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CONTROLLABILITY OF 2-D SYSTEMS: A SURVEY

JErzy KLAMKA*

In this paper, a survey of recent results concerning controllability of 2-D systems
is presented. Various types of linear and nonlinear 2-D systems with constant
coefficients are discussed. Several controllability conditions for various kinds
of 2-D systems are formulated without proofs. Moreover, many supplementary
remarks and bibliographical comments are given. The relationships between
different concepts of controllability are also explained.

1. Introduction

Controllability is one of the fundamental concepts in modern mathematical control
theory. Many dynamical systems are such that the control does not affect the com-
plete state of the dynamical system but only some of its components. Therefore
it is important to determine whether or not a complete system control is possible.
Roughly speaking, controllability generally means that it is possible to steer the dy-
namical system from an arbitrary initial state to an arbitrary final state using a given
set of admissible controls. In the literature there are many different definitions of
controllability which depend on the type of dynamical system. The extensive list of
publications concerning various controllability problems, containing more than 500
positions can be found in the monograph (Klamka, 1991a). Moreover, a survey of
recent results and the current state of controllability theory for different types of
dynamical systems can be found in the paper (Klamka, 1993b).

A growing interest has been observed over the past few years in problems involv-
ing signals and systems that depend on more than one independent variable. The
motivations for studying 2-D systems have been well justified in several papers and
monographs (Fornasini and Marchesini, 1979; Kaczorek, 1985; Klamka, 1991a; 1993a;
Kurek and Zaremba, 1993; Roesser, 1975). Most of the major results concerning
the multidimensional signals and systems are developed for two-dimensional cases.
Discrete dynamical systems with two independent variables, called the 2-D systems,
are important in image processing, multivariable network realizability, and in multi-
dimensional digital filters (Fornasini and Marchesini, 1979; Kaczorek, 1985; Kurek,
1985; Roesser, 1975).

During the last two decades controllability of 2-D systems has been considered
in many papers and books (Fornasini and Marchesini, 1979; Kaczorek, 1985; Klamka,
1991a; 1993a; Roesser, 1975). The main purpose of this paper is to present a compact
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review over the existing controllability results for 2-D systems. The majority of the
results in this area concerns linear 2-D systems with constant coefficients.

The paper is organized as follows. Section 2 contains systems descriptions and
fundamental results concerning unconstrained controllability for the most popular lin-
ear 2-D models with constant coefficients. In Section 3 unconstrained controllability
of linear singular 2-D systems with constant coefficients is discussed. Section 4 is de-
voted to a study of constrained controllability of linear 2-D systems. Special attention
is paid to the so-called positive controllability. Section 5 presents results on positive
controllability for linear positive 2-D systems. In Section 6 controllability of the so-
called continuous-discrete linear 2-D systems is investigated. Local controllability of
nonlinear 2-D systems with constrained controls is considered in Section 7. Finally, in
Section 8 concluding remarks and comments concerning possible extensions are pre-
sented. Since the paper should be limited to a reasonable size, it is impossible to give
a comprehensive lecture on the subject. In consequence, only selected fundamental
results without proofs are presented. Sections consist of a few major results, some
additional bibliographical comments and supplementary remarks.

2. Unconstrained Controllability

In the. theory of 2-D systems several different models are considered (Kaczorek,
1985; Klamka 1991a). The most popular and the most frequently used are the
Fornasini-Marchesini model (Fornasini and Marchesini, 1979) and the Roesser model
(Roesser,1975).

First, let  us consider the Fornasini-Marchesini model of a linear 2-D system
with constant coefficients given by the following difference equation (Fornasini and
Marchesini, 1979):

2 +1,j+1) = Aoz(i, ) + A13(i + 1,5) + A2z(i,j + 1) + Bu(i,j) (1)

wherei,j € Z1 ={0,1,2,3,...}, z(z,7) € R™ is alocal state vector, u(i,j) € U C R™
denotes an input vector, U is a given set, Ay, A;, Ao, and B are real matrices of
appropriate dimensions. Boundary conditions for eqn. (1) are given by the following
equalities:

{w(z’,O) =z €R*  for i€Z, o)

z(0,7) =z9; eR™  for jE€Z,
In order to present the general response formula for eqn. (1) in a convenient compact

form, it is necessary to introduce the (n x n)-dimensional state transition matrix A®J
defined as follows (Kaczorek, 1986a):

(i) 4%0 =7,
(i) A= = A9 = A=%7 =0 for 1,5 > 0,
(ili) A% = AgA'1I=1 4 A3 AW 4 Ao AP0 = AiLd=1 4y 4 ABITL A, 4 AL A,
for ¢,57 > 0,
where I is the identity matrix.
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Therefore, the general response formula for eqn. (1) with boundary conditions (2)
and a given sequence of admissible controls has the following compact form (Kaczorek,
1986a; Kaczorek and Kurek, 1985):

p=i

(i, 5) = A7H T Agzoo + Z(Ai_p’j_lfh + ATPTLIT Ay, 0
p=0
=] o o
+ 3 (A4 + AT Ag)ao
q=0
p=i~1g=j-1
+ ) Y, AP Bu(p,q) (3)

p=0 =0

It is well-known that for 2-D systems it is possible to introduce several different
notions of controllability. For example, we may consider global controllability of 2-D
systems (Gaishun and Goryachkin, 1988; 1991; Gaishun and Hoang Van Kuang, 1992;
1993) or the so-called straight-line controllability of 2-D systems (Kaczorek, 1987b;
1987c; 1987d).

Now, let us recall the most popular and frequently-used fundamental definition of
unconstrained controllability in a given rectangle [(0,0), (r,s)] for linear 2-D systems
with constant coefficients (Fornasisni and Marchesini, 1982; Kaczorek, 1985; 1992a;
1994b; 1994e; 1996e; Klamka, 1984a; 1991a).

Definition 1. System (1) with boundary conditions (2) is said to be controllable
in a given rectangle [(0,0), (r,s)] if for all boundary conditions (2) and every vector
z,s € R, there exists a sequence of controls u(s,j) € R™, (0,0) < (4,5) < (r,s) such
that z(r,s) = Zrs.

From the general formula (3) it follows immediately that for zero boundary con-
ditions z(4,0) = x40 = (0, j) = @o; = 0, for i,j € Z, the solution z(i,7) of eqn. (1)
is simply given by the equality

z(i,7) = Wijuij

where Wi; = [Ai"1-1B, A=24-1B, . A%~1B, Ai=1i=2B, .. A'OB, B] is an
(n x ij)-dimensional matrix with constant coefficients and the sequence of admissible
controls u;; is given by :

uij = [u7(0,0),47(1,0),...,47(i — 1,0),u7(0,1),

T —2,5 - 1) -1,5-1)]"

Theorem 1. (Kaczorek, 1985) System (1) is controllable in a given rectangle
[(0,0), (r,s)] with unconstrained controls if and only if ‘

rank W,s =n
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Corollary 1. (Kaczorek, 1985) System (1) is controllable in a given rectangle
[(0,0), (r,s)] if and only if the (n xn)-dimensional symmetric matriz W,sWZL is
nonsingular.

Now, let us consider the Roesser model of a 2-D linear system given by the set
of two difference equation (Roesser, 1975; Kaczorek, 1985; 1989b)

(i, )
z"(é,7)

By
B,

e +1,5)
z¥(i,7 + 1)

A Ap
Aoy Agg

u(, ) (4)

where z"(i,7) € R™ is the horizontal state vector, z¥(i,7) € R™ is the vertical
state vector, Aj1, A12, A21, Ass, By, By are real matrices of appropriate dimensions.
Boundary conditions are given by

z"(0,7) = :c(’}j € Rm for j=7Z, 5)
J
z¥(4,0) = z¥, € R for j=7Z4
Let n = n; +n2 and let us introduce the n-dimensional vector z’ € R™, the

(n x n)-dimensional matrix A’ and the (n xm)-dimensional matrix B’ defined as
follows:

A Ap
A1 Ay

B

A=
’ B,

, B=

The state transition matrix 4’“ for the Roesser 2-D system is defined as follows
(Kaczorek, 1985; 1989b; Klamka, 1984b; Roesser 1975):

i) A% =1,

A Are
0 0

0 0
i) A = , A=
( ) A21 A22

b

(ifl) A" = 404 T L g0 gL g 21,28,
(iv) A =0 for i<0 and/or j < 0.

Using the state transition matrix A’*7 it is possible to express the solution of
the Roesser model in a convenient, compact form which is quite similar to those given
by formula (3) for the Fornasini-Marchesini model (Kaczorek, 1985; 1989b; Roesser
1975).

Definition 2. (Eising, 1979; Kaczorek, 1985; 1989b; Roesser, 1975) The Roesser
model of the 2-D system (4) is said to be controllable in a given rectangle [(0,0), (r, s)]
if for all boundary conditions (5) and every vector z,, € R", there exists a sequence
of controls u(i,j) € R™, (0,0) < (4,7) < (r,s) such that z'(r,s) = z_.

Using the state transition matrix A’/ and the formula for the solution it is
possible to formulate the following necessary and sufficient condition for controllability
of the Roesser model in a given rectangle [(0,0), (r, s)].
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Theorem 2. (Eising, 1979; Kaczorek, 1985; Roesser 1975) The Roesser model (4) is
controllable in a given rectangle [(0,0),(r,s)] if and only if

rank W, =n

where W, = [M'(0,1), M'(1,0),...,M'(i,j),... ,M'(r,s)] and the (n xm)-matrices
M'(i,7) are defined as follows:

M'(G,j) = AT BN 4 4T B

Corollary 2. (Eising, 1979; Kaczorek, 1985; Roesser 1975) The Roesser model (4) is
controllable in a given rectangle [(0,0), (r,s)] if and only if the (n x n)-dimensional
symmetric matriz W) W'L, is nonsingular.

It should be pointed out that a more general concept of controllability, namely the
so-called straight-line controllability has been considered in (Kaczorek 1987c; 19874).
Moreover, using the concept of the attainable set, it is possible to introduce the
notion of reachability for 2-D systems (Kaczorek, 1993b). The relationships between
the concepts of controllability and reachability are explained in the papers (Kaczorek,
1994b; 1994e).

3. Singular Systems

Recently the classical regular 2-D systems have been extended to singular 2-D sys-
tems also known as implicit, descriptor or generalized 2-D systems (Kaczorek, 1988a;
1988b; 1988c; 1989c; 1990; 1991; 1992b; 1994c; 1995d; 1996d; Klamka, 1989; 1991b;
1991c; 1995a; Lewis, 1992). The motivations for studying singular 2-D systems have
been well justified in several papers (Kaczorek, 1994c; Kociecki, 1993; Lewis, 1992)
where the reader may find many examples of possible practical applications of sin-
gular 2-D systems in network theory, chemical engineering, robotics or economics.
Two-dimensional singular systems, unlike the familiar state-space 2-D systems, do
not require any notion of causality or recursibility. Instead, they require a milder
notion of regularity which is required for existence and uniqueness of solutions. Thus
the singular 2-D systems are more natural and suited for description of naturally
occurring 2-D systems, e.g. for applications in image processing. It is also possible
to consider linear singular 2-D systems with delays (Kaczorek, 1992b) and infinite-
dimensional singular 2-D systems (Klamka, 1995a). A survey of recent results and
the current state of the theory of 2-D singular systems can be found e.g. in (Kaczorek,
1991; Lewis, 1992).

Let us consider a linear singular 2-D system with constant coefficients described
by the following difference equation (Kaczorek, 1988a; Lewis, 1992):

Bx(i+1,5 +1) = Aoz(i,j) + A1z(i + 1,7) + Asx(,j + 1) + Bu(i,j)  (6)

where Ay, A1, A are the same matrices as in eqn. (1) and E is an (nxn)-
dimensional (possibly singular) matrix.
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It is well-known that a given singular 2-D system has a unique solution only
for admissible boundary conditions (Kaczorek, 1988a; 1988b; 1988c; 1991; 1992¢).
The linear subspace of admissible boundary conditions depends on the matrices
E, Ao, A1, Ay and the input sequence. However, the following lemma, holds.

Lemma 1. (Kaczorek, 1992c) All boundary conditions are admissible in any rectangle
and for any input sequence if and only if

rank [zlng —Apg -2 A; — zQAg] = rank [zlng — Ag — 2141 — 294, | B]
for some z1,23 € C.

The solution for admissible boundary conditions and a given admissible control
sequence has the following form (Kaczorek, 1988a; 1988b; 1988c; 1989c; 1990; 1991,
1992b; Lewis, 1992):

p=1
Ex(i,j) = A" 402(0,0)+ Y (AP A+ A7PTLIT Ay a(p, 0)
p=0
g=J .
+ ) (AN, + ATV 40)2(0, 9)
q=0
p=i—1 ¢=j-1
+ Y, Y APy (p g) (7

p=0 g=0

Theorem 3. (Kaczorek, 1989a) The singular system (5) is locally controllable in the
rectangle [(0,0),(r,s)] if and only if

rank M,s = n
where

M"'S = [M(0,0),M(l,O),-..,M(T’,O),M(O,l),...,M(O,S),M(l’l),

s M(r—1,8), M(r,1),...,M(r,s — 1)]
and

M(i,j) = A""""bs37lR for §=1,2,3,...,r, j=1,2,3,...,s

Corollary 3. (Kaczorek, 1989a) System (6) is controllable in a given rectangle
[(0,0),(r,s)] if and only if the (n xn)-dimensional symmetric matriz M. sME s
nonsingular.

Similar controllability conditions can be derived for the Roesser model of linear
singular 2-D systems (Kaczorek, 1989c).

Finally, let us observe, that it is possible to consider a more general linear singular
2-D system with a rectangular matrix E (Kaczorek, 1990; 1991).
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4. Constrained Controllability

In recent years controllability problems for various kinds of 2-D systems have been
considered in many publications. So far most works in this direction have been con-
cerned, however, with the so-called unconstrained controllability problems (Eising,
1979; Fornasini and Marchesini, 1982; Kaczorek, 1985; Klamka, 1991a; Lin et al.,
1987; Roesser, 1975; Sebek et al., 1988). Only a few papers deal with the so-called
constrained controllability problems, i.e. with the case when the control functions are
restricted to take their values in a prescribed admissible set (Kaczorek, 1995a; 1996f;
Klamka, 1988a; 1994b; 1996a). Moreover, it should also be stressed that up to now
constrained controllability problems for abstract retarded dynamical systems defined
in infinite-dimensional Hilbert spaces have not been considered in the literature.

In this section we shall present some necessary and suflicient conditions for con-
trollability of the linear 2-D system (1) with constrained controls.

Let U C R™ be a given arbitrary set in R™. The sequence of controls u =
{u(i,5); (0,0) < (4,4), u(,7) € U} is called an admissible sequence of controls. The
set of all such admissible sequences of controls forms the so-called admissible set of
controls. In the sequel, for the nonlinear 2-D systems we shall also use the following
notations: Q° C R™ is a neighbourhood of zero, U¢ C R™ is a closed convex cone
with vertex at zero and U =U°nN Q°.

Let Ry = [0,00). We will denote by R? the set of n-tuples of nonnegative real
numbers, i.e. R? = {z € R* : z;, > 0 , for k = 1,2,...,n}. Let the sequence of
admissible controls be given by

ug; = [67(0,0),u7(1,0),...,u7 (i - 1,0),u7(0,1),
T =2,5—1),uT6=1,5-1)]7 € Uy

where T denotes the transposition, and U;; = U x U x --- x U is the ij-times Carte-
sian product of the set U.

Consider the special case when U = R is a closed convex cone of m-dimensional
vectors with nonnegative elements and write U;']T =RP xRP x - xR,

Following (Klamka, 1994c), let V., € R* denote the reachable cone at the point
(r,s) from zero boundary conditions and for nonnegative controls, i.e. the image of
U/, under a linear mapping W,,. Hence

Ves = {er €R™ 1 z(r,s) = Wrstirs, Urs € UT'S}

V. is a closed convex cone with vertex at zero, generated by the columns of the
matrix W;,s. Therefore it is possible to define the so-called polar cone V% as follows:

Ve = {m €R": (z*,2) <0, forall z¢ VN}

It should be pointed out that V; is contained in Vi for every (r,s) < (h,k).

Let us observe that for constrained controls, in contrast to the classical uncon-
strained case, the first term in the formula (3) containing boundary conditions (2)
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drags the reachable cones Vj; around in the positive orthant R7. Hence the 2-D
system (1) with constrained controls and nonzero boundary conditions (2) may be
controllable in the rectangle [(0,0), (r, s)], even if is not controllable in the rectangle
[(0,0), (h, k)] for (h,k) > (r,s). This was impossible in linear discrete systems for
unconstrained controls. Therefore, in the sequel for simplicity of considerations, we
generally assume zero boundary conditions for nonnegative controls.

Definition 3. (Klamka, 1994c) System (1) is said to be R7-controllable in a given
rectangle [(0,0), (r,s,)] if, for each vector z,.; € R", there exists a sequence of non-
negative admissible controls wu,; such that z(r,s) = z,s, or equivalently V,s = R™.

It should be mentioned that a quite similar definition is wvalid for
U¢-controllability, when U€¢ is an arbitrary cone in R™ and, more generally, for
U-controllability if U is an arbitrary set in R™.

Theorem 4. (Klamka, 1994c) System (1) is R} -controllable in a given rectangle
[(0,0), (r, s)] if and only if

(1) rank W,.s = n,
i Vi ={0}
where V%, denotes a polar cone.

Let us observe that (i) is a necessary and sufficient condition for unconstrained
controllability of the system (1) in a given rectangle (Fornasini and Marchesini, 1979).
Therefore, constrained” R} -controllability always implies unconstrained controllabil-
ity in the same rectangle.

In the present section, various constrained controllability problems for linear 2-D
systems with constant coefficients have been discussed. The result of this section may
be used in controllability considerations for nonlinear 2-D systems.

5. Positive Systems

Positive systems, in which the state is constrained to lie in the positive orthant R? , are
common in signal processing, image processing, digital communications, economic and
social sciences, biological and chemical applications (Schanbacher,-1989). The state
variables may represent populations, image description, quantities of good, or masses
of chemical species. In the past, the underlying positivity of these systems has often
been ignored or accommodated in an ad-hoc fashion, in order to take advantage of
the well-developed theory of linear systems, which assumes that the states are drawn
from a vector space.

Recently, there have been a number of attempts to address system issues directly
in the context of discrete positive systems (Coxson and Shapiro, 1987; Kaczorek,
1996¢). These research efforts have answered some questions and have raised many
new ones. They have revealed important qualitative differences from the correspond-
ing theories for unconstrained systems. Until now, scarce attention has been paid to
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the important case where the control of systems is realizable in only one direction.
Our main concern is to ask which positive states can be reached for positivity pre-
serving systems if the controls are taken to be positive. It is important to note here
that there are two constraints involved: the positivity constraint on the state and the
corresponding positive constraint on the controls.

In this section we examine the issue of controllability for positive linear 2-D
systems. We look at the connections between reachability, reachability from zero
boundary conditions, and the rank criterion for controllability for systems in which-
both the state and controls are constrained by practical considerations to lie in the
positive orthant. While these concepts are equivalent for unconstrained systems, there
are significant changes in the positive case. We analyze these differences and show how
they affect the control strategy. Using the methods of linear algebra we formulate and
prove the necessary and sufficient conditions for constrained controllability of positive
2-D systems. Several examples which are representative of a large class of industrial
applications motivate and illustrate our results.

We may consider system (1) with nonnegative coefficients 4o € R}*™, A; € RY*™,
A € RP*™, B € R}*™, nonnegative boundary conditions (2), zi0 € RY, zg; € R},
and nonnegative admissible controls, i.e. u(i,7) € R}, for (i,5) € Z4 x Z4. Such a
system is called the positive linear 2-D system. For a positive linear 2-D system (1)
the (r,s)-reachable cone V,; C R%.

For positive 2-D systems the matrix W;; has nonnegative coefficients (Kaczorek,
1996c). Let us observe that matrices which are nonnegative and have nonnegative
inverses can be expressed as the product of a nonsingular diagonal matrix and a
permutation matrix. The product of a nonsingular diagonal matrix (not necessarily
nonnegative) and a permutation matrix is called the monomial. It has one nonzero
entry in each row and column.

Since for positive 2-D systems the trajectory always remains in the positive or-
thant in the n-dimensional state space, the positive 2-D systems are never controllable
in any rectangle [(0,0), (r,s)]. Therefore, for positive 2-D systems it is convenient to
introduce a weaker concept of controllability, namely the so-called positive controlla-
bility in a given rectangle [(0,0), (r,s)].

Definition 4. (Kaczorek, 1996c) A positive 2-D system (1) is said to be positive
controllable in a given rectangle [(0,0), (r, s)] if, for each nonnegative vector z,s € R},
there exists a sequence of nonnegative admissible controls u,, such that z(r, s) = z,s,
or equivalently Vs = R’ .

Let us observe that the positive 2-D system (1) is never positive controllable in
any rectangle [(0,0),(r,s)] for nonnegative boundary conditions (2). This statement
follows immediately from the positivity of the state transition matrix AbI for ev-
ery (i,7) and the form of the solution (3). Therefore, in the next section we shall
concentrate on positive controllability for zero boundary conditions (2).
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Now, under the assumption that A is not a nilpotent matrix, we shall formulate
a necessary and sufficient condition for positive controllability of the positive 2-D
system (1). :

Theorem 5. (Kaczorek, 1996c) The positive system (1) is positive controllable in a
given rectangle [(0,0), (r,s)] if and only if the matriz W,; has an (n x n)-dimensional
monomial submatriz.

In the next theorem, we shall present a simple sufficient condition for positive
controllability of positive 2-D systems.

Theorem 6. (Kaczorek, 1996c) The positive system (1) is positive controllable in a
given rectangle [(0,0), (r,s)] if

(1) rank W, = n,

(ii) there exists at least one matriz W' € R}*",

where W1 denote the right inverse of the matriz W,.
rs g

In this section different kinds of constrained controllability in a given rectangle
for linear positive 2-D systems have been considered. Using pure algebraic methods,
some conditions for positive controllability of positive 2-D systems in a given rectangle
have been formulated.

6. Continuous-Discrete Systems

2-D continuous-discrete linear dynamical systems, i.e. dynamical systems described
by an indexed set of linear ordinary differential equations with appropriate initial and
boundary conditions (Kaczorek, 1994d; 1994g; Kurek and Zaremba, 1993).

Let us consider a linear time-invariant 2-D continuous-discrete dyna,mical‘system
described by the following set of ordinary differential equations (Kaczorek, 1994a;
1994c; 1994d; 1994f; 1994g):

i’k+1 (t) = Ao.’L’k (t) -+ A1$k+1 (t) -+ B’U,k (t) (8)

where ¢t € Rt and k € Z*, Rt stands for the set of nonnegative real numbers, Z+
denotes the set of nonnegative integer numbers, zy(t) € R® is the local state vector,
u(t) € R™ is the control function, Ay, A;, B are constant matrices of appropriate
dimensions.

Let us observe that in order to solve the differential eqn. (1), it is necessary to
give boundary and initial conditions of the following form:

zo(t) = p(t) for teRF, z;(0) =q(k) for keZ*t

where p(t) and ¢(k) are given functions such that p(0) = ¢(0).

Without loss of generality, for simplicity of considerations, let us assume that
p(t) =0 and q(k) = 0, i.e. we have homogeneous boundary and initial conditions.
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Moreover, it is assumed that the admissible controls are square-integrable func-
tions of time, i.e. ug(t) € La([0, c0), R™).
Let us introduce the following notation:

a;(t,k):(wo(t),xl(t),...,mk(t)>, k=0,1,2,...
u(t, k) = (uo(t),ul(t),...,uk(t)>, k=019

Definition 5. (Kaczorek, 1994d; 1994f; 1994g) The continuous-discrete system (8) is
said to be controllable in a given rectangle [(0,0), (T, K)} if, for each vector zpx € R™,
there exists a sequence of admissible controls ux(t), £ =0,1,2,...,(K~1), ¢t € [0,T]
such that z(T, K) = zrk.
Write

Ay A 0 O
0 4 A1 O
F=10 0 4 A -, G=
0 0 0 A

o o o
o o g o
oy o o
by o o o

Therefore eqn. (8) with homogeneous initial and boundary conditions can be
expressed equivalently as the linear difference equation

z(t,k + 1) = Fz(t, k) + Gu(t, k), kez* (9)

with zero initial condition z(¢,0) = 0.

Now, using the results given in (Kaczorek, 1994a; 1994d; 1994g) it is possible to
write down the general response formula for the continuous-discrete dynamical system
(8) with homogeneous initial and boundary conditions:

i=k—1

ot k) = }:_ FE=i=1G(30)
=0

Let us introduce the symmetric matrix W (k) defined as follows:

- i=k—1
Wk)= > FGGTF", k=1,2,3,...

=0

Theorem 7. (Kaczorek, 1994d) The continuous-discrete dynamical system (8) is
controllable in k steps if and only if the matriz W (k) is nonsingular.

Let us note that in this framework we can easily study a quite general class
of continuous-discrete dynamical systems defined in infinite-dimensional Banach or
Hilbert spaces (Klamka, 1995a; 1995b). Finally, it should be stressed that it is also
possible to consider singular continuous-discrete systems. The idea of these systems
has been presented in (Kaczorek, 1994¢; 1994d; 1996b; 1996d).
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7. Nonlinear Systems

Up to now the problem of controllability in continuous and discrete time for linear
dynamic systems has been extensively investigated in many monographs and papers
(Kaczorek, 1985; 1993a; Klamka, 1991a; 1993a). However, this is not true for nonlin-
ear dynamic systems, especially with constrained controls. Only a few papers concern
constrained controllability problems for 2-D nonlinear systems (Klamka, 1992; 1996d;
1997a). The paper (Klamka, 1992) contains some results concerning local control-
lability of nonlinear 2-D systems without differentiability assumptions. Finally, the
papers (Klamka, 1996d; 1997a) deal with local controllability of general nonlinear 2-D
systems with constant coefficients. Moreover, it should be mentioned that a formula
for the solution and controllability results concerning 2-D bilinear systems can be
found in (Kaczorek, 1995c).

In the present section, local constrained controllability problems for nonlinear dis-
crete 2-D systems with constant coefficients are formulated and discussed. Using some
nonlinear mapping theorems taken from functional analysis and linear approximation
methods (Klamka, 1992; 1996¢) sufficient conditions for constrained controllability are
derived and proved. The present section reports the main results given in (Klamka,
1988a; 1992; 1996d; 1997a).

Let us consider a general nonlinear discrete 2-D system with constant coeflicients
described by the following difference equation (Kaczorek, 1987a; Klamka, 1992; 1994a,;
1996¢):

i+ 1,5+ 1) = f(2(i,5),2( + 1,5), 20,5 + 1),u(s, 7)) (10)

where (i,§) € ZT xZ™", Z™T is the set of nonnegative integers numbers, z(i,5) € R
is the state vector at the point (4,7), u(i,j) € R™ is the control vector at the point
(t,7), FR* xR* xR* x R™ — R™ stands for a given function.

The boundary conditions for the nonlinear difference eqn. (10) are given by
z(i,0) =z € R* and z(0,j) =zo; € R* for (i,7) € ZT xZ*

where z;0 and xp; are known vectors.

Instead of the nonlinear 2-D system (10}, we shall also consider an associated lin-
ear discrete 2-D system with constant coefficients described by the following difference
equation (Klamka, 1988a):

z(i+ 1,7+ 1) = Aoz(i,7) + A1z(i + 1,5) + Aoz(i,j + 1) + Bu(i,5)  (11)

defined for (¢,5) > (0,0), where Ag, A;, Ay are constant (n x n)-dimensional ma-
trices and B is an (n x m)-dimensional constant matrix.

For nonlinear discrete 2-D systems, it is possible to define many different concepts
of controllability, analogously to linear 2-D systems (Klamka, 1988a; 1992; 1996d;
1997a).

Let U C R™ be a given set of control values. In the sequel, we shall concentrate
on local and global U-controllability in a given rectangle {(0,0), (p,q)] for nonlinear
2-D systems.
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Definition 6. (Klamka, 1992; 1994a; 1996¢) System (10) is said to be globally
U-controllable in a given rectangle [(0,0),(p,q)] if for zero boundary conditions
Zio =0, i=01,2,...,p, To; =0, 7 = 0,1,2,...,¢ and every vector z' € R”,
there exists an admissible sequence of controls {u(i,j) € U; (0,0) < (4,5) < (p,q)}
such that the corresponding solution to (10) satisfies the condition z(p,q) = z'.

Definition 7. (Klamka, 1992; 1994a; 1996¢) System (10) is said to be locally
U-controllable in a given rectangle [(0,0),(p,q)] if for zero boundary conditions
o = 0, i =0,1,2,...,p, 20; = 0, j = 0,1,2,...,q, there exists a neighbour-
hood of zero D C R™ such that for every point z' € D there exists an admissible
sequence of controls {u(i,5) € U; (0,0) < (4,5) < (p,q)} such that the corresponding
solution to (10) satisfies the condition z(p,q) = ='.

It is well-known (Klamka, 1988a) that for the sets U containing zero as an interior
point, local constrained controllability in the rectangle [(0,0), (p,q)] of a linear 2-D
system is equivalent to global unconstrained controllability in the same rectangle.
Hence the following result is valid.

Lemma 2. (Klamka, 1988a) Linear system (11) is locally Q°-controllable in the
rectangle [(0,0), (p,q)] if and only if it is globally R™-controllable in the rectangle

[(0,0), (p, 9)]-

In the next part of this section, we shall formulate and prove sufficient conditions
of local U-controllability in a given rectangle [(0,0),(p,q)] for the general nonlinear
2-D system (10) with constant coefficients. It is generally assumed that:

1. £(0,0,0,0) =0,

2. the function f(z,y,z,u) is continuously differentiable with respect to all its ar-
guments in some neighbourhood of zero in the product space R™ x R™ x R* x R™.

Taking into account Assumption 2, let us introduce the following notation for
partial derivatives of the function f(z,¥,z,u):

Ao = f4(0,0,0,0), A = £,(0,0,0,0), Az = f1(0,0,0,0), B = f,(0,0,0,0) (12)
where Ay, A1, As are (n xn)-dimensional constant matrices and B is an (n x m)-
dimensional constant matrix.

Therefore, using standard methods (Klamka, 1992), it is possible to construct a
linear approximation (11) of the nonlinear 2-D system (10). This linear approximation
is valid in some neighbourhood of zero in the product space R* x R* x R* x R™, and
is given by the linear difference equation (11) with matrices Ao, A, Ay, B defined
above. The proofs of these results are based on some lemmas taken from functional
analysis and concerning the so-called nonlinear covering operators (Klamka, 1996¢).

Now, we are in a position to formulate and prove the main result on local
U-controllability in the rectangle [(0,0),(p,q)] for the nonlinear 2-D system (10)
with constant coefficients.
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Theorem 8. (Klamka, 1996d; 1997a) Suppose that U¢ C R™ 1is a closed convex
cone with vertez at zero. Then the nonlinear discrete 2-D system (10) is locally UC-
controllable in the rectangle [(0,0),(p,q)] if its linear approzimation near the origin
given by the difference equation (11) is globally U*-controllable in the same rectangle

[(0,0), (», 9]

Using the results stated in Section 4 and Theorem 8, we can formulate the fol-
lowing corollary:

Corollary 4. (Klamka, 1996d; 1997a) Under the assumptions stated in Theorem 8,
the nonlinear system (10) is locally U°-controllable in the rectangle [(0,0), (p,q)] if

(i) rank W,.; = n,
i) Vi={0}
In the case when U contains zero as an interior point, we have the following

sufficient condition for local constrained controllability of nonlinear 2-D systems (10)
with constant coefficents.

Corollary 5. (Klamka, 1988a; 1992; 1996d; 1997a) Let 0 € int(U). Then the
nonlinear system (10) is locally U-controllable in the rectangle [(0,0), (p,q)] if its
linear approzimation near the origin given by the difference equation (11) 18 locally,
U -controllable in the same rectangle [(0,0), (p,q)].

Let us consider a special case of nonlinear 2-D system, namely the system de-
scrlbed by the following nonlmear dlﬁerence equation (Klamka, 1997a):

i+ 1,5 +1) = Ao (i, 5))2(i,5) + Ay (200 +1,)) 2 + 1,5)

| + As (265 +D)ali,j +1) + B2 0)uGd)  (13)
where Ao(z(i, 5)), A1(z( + 1,7)), Aa(z(i,j + 1)), B(z(i,§)) are nonlinear differen-

tiable matrices of suitable dimensions.
In this special case, the associated linear discrete 2-D system with constant co-
efficients is described by the following difference equation (Klamka, 1997a): ‘
o(i+ 1,5+ 1) = Agz(,5) + Ajz(i + 1,5) + Abz(i,§ + 1) + B'u(i,j) (14)

where
Ap = A0(0), Ay =4:(0), A4;=4:(0), B =B(0)

Hence, applying Theorem 8 we obtain immediately the following sufficient con-
dition for local controllability of the nonlinear 2-D system (13):

Theorem 9. (Klamka, 1997a) Suppose that U¢ € R™ is a closed conves cone with
vertez at zero.  Then the nonlinear discrete 2-D system (13) is locally UC-controllable
in the rectangle [(0,0),(p,q)] if its linear approzimation near the origin given by the
difference equation (14) is globally U°-controllable in the same rectangle [(0,0), (p, q)].

In the present section only one simple model of nonlinear 2-D systems with con-
stant coefficients has been considered. The results can be extended in many directions.
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For example, it is possible to formulate sufficient local controllability conditions for
other models of nonlinear 2-D systems with constant coefficients, for nonlinear 2-D
systems with variable coefficients, and finally, for M-D nonlinear systems with con-
stant or variable coefficients. '

8. Conclusions

The paper contains fundamental theorems concerning unconstrained and constrained
controllability problems for both linear and nonlinear 2-D systems with constant coef-
ficients. In the literature there are many other controllability results, derived for more
general 2-D systems. For example, controllability of the following multidimensional
discrete systems has been considered recently:

o linear 2-D systems with variable coefficients (Kaczorek, 1987a; Klamka, 1988b),

e linear 2-D systems defined in infinite-dimensional linear spaces, e.g. Hilbert spaces
or Banach spaces (Klamka, 1983b; 1988b; 1993b; 1995a; 1995b; 1996b),

e linear 2-D systems with delays (Kaczorek, 1992b; 1995f),

e linear M-D systems i.e. discrete systems with M independent variables
(Galkowski, 1991; 1992; 1993a; 1993b; 1994; Kaczorek, 1986b; Kaczorek and
Klamka, 1987; Klamka, 1983a; 1983c; 1988b; 1991a; 1997b; Kurek, 1987),

e nonlinear 2-D systems with variable coefficients (Kaczorek, 1994h; Klamka,
1992).

For different classes of the above multidimensional discrete systems it is necessary
to introduce different types of controllability. For example, for infinite-dimensional
systems it is necessary to introduce two fundamental notions of controllability namely,
approximate (weak) controllability and exact (strong) controllability (Klamka, 1983b;
1988b; 1995a; 1995b).

Controllability of dynamical systems is strongly connected with the so-called
minimum energy control problems. The minimum-energy problem for various kinds
of 2-D systems has been considered in many publications (Dzieliniski, 1993; Kaczorek,
1989a; 1990; 1994a; 1994f; 1995b; 1995e; 1996a; Kaczorek and Klamka, 1986; 1987;
1988; Klamka, 1983a; 1983b; 1984a; 1990; 1991a; 1991c; 1993b).

Moreover, it should be pointed out that in much the same way as in classical
linear dynamical systems, there are relationships between controllability and spectrum
assignability for 2-D systems (Kaczorek, 1985; 1986¢; 1993b; 1996b).

References
Coxson P.G. and Shapiro H. (1987): Positive input reachability and controllability of positive
systerns. — Lin. Alg. Applic., Vol.94, No.1, pp.35-53.

Dzielinski A. (1993): Optimal control of two-dimensional systems. — Arch. Contr. Sci.,
Vol.2, No.3-4, pp.185-199.

Eising R. (1979): Controllability and observability of 2-D systems. — IEEE Trans. Au-
tomat. Contr., Vol.AC-24, No.1, pp.132-133.



850 ' J. Klamka

Fornasini E. and Marchesini G. (1979): Doubly indezed dynamical systems: state space
models and structural properties. — Math. Syst. Th., Vol.12, No.1, pp.59-72.

Fornasini E. and Marchesini G. (1982): Global properties and duality in 2-D systems. —
Syst. Contr. Lett., Vol.2, No.1, pp.30-38.

Fornasini E. and Valcher M.E. (1996): Dynamical behavior of 2-D positive systems. —
Proc. 2-nd Portuguese Conf. Automatic Control, Porto, Vol.2, pp.407-412.

Gaishun LV. and Goryachkin V.V. (1988): Solvability and controllability conditions for
linear two-parameters discrete systems. — Differentialnyje Urawnienija, Vol.24, No.12,
pp-2047-2051, (in Russian).

Gaishun I.V. and Goryachkin V.V.(1991): Controllability and observability of two-
parameters differential-difference systems in a class of smooth functions. — Doklady
Belarus Acad. Sci., Series Mathematics, Vol.35, No.7, pp.581-583, (in Russian).

Gaishun I.V. and Hoang Van Kuang (1992): On the controllability of Roesser systems in
global states space. — Differentialnyje Urawnienija, Vol.28, No.11, pp.1871-1881, (in
Russian).

Gaishun I.V. and Hoang Van Kuang (1993): Spectrum control in a two-parameter discrete
system. — Differentialnyje Urawnienija, Vol.29, No.11, pp.1868-1876, (in Russian).

Galkowski K. (1991): An a priori nonminimal state-space realization of n-D systems. —
Lin. Alg. Applic., Vol.151, No.1, pp.185-198.

Gatkowski K. (1992): Transformation of the transfer function wariables of the singular
n-dimensional Roesser model. — Int. J. Circuit Th. Applic., Vol.20, No.1, pp.63-74.

Galkowski K. (1993a): Linear transformation of transfer function variables of an m-D
system. — Int. J. Circuit Th. Applic., Vol.21, No.2, pp.351-360.

Galkowski K. (1993b): Spectral transformation of an n-D Roesser model. — Int. J. Circuit
Th. Applic., Vol.21, No.3, pp.481-485.

Gatkowski K. (1994): State-space realizations of n-D systems. — Sci. Papers Inst. Telecom-
munication and Acoustics of the Technical University of Wroctaw, Vol.76, Monographs
No.40.

Kaczorek T. (1985): Two-Dimensional Linear Systems. — Berlin: Springer-Verlag.

Kaczorek T. (1986a): General response formula for two-dimensional linear systems with
variable coefficients. — IEEE Trans. Automat. Contr., Vol. AC-31, No.3, pp.278-281.

Kaczorek T. (1986b): Deadbeat servoproblem for multivariable n-D systems — IEEE Trans.
Automat. Contr., Vol. AC-31, No.4, pp.360-362.

Kaczorek T. (1986¢c): Coefficient assignment of 2-D systems by periodic feedback. — IEEE
Trans. Automat. Contr., Vol.AC-31, No.6, pp.870-872.

Kaczorek T. (1987a): Nonlinear two-dimensional discrete systems. — Bulletin of the Pol-
ish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics, Vol.35,
No.11-12, pp.617-622.

Kaczorek T. (1987b): Reduction of 2-D linear systems with variable coefficients to 1-D
systems with variable structure and straight line reachability. — Bulletin of the Pol-
ish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics, Vol.35,
No.11-12, pp.661-666.

Kaczorek T. (1987c): Straight line reachability of Roesser model. — IEEE Trans. Automat,.
Contr., Vol.AC-32, No.5, pp.637-639.



Controllability of 2-D systems: A survey 851

Kaczorek T. (1987d): Straight line reachability of two-dimensional linear systems. —
Found. Contr. Eng., Vol.12, No.3, pp.143-149.

Kaczorek T. (1988a): Singular general model of 2-D systems and its solution. — Bulletin of
the Polish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics,
Vol.36, No.5-6, pp.345-350.

Kaczorek T. (1988b): Solvability and reachability of singular generel model of 2-D linear
system. — Bulletin of the Polish Academy of Sciences, Technical Sciences, Electronics
and Electrotechnics, Vol.36, No.5-6, pp.337-344.

Kaczorek T. (1988c): Singular general model of 2-D systems and its solution. — IEEE
Trans. Automat. Contr., Vol.AC-33, No.11, pp.1060-1061.

Kaczorek T. (1989a): Controllability and linear-quadratic optimal regulator problem for sin-
gular 2-D systems. — Bulletin of the Polish Academy of Sciences, Technical Sciences,
Electronics and Electrotechnics, Vol.37, No.1-2, pp-21-27.

Kaczorek T. (1989b): Decomposition of Roesser model and new conditions for local control-
lability and local observability. — Int. J. Contr., Vol.49, No.1, pp.65-72.

Kaczorek T. (1989c): Equivalence of singular 2-D linear models. — Bulletin of the Pol-
ish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics, Vol.37,
No.5-6, pp.263—267.

Kaczorek T. (1990): General response formula and minimum energy control for the general
singular model of 2-D systems. — IEEE Trans. Automat. Contr., Vol.AC-35, No.4,
pp-433-436.

Kaczorek T. (1991): Some recent results in singular 2-D systems theory. — Kybernetika,
Vol.27, No.3, pp.253-262.

Kaczorek T. (1992a): Local controllability, reachability, and reconstructibility of the general
singular model of 2-D systems. — IEEE Trans. Automat. Contr., Vol. AC-37, No.10,
pp-15627-1530.

Kaczorek T. (1992b): Singular 2-D linear- systems with delays. — Bulletin of the Polish
Academy of Sciences, Technical Sciences, Electronics and Electrotechnics, Vol.40, No.4,

pp- 361-365.
Kaczorek T. (1992c): Detremination of boundary conditions for singular general model of -
2-D linear systems. — Bulletin of the Polish Academy of Sciences, Technical Sciences,

Electronics and Electrotechnics, Vol.40, No.4, pp.367-376.

Kaczorek T. (1993a): Linear Control Systems. — New York: Research Studies Press and
John Wiley.

Kaczorek T. (1993b): Inuvariance of the local reachability and local controllability under feed-
backs of 2-D linear systems. — Bulletin of the Polish Academy of Sciences, Technical
Sciences, Electronics and Electrotechnics, Vol.41, No.3, pp.215-220.

Kaczorek T. (1994a): Some new results in 2-D continuoud-discrete linear systems theory.
— Proc. Coll. Differential Equations, Plovdiv, Bulgaria, pp.78-87.

Kaczorek T. (1994b): When the local controllability of Roesser model implies its local reach-

ability. — Bulletin of the Polish Academy of Sciences, Technical Sciences, Electronics
and Electrotechnics, Vol.42, No.2, pp.261-267.
Kaczorek T. (1994c): Singular 2-D continuous-discrete linear systems. — Bulletin of

the Polish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics.
Vol.42, No.3, pp.417-422.



852 J. Klamka,

Kaczorek T. (1994d): General response formula for continuous 2-D Roesser model and its
local controllability. — Bulletin of the Polish Academy of Sciences, Technical Sciences,
Electronics and Electrotechnics, Vol.42, No.4, pp.587-593.

Kaczorek T. (1994e): When the local controllability of the general model of 2-D linear
systems implies its local reachability. — Syst. Contr. Lett., Vol.23, No.3, pp.442-452.

Kaczorek T. (1994f): Local reachability and minimum energy control of 2-D continuous-
discrete systems. — Proc. 10th Conf. Systems Engineering, Coventry, Vol.1, pp.558—
565.

Kaczorek T. (1994g): Reachability and controllability of 2-D continuous-discrete linear sys-
tems. — Proc. 1st Symp. Mathematical Models in Automation and Robotics, Miedzy-
zdroje, Poland, pp.24-28.

Kaczorek T. (1994h): General response formula for 2-D bilinear systems. — Appl. Math.
Comp. Sci., Vol.4, No.1, pp.79-86.

Kaczorek T. (1995a): U-reachability and U-controllability of 2-D Roesser model. — Bulletin
of the Polish Academy of Sciences, Technical Sciences, Electronics and Electrotechnics,
Vol.43, No.1, pp.31-37.

Kaczorek T. (1995b): Local controllability and minimum energy control of continuous 2-D
linear systems with variable coefficients. — Multidim. Syst. Signal Process., Vol.6,
No.1, pp.69-75.

Kaczorek T. (1995c): General response formula, local reachability and local controllability
of a class of 2-D bilinear systems. — Bulletin of the Polish Academy of Sciences,
Technical Sciences, Electronics and Electrotechnics, Vol.43, No.2, pp.191-201.

Kaczorek T. (1995d): Determination of solutions to singqular 2-D continuous-discrete linear
systems with singular matriz pencils. — Bulletin of the Polish Academy of Sciences,
Technical Sciences, Electronics and Electrotechnics, Vol.43, No.2, pp.203-225.

Kaczorek T. (1995e): Controllability and minimum energy control of 2-D continuous-
discrete linear systems. — Appl. Math. Comp. Sci., Vol.5, No.1, pp.5-21.

Kaczorek T. (1995f): Generalized 2-D continuous-discrete linear systems with delays. —
Appl. Math. Comp. Sci., Vol.5, No.3, pp.439-454.

Kaczorek T. (1996a): Local controllability and minimum energy control of continuous 2-D
linear time-invariant system. — Bulletin of the Polish Academy of Sciences, Technical
Sciences, Electronics and Electrotechnics, Vol.44, No.1, pp.67-74.

Kaczorek T. (1996b): Stabilization of singular 2-D continuous-discrete systems by state-
feedback controllers. — IEEE Trans. Automat. Contr., Vol.AC-41, No.7, pp.1007-

1009.
Kaczorek T. (1996c): Reachability and controllability of nonnegative 2-D Roeser type mod-
els. — Bulletin of the Polish Academy of Sciences, Technical Sciences, Electronics and

Electrotechnics, Vol.44, No.4, pp.405-410.

Kaczorek T. (1996d): Singular two-dimensional continuous-discrete linear systems. —
Dynamics of Continuous, Discrete and Impulse Systems, Vol.2, No.2, pp.193-204.

Kaczorek T. (1996e): Unreachability and uncontrollability of 2-D linear systems with

bounded inputs. — Proc. 3rd Symp. Methods and Models in Automation and Robotics,
Miedzyzdroje, Poland, Vol.1, pp.201-205.

Kaczorek T. (1996f): Reachability and controllability of 2-D Rosser model with bounded
inputs. — Proc. Int. Conf. Control, Exeter, Vol.2, pp.971-974.



Controllability of 2-D systems: A survey 853

Kaczorek T. and Klamka J.(1986): Minimum energy control of 2-D linear systems with
variable coefficients. — Int. J. Contr., Vol.44, No.3, pp.645-650.

Kaczorek T. and Klamka J. (1987): Local controllability and minimum energy control of n-D
linear systems. — Bulletin Polish Academy of Sciences, Technical Sciences, Electronics
and Electrotechnics, Vol.35, No.11-12, pp.679-685.

Kaczorek T. and Klamka J.(1988): Minimum energy control for general model of 2-D linear
systems. — Int. J. Contr., Vol.47, No.11-12, pp.1555-1562.

Kaczorek T. and Kurek J. (1985): General response formulas for 2-D Fornasini-Marchesini
models. — Bulletin of the Polish Academy of Sciences, Technical Sciences, Electronics
and Electrotechnics, Vol.33, No.1-2, pp.79-84.

Klamka J. (1983a): Minimum energy control of M-D systems. — Proc. IMECO Symp.
Measurement and Control, Patras, Greece, pp.195-200.

Klamka J. (1983b): Minimum energy control of 2-D systems in Hilbert spaces. — Syst.
Sci., Vol.9, No.1-2, pp.33-42.

Klamka J. (1983c): Controllability of M-dimensional linear systems. — Found. Contr. Eng,,
Vol.8, No.2, pp.65-74.

Klamka J. (1984a): Controllability and optimal control of 2-D linear systems. — Found.
Contr. Eng., Vol.9, No.1, pp.156-24.

Klamka J. (1984b): Function of 2-D matriz. — Found. Contr. Eng., Vol.9, No.2, pp.71-82.

Klamka J. (1988a): Constrained controllability of 2-D linear systems. — Proc. 12th World
IMACS Congress, Paris, Vol.2, pp.166-169.

Klamka J. (1988b): M-dimensional nonstationary linear discrete systems in Banach spaces.
— Proc. 12th World IMACS Congress, Paris, Vol.4, pp.31-33.

Klamka J. (1989): Controllability of singular 2-D systems. — Proc. IFAC Workshop System
Structure and Control, Praga, pp.245-248.

Klamka J. (1990): Optimal control problems for singular 2-D systems. — Proc. IMACS
Symp. Mathematical and Intelligent Models in System Simulation, Brussels, pp.159-
162.

Klamka J. (1991a): Controllability of Dynamical Systems. — Dordrecht: Kluwer Academic
Publishers.

Klamka J. (1991b): Complete controllability of singular 2-D system. — Proc. 13th World
IMACS Congress, Dublin, pp.1839-1840.

Klamka J. (1991c): Minimum energy control of singular 2-D linear systems with variable
coefficients. — Proc. IMACS Symp. Modelling and Control of Technological Systems,
Lille, Vol.2, pp.155-159.

Klamka J. (1992): Controllability of nonlinear 2-D systems. — Bulletin of the Polish
Academy of Sciences, Technical Sciences, Electronics and Electrotechnics, Vol.40, No.2,
pp-127-133.

Klamka J. (1993a): Controllability of dynamical systems—A survey. — Arch. Contr. Sci.,
Vol.2, No.3-4, pp.281-307.

Klamka J. (1993b): Minimum energy control problem for general linear 2-D systems in
Hilbert spaces. — Proc. IEEE Symp. New Directions in Control Theory and Applica-
tions, Kreta, pp.144-150.



854 J. Klamka

Klamka J. (1994a): Constrained controllability of discrete 2-D linear systems. — Proc.
IMACS Int. Symp. Signal Processing, Robotics and Neural Networks, Lille, pp.170-
173.

Klamka J. (1994b): Controllability of 2-D continuous-discrete linear systems. — Proc. 3rd
Conf. .Automation, Robotics and Computer Vision, Singapur, Vol.2, pp.1268-1272. ‘

Klamka J. (1995a): Infinite-dimensional singular 2-D linear systems. — Proc. 2nd Symp.
Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, Vol.1,
pp.51-54. :

Klamka J. (1995b): Controllability of 2-D continuous-discrete abstract linear systems. —
Proc. European Contr. Conf., Rome, Vol.3, pp.2208-2213.

Klamka J. (1996a): Constrained controllability of 2-D systems. — Proc. IMACS Int. Symp.
Modeling, Analysis and Simulation, Lille, pp.376-379.

Klamka J. (1996b): Controllability of 2-D systems. — Proc. 3rd Symp. Methods and
Models in Automation and Robotics, Miedzyzdroje, Poland, pp.207-212.

Klamka J. (1996c): Constrained controllability of nonlinear systems. — J. Math. Anal.
Appl., Vol.201, No.2, pp.365-374.

Klamka J. (1996d): Controllability of 2-D nonlinear systems. — Proc. 2nd World Congress
Nonlinear Analysis, Athens, pp.1339-1348.

Klamka J. (1997a): Controllability of nonlinear 2-D systems. — Proc. IFAC Workshop
Manufacturing Systems: Modelling, Management and Control, Vienna, pp.205-209.

Klamka J. (1997b): Controllability of M-D linear systems. — Syst. Anal., Model., Sim.,
Vol.25, No.1, pp.119-128.

Kocigcki M. (1993): Implicit linear discrete-time systems at a glance. — Arch. Contr. Sci.,
Vol .2, No.3-4, pp.311-336.

Kurek J. (1985): The general state-space model for two-dimensional linear digital system.
— IEEE Trans. Automat. Contr., Vol.AC-30, No.6, pp.600-602.

Kurek J. (1987): Reachability of a system described by the multidimensional Roesser model.
— Int. J. Contr., Vol.45, No.5, pp.1559-1563.

Kurek J. and Zaremba M. (1993): Iterative learning control synthesis on 2-D system theory.
— IEEE Trans. Automat. Contr., Vol.AC-30, No.1, pp.123-125.

Lewis F.L. (1992): A survey of 2-D implicit systems. — Automatica, Vol.28, No.2, pp.345-
354.

Lin T., Kawamata M. and Higuchi T. (1987): New necessary and sufficient conditions for
local controllability and local observability of 2-D separable denominator systems. —
IEEE Trans. Automat. Contr., Vol.AC-32, No.2, pp.254-256.

Roesser R. (1975): A discrete state-space model for linear image processing. — IEEE Trans.
Automat. Contr., Vol.AC-20, No.1, pp.1-10.

Schanbacher T. (1989): Aspects of positivity in control theory. — SIAM J. Contr. Optim.,
Vol.27, No.3, pp.457-475.

Sebek M., Bisiacco M. and Fornassini E. (1988): Controllability and reconstructibility condi-
tions for 2-D systems. — IEEE Trans. Automat. Contr., Vol. AC-33, No.5, pp.496-499.



