Az — A’;zQ]
GY(z1,22) = [E”zlzz — Ay — AVz — A'é’zz]

have simultaneously full row and column ranks for some (z1,23) € C2.
Necessity is trivial.

Sufficiency. We assume that the matrices G"*(210,220) and G%(z10,220) have full
row and column ranks. By Lemma 5 there exists a matrix Fy such that

det {El 210220 ‘Auzlo —As1 220 —‘A01 —B1FyC1 Eaz10220 —Ai2z10— Az —Anz 760

E3z10230— A13210 — A23 220 — Aos E4z10220— A14210 — A24220 — Ao

Hence for F' = Fp the closed-loop model is regular.
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From Lemma 4 it follows that the matrices G” (21, 2z5) and G¥(z;,2z2) have simul-
taneously full row and column ranks for some (z1,22) € C? if and only if G"(21,29)
has full row rank for some (z1, 25) € C?> and GV(z1, 22) has full column rank for some
(21,22) € C. u

Define

. I I;
ML = di 2 kd
s = diag [01 J T [Ol,i]

3
~

~~
i2

M= ®{Mp,i+2}, Mi=>&{My,i+1}, Mi=2a{ML1} (51)

where

&{z,k} = lInO_ I’“} X

for any matrix X € R**x™,

Theorem 2. The model (1) is reqularisable, i.e. there ezists a matriz F of (4) such
that the closed-loop model (5) is reqular if and only if the matrices

Gh_y = My Q(BMT - Mg @ (AT - My o(AhT - M5 e (AT (520)
Gy, =ME'®E' —MIT' @Ay -~ MIT @ AV — Mi 1 © A3 (52b)

have full column ranks.

Proof. By Theorem 1 the regularisation problem has a solution if and only if the
matrix

G"(21,29) := [E"zy20 — AR — Az — Al 2] (563a)
has full row rank for some (z1,2) € C? and the matrix

G¥(21,22) == [B'z120 — Ay — Az — A3 2] (53b)
has full column rank for some (z;,2;) € C2.

Now we shall prove that

i) The matriz (53a) has full row rank for some (21,2z2) € C? if and only if the
matriz (52a) has full column rank.

ii) The matriz (53b) has full column rank for some (21,22) € C* if and only if the
matriz (52b) has full column rank.
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i) Let ¢ € Z be a nonnegative integer and L, € R?* %P Define

_ - 1 g T
Aglz1, z2) = [202d, 282870 . 20, 207 28 20708 1,...,z1z2,1] (54)

The matrix (53a) has full row rank for some (z1,23) € C? if and only if the relation
A (21, 22) Lyt G (21, 22) = 0 (55)

implies Lg4q =0 for any ¢ € Z.

By Lemma 6, if G"(21,2) does not have full row rank and gmin = mingq is the
smallest of positive integers q such that /\g(zl,zz)LqHGh(zl,zz) =0, then gmin < s.
Therefore the matrix (53a) has full row rank for some (z1,22) € C* if and only if the
relation

M (21, 22) Ls—1G™ (21, 22) = 0 (56)
implies L,_; = 0.
From (53a) and Lemma 1, it follows that (56) is equivalent to

(M7 © ()T~ M5 @ (4§)T = My & (A1) - M54 & (4))T) 1 = 0(57)

where [ := [l1,la,...,1521]F, lic1,i = 1,2,...,5 — 1 are rows of the matrix L, ;.
Hence (53) has a nonzero solution ! if and only if the condition of the theorem is
satisfied.

ii) It can be proved in a similar way. |

5. Procedures for Testing the Regularity and Regularisability of
the Model and Computation of the Output Feedback Matrix

We shall present a procedure for testing the regularity of a given 2D matrix pencil (2).

Procedure 1.

Step 1. For given matrices E, Ay, A1, Ay € R**™ find the matrices Mg, Mg, M, M3
from the relations (51).

Step 2. Compute the matrix G, = Mg ® ET — M7 ® AT — M7 @ AT — M} ® AT.

The pencil Ezyz;— Ag—A121 — Aszs is regular if G, has full column rank, otherwise
it is singular. The 2D shuffle algorithm (Kaczorek, 1993) can be also used for testing
regularity of the 2D pencil (2).
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The following procedure can be used for testing regularisability of the singular
2D Fornasini-Marchesini model (1):
Procedure 2.

Step 1. Compute a row compression matrix of the matrix B and a column com-
pression matrix of the matrix C' satisfying (43).

Step 2. Compute the matrices (45).
Step 3. Compute the matrices (51).
Step 4. Compute the matrices (52).

The model (1) is regularisable if the matrices (52) have full column ranks, otherwise
it is not regularisable.

If the conditions of Theorem 1 are satisfied, then the output feedback matrix can
be calculated by using the following algorithm:

Procedure 3.

Step 1. Find row compression and column compression matrices P and @ satisfy-
ing (43), and by using (45) compute the matrices E', Af, A}, Ab.

Step 2. Find a pair (z10,220) € C? such that the matrices (46) and (47) have full
row and column ranks. Compute the matrix

Go e E1z10220 — A11210 — A21220 — Ao1  E2210220 — A12210 — A22220 — Ao2
0=

FE3210220 — A13210 — A23220 — Aoz Esz10220 — A14210 — A24220 — Ao

Step 3. Compute the matrix G4 = E4z10220 — A14210 — A24290 — Ags and find
nonsingular matrices P; and Qs such that P;G4Qs; = [8&], 3 s
nonsingular, and compute

G11 Gzl_ Ga2
I 0 I 0 U Il et
Gs3:= G = :
*=lo B 0[0 Qs] Gu1 0: 0
Gz 1 0 : G}
|
Step 4. Compute
I 0 —Gn(Gy™ I e
Py=1{0 I 0 y Q= 0 I0
00 I ~(@)7'Gs 0 I
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111 Ga: O

o R

Fi; = Go(GY) "Gszy, Gy:=PG3Qs= |G, 0 ¢ 0
e i’ ..... _

0 0 : Gy

where G31 and (g1 -have full row and column ranks, respectively.

Step 5. Find matrices Ly; and Rs; such that Ly;Ga = [Gél}, det G5, # 0,
G31R31 = [Ggl 0], det G%l # 0,

X X :G’21 0
S e e e e I ..... R
1"

Ly 0 Rs; 0 x G 020
p=|" Ijl, Qsz[ . I}’ Gs:=PGyQs =| - —F-——t——+-—
0 0 .{31 0, 0 0
IR | ..... s

0:0,0 :G
L : I : J

Step 6. Let
F()ZZ % Ve
V3 V4_G’1l1

where Vi, V;, Vs, Vi are arbitrary matrices such that detVy # 0. Then
Fy := Ly'FyR3 + Fiy and F = (B;)"'F(C1)™! is a desired feedback
matrix.

Note that there exist infinitely many desired matrices F, since there exist many
pairs (z10,220) € C* such that the matrices (50) have simultaneously full row and
column ranks and the matrices Vi, Vi, V3, V, are arbitrary.

6. Numerical Example

The proposed procedures have been implemented in the MATLAB language for testing
the regularity and regularisability, and for computing the output feedback matrix. In
the procedure for computation of the feedback matrix, we use an identity matrix in
every matrix block which has to be nonsingular, and we use a zero matrix in every
matrix block which can be arbitrary. For convenience, we shall make use of the
MATLAB notation for matrices.
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Consider the system (1) with
[1 10 0 0 1] 00 010 0] (0010 0 0]
000000 010000 000100
E:OOOOOO,AD:1OOOOO,A1:OOOOOO
000000 010000 100100
100000 000000 000000
01000 0] 00000 O 000000
[0 6 0 0 1 0] 1 0 0]
0 1 1
R I R Y.
Ay = , B= C=1010000
001000 000
001000
010000 000
00000 0 0 0 0

Using Procedure 1, we test the regularity:

Step 1.

Mp™! = sparse ([[1 :

My~! = sparse ([[9 :

M = sparse ([[2 :

M>~! = sparse ([[8 :

Step 2.

6], [8 : 13],[15 : 20, [22 : 27),[29 : 34], 36 : 41]], [1 : 36],

[1,1,‘..,1]) € RAOx36

14],[16 : 21],[23 : 28],[30 : 35], [37 : 42], [44 : 49]], [1 : 36],

7],09 : 14],[16 : 21],[23 : 28],[30: 35, [37 : 42]], [1 : 36],

[1,1,...,1]) € R49x36

[1,1,...,11) € [RAOx 36

13],[15 = 20], [22 : 27],[29 : 34],[36 : 41],[43 : 48]], [1 : 36],
[1,1,...,1]) € RE9x36

Gn=MpRET - M} @ AT — M ® AT — M} ® AT ¢ R294x216

Step 3.

rank G, = 196 < 216, so the matrix G, does not have full column rank. Hence

the system (1) is singular.
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Using Procedure 2, we test the regularisability:

Step 1. Note that the matrices B and C have already the row and column com-
pressed forms P =1 and @ =1I.

Step 2. The matrices (45) are: E' = E, A) = Ag, A} = A1, Ay = Ay, B' = B,
C'=C. ‘

Step 3. The matrices (51) are as follows:

M2 ::sparse([1,2,3,5,6,7,9,10,11L D»:9],[1,1,---,H)

M2 ::sparse([6,7;8,10,11,12,14,15,16L U.:g],[1,1,..,1])

M? = sparse ([2,3,4,6,7,8,10, 11,12, [1: 9], [1,1,...,1])

M2 ::spar&a([5,6,7,9,10,11,13,14,15],[1: 9], [1,1,...,1])
Step 4. The matrix

Gh ::sparma([8,10,31,25,1,26,14,16,37,31,7,32,20,22,43,37,13,38,32,34,
55,49,25,50, 38,40, 61, 55, 31, 56, 44, 46, 67, 61, 37, 62, 56, 58, 79,
73,49, 74,62, 64, 85,79, 55, 80, 68, 70, 91, 85, 61, 86, ],
[1,1,1,2,3,3,4,4,4,5,6,6,7,7,7,8,9,9,10,10, 10, 11, 12,12, 13,
13,13,14,15,15,16, 16, 16,17, 18, 18,19, 19, 19, 20, 21, 21, 22, 22,
22,23,24, 24, 25,25, 25, 26, 27, 27),

H—lf—L—Jq—lLlfﬂnwﬂL5L.”,—on%(LSLl,—ﬂ)

in (52a) has full column rank. Similarly, the matrix G in (52b) also has full column
rank and so the model (1) is regularisable.
In order to find a feedback matrix, we shall use Procedure 3.

Step 1. The matrices B, C have already row and column compressed forms P = I, .
@ = I and the matrices (45) are as follows: E' = E, Aj = Ao, A} = Ay,
‘AL =A,, B'=B, ¢'=C. .

Step 2. For (z10, z20) = (2,2) we have

4 4 -2 -1 -2 4]

0 -1 0 -2 0 -2

Go = -1 -2 0 0 0 O
-2 -1 -2 -2 0 O

4 -2 0 0 0 O

| 0 4 0 0 0 O]
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G4 = Eyz10220 — A1a210 — A24220 — Aos

832
Step 3.

— O O
S O o~

o - O

|

4
1

0000
0000
1000
0100
0010
-1 001
-1 -2
—0.7882 0
-0.6154 0
0

1
0
0

-1 -0.5
5 45
0.6154
—0.7882

Q4=

-2

?

-2
} ) R31

0
1

-2
0
-1
0

-2
0

4
-1
-2

—0.5

0.3827 0.9239 0
0

10000 05
010001
001000
000100
0000O0T1
—0.9239 0.3827

|

000010

4
-1
-1

Gz =
Fi;
Ly

Step 4.
Step 5.
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Step 6.
0 0O -1 -05 -1 -1 -0.5 -1
=000, A=}-2 -1 -2|, and F=|-2 -1 -2
0 01 0 0 1 0 0 1

7. Concluding Remarks

The regularisation problem by output feedbacks has been formulated for the singular
2D first Fornasini-Marchesini model and the singular 2D Roesser model. Necessary
and sufficient conditions have been established for regularisation of the singular 2D
first Fornasini-Marchesini model and procedures for computation of a feedback matrix
and for testing the regularity and regularisability have been given. The procedures
have been illustrated by a numerical example.

A regularisation problem of the 2D singular model by state feedback is a par-
ticular case of the regularisation problem by output feedback when C = I,. With
slight modifications the presented method can be also applied for regularisation of
the singular general 2D model (Kaczorek, 1993; Kurek, 1985).
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