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THE DIAMETER OF THE REACHABILITY SET FOR
A 2-D CONTINUOUS-DISCRETE LINEAR
SYSTEM WITH DISTURBANCES

Ewa KRASON*

The methods are presented for computing the support functions and diameters
of reachability sets for a certain type of 2-D continous-discrete linear system
with disturbances limited to a rectangle and an ellipsoid. These methods are
based on the idea of the reachability set for 1-D systems with disturbances and
the 2-D continuous-discrete linear system theory.

1. Introduction

2-D continuous-discrete models of linear systems have been investigated in ( Kaczorek,
1994; 1995; Kaczorek and Stajniak, 1994; Stajniak, 1995), where the respective solu-
tions, local reachability and controllability, and minimum-energy control problems for
various models have been considered. In this paper, the countepart of the reachability
set for a 2-D continuous-discrete linear system with disturbances, known for continu-
ous and discrete 1-D systems (Kurzhanski, 1977; Schweppe, 1973), is introduced. The
formulae for the support function of the reachability set X7, and X§ for a certain
type of 2-D continuous-discrete linear system with disturbances limited to a rectangle
and an ellipsoid in R? are established (Theorems 3 and 5).

Computation of the diameters of the sets X/ and X§; according to Definition 2
is illustrated with examples. The formulae for the support functions of reachability
sets X[ (u) and X§ (u) for 2-D continuous-discrete linear control systems are also
given.

2. Reachability Set for 2-D Continuous-Discrete Linear Systems
with Disturbances from a Rectangle in R?

Consider the following 2-D continuous-discrete linear system:
z(t,k + 1) = Az(t, k) + Cw(t, k), te€[0,T], kel[0, N] (1)

where #(t,k) = 0xz(t, k)/0t, z(t, k) € R™ is the state vector, w(t, k) € R? stands for
the disturbance vector, A € R**™ and C € R**? are real matrices.
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The corresponding boundary conditions are given by
z(t,0) = z1(t), t€[0,7] and z(0,k) =z2(k), k€[0,N] (2)

where z1(t) and z2(k) are known, and z;(0) = z2(0).
Assume that the disturbance vectors belong to a rectangle in R?.

w(t, k) € W,

Wrz{w:sz[wl,wZ,...,wq] Aw <w <w,j=1,2,--- ,q}
where w’ and @’ are given, W’ — w’ = Aw’ > 0, and let

w

T [wl +,L—U-1 _’L_U__2+’L_U-2 wq+wq]
¢ 2 2 92

Definition 1. The reachability set X[, is the set of all possible states of the sys-
tem (1) at the moment (t,k) with boundary conditions (2) for all possible distur-
bances from the set W,.

Theorem 1. The set X} is conver.

Proof. Let z1, zo € X],. From (Kaczorek, 1994; Kaczorek and Sta,jniak,‘1994) we
know that z; and z, have the form:

)k—l k-1 4

- t ,
xl,z(t,k)zAk/O (—(m)!_zl(T)dT+ZﬁA za(k — )
=0

kzl

(t—71) .
+2Ak - 1C/ P— 'U)LQ(T,'Z)dT, ke [l,N] (4)
where wy 3(7,1) € W, for 7 € [0,t], i € [0,k — 1]. For 0 < a < 1, it is easy to show
that
z = az; + (1 - )z
Lt —7)kt 2y
= Ak/ (_.___ Ydr + Azm k—i
o (k=1 () Z; Ak~ 1)
k —3—1
+ZA" - 10/ ”1_1 [awl(r,i)+(1~a)w2(7,z’) dr (5)
and z € Xj;. It is the solution to (1) and (2) with the disturbance
w(7,4) = owy (7,1) + (1 — @)ws(7,19) ' (6)

Since the rectangle W, is convex, w(r,i) of the form (6) belongs to W;, too. [ |
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The convex set X7, in R® can be described by the support function (Rockafellar,
1972)

Ty T n
h(z | X}) = Jaxzz, zER (7)

th

where 7' denotes transposition. Let a i denote elements of the matrix A*—i-1(C.

Theorem 2. If z € X[, then for every 2T = [2,2%,...,2"] the following condition
is satisfied:

T 7|6 [FE=—T)! =t
2zt <z A/——ﬁ d’T+Z Alﬂiz (k—1)
o (k=1)! pardl

k-1 )
+ (I:L_ [TA’“ owe + 5 Z|z"|2a’"Aw7} (8)

i=0 =1 j=1

Proof. Let © € X[;.. According to (4), for z € R* we can write
t k—1 k-1,
T k (t - T) [
A (1) d A -
L T+Z ol 1)]

i—1 t—Tkl— :
L—uAk c/ e (m)df} 9)

Denote by f.(z) and f»(z) the first and the second term of this sum, respectively.
We have

ZTil?:Z

k-1

f()< [TAk—i—lc ( )]/twd (10)
2 2 setog I© A Iy Ay Tl
It is easy to verify that
- n q . .
2T A= 10y = Z 2P Z ariw? (11)
p=1 =1

From (3) it follows that

k—1

—_— n q
Z & =) |:ZTAk_i_IC’wc +%Z|zﬂl2a§§Awi’} (12)
=0 ) p=1 j=1

which completes the proof. |

fa2(2) <
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Theorem 3. The support function of the reachability set X[, of the system (1) with
boundary conditions (2) and disturbances (3) has the form:

- f-n)t? S .
h(z | Xi;) =T I:Ak/o W;‘El(’r)d’f—f-;ﬂfl zo(k — 1)

+Z AklICw:!

=0

k—1 7
1

+2§k IZ;ZP[

Proof. Let us denote by f(z) the right-hand side of (8). Since f(z) is positive-
homogeneous, convex and continuous function, and X], is a convex and closed set,
from Theorem 2 and the properties of the support function, we conclude that

f(2) = h(z| X3) ' (14)

tkl

Z iji (13)

Remark 1. In case k = 0, according to the boundary conditions (2), we have
z(t,0) = z1(¢). Then the reachability set X[, for a fixed ¢, is a one-point set in R®
and

Wz | Xp) = o(t), zeR"

Corollary 1. If k=1 and z1(t) =0 for t € [0,T], then the support function of the
reachability set X], has the form

1 n q )
h(z| X5) = 2T [xzu) + thc] + -242: |z”|[ 3 epi A { ZER
p:

=1

It is equal to the support function of the reachability set for the continuous linear
system i(t) = Cw(t) with z(0) = z2(1), where w(t) € W,, calculated according to
(Barmish et al., 1978).

Definition 2. The diameter of the set X is defined by

A(X) = max [n(2 1 X) + h(-2] X)] (15)

It is a maximum length of the projection of the set X onto the straight line az,
a €R, for ||z]| < 1.

Theorem 4. The diameter of the reachability set X[, for the system (1) with bound-
ary conditions (2) and disturbances ( 3) is given by

k-1

d( gp:[zn:(; e ‘Zamuﬂ‘) ]”"" (16)

p=1
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Proof. Using (13), we obtain

k—1

k—1
Me Xa) + (-2 1 X0) = 3 gy ),thﬂ!Za’“Ale )

Let us maximize this function subject to >7_, (2%)* — 1 < 0. We first form the
Lagrangian

k-1

tk—i n q ) ]
Lyi(21,29,- -5 20, A) = ”Z mz ]Zp|| Za’;;ijl
i=0 T p=1 j=1

n

+ A[Z(zp)ﬂ - 1] (18)

p=1

and then use the differential Kuhn-Tucker conditions (Dubnicki and Zorychta, 1972).
Hence for 2P > 0 we have

1

aLl ki 7
it S L 2X2P =
_Z)IlZa Aw‘-l— AzP =0 (19)
and therefore
1 k—1 tk_i q
_ ki j —
? = _i)!’ZanAwJI’ p=1,2,...,n (20)
=0 J=1
Moreover,
L1, v P2 _
= [Z(z ) —I]A_O (21)
p=1
When X # 0, we have
> (PP =1 (22)

p=1

In order to find A, we apply (20) and (22):

/\Z%L,Z:(k -t Iza’”AwiD ]1/2 (23)

Substituting (23) into (20) yields

th—i 1/2 k-1 tk—i

- [SEamls s Syl S| @
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Finally,

k-1

d(X7,) = ;Wkﬁ)—'g(zo th- }ZaktAwJD‘ZaklAwJ4

k—1

[ (el

1/2

)1 (25)

[i(g i tZa’”AwJ

p=1

For 2P < 0 we obtain the same result. [

Remark 2. In case k& = 0, based on Corollary 1 and Definition 2, we can write
d(Xpy) = 0.

Example 1. Consider the system (1) with

a1 o]’ C:[l 0]
0 2 01
a:l(t)zl(l)], t e [0,T); xg(k)zﬁ], k€ [0,N]

Assume —0.1 < w/(7,i) <0.1 for j = 1,2. We calculate the support function of the
reachability set X7, using (13):

h(z | X7,) =ZT({(1) Z} “]/01(1—r)d7+[(1) H {ﬂ

1 o0]f1 11/ , ,
LD+2 {2(1,2 0.2 + 1272 0.2)

0 2
+ (121024 22j0.2)] = 32" + 522 + 0.15]2'| +0.2]2?| (26)

+

The diameter of the set X7,, according to (16), has the value

d(X7. 1 ’ L 1
(XT,) = [(5 -0.2+0.2) + (5 2. o.2+0.2) ] =05 (27)
The same result can be obtained directly from Definition 2:

d(XT,) = 031" +0.4]2?] (28)

S |

This maximum is attained for |z!| = 0.6 and |2%| = 0.8. ¢
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3. Reachability Set for a 2-D Continuous-Discrete Linear
System with Disturbances from an Ellipsoid in R?

Consider the system (1) with boundary conditions (2). Assume that the disturbance
vectors w(t, k) belong to the ellipsoid

W, = {w c(w—m)TQ Y w—m) < 1} (29)

where m € R? denotes its centre and () is a symmetric positive-definite matrix in
RI*4.

Definition 3. The reachability set Xj; is the set of all possible states of the sys-
tem (1) at the moment (t,k) with boundary conditions (2) for all possible distur-
bances from the set W,. It easy to verify that X is a convex set as the ellipsoid

W, is convex.

Theorem 5. The support function of the reachability set X5, has the form:

Rz | X5) = 2T [Ak t—(—t——ﬂixl(T) dr

o (k=1
k—1 t" k—1 tk i
+ Z —i)+ Z A’” =10m
=0
+ Z V2k =2 —
1=0
X [zT(A’“‘i'lC)Q(A’“’i‘lc)Tz]1/ ? zeRv (30)

Proof. From (4) and the definition of the support function of X, it follows that

e\ — T | 4k bt —r)k! i _
hz| Xg5) = 27 |A e 1 ( +2 Am2 )

k—1 . t(p _ p)k—i—1
_1_52%2 > ZT(Ak—l—IC)‘/O %t%____l_)_!_w(ﬂi) dr (31)
Let us find
— F)k—i-1
mu%nli ZOZT(AIC i— 10)/ ((tT:B—_—]—ij(T,l)del (32)

subject to the condition w(r,i) € W, for 0<7<¢, 0<i<k—1,and

[w(T,i) - m] TQ—l [w('r,i) - m] <1 (33)
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otherwise, i.e.

¢ T
/ [’LU(‘T, 1) — m] Q1! [w('r,z') - m] dr—t <0
0
First, we form the Lagrangian

i—1

Ly(w, Mg, A Apo1) = — Zz A“—lo/(—ti—w
2 sy NQy ALy e v vy Agp—1 ( i

ol (r,4)d7

+§ Ai {/Ot[w(r,z')_m] TQ—l[w('r,i)—m] dT_t}

Assume w(0,0) = 0. Using the differential Kuhn-Tucker conditions, we obtain

k—1
20,0~ / (1,1) dT“‘ t (Ak YTz, ie0,k—1]

(k —1)!
Hence
1 tk—i—l

2A~(—k——-—i———1)!Q(Ak_i_lC)Tz’ )\i >0

w(t, i) =m+

Moreover
i /Ot [w(T, 1) — m]TQ‘l [w(T, i) — m] dr =t

Substituting (37) into (38) gives
1 tk—i—l

)\i — = : [ZT(Ak—i-—lc)Q(Ak—i—lc)Tz

2(k—i-DWV2k-20—1

and therefore

w(t,i) = m+V2k — 21 — 1Q(A*-10)T; [ZT(Ak—f*lG)Q(Ak-i-IO)Tz] o

The minimum value in (32) equals

k-1 tk——i

— Z (k — z)[ {ZT(Ak—i-lC)m
i=0

+V2E -2 -1 [ZT(A’C~'L'—1C)Q(Ak—i—lo)Tz] i 2}
which yields (30). [ |
Remark 3. Remark 1 is still valid.
Corollary 2. If k=1 and z,(t) =0 for t € [0,7T), then

h(z | X5) = 272(1) + t2TCm + t[z7CQCT2]"?, zeR"

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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It is equal to the support function of the reachability set for the continuous linear
system z(t) = Cw(t) with z(0) = z2(1), where w(t) € W,, calculated according to
(Barmish et al., 1978).

Corollary 3. If m = 0, then the support function of the reachability set X, has the
form

t —Tk—l k— l
h(z|ka)=zT{A’“/o(—t(—k-:)f dT+Z Alwz —0}

1/2

I:ZT(Ak——i—-lC)Q(Ak—i—lc)Tz] , z€ R"

2k—2i-1

(k—1)!

Remark 4. The same result can be obtained when computing this support func-
tion directly from (7) (just as in the proof of Theorem 5). The multipliers A;, @ =
0,1,...,k—1 in the Lagrangian, for which the maximum is attained, have the same
values independently of m. The values of disturbances w at the maximum in both
the cases differ by m.

In order to determine the diameter of the reachability set X[ based on Deﬁm—
tion 2 and Theorem 5, it is necessary to find

_ 1/2
max 2" \/2k % = ( ] [ T(Ak—i= 1C)Q(A’“’Z‘IC)Tz] (42)
Then, for 27 = [zl,zz, cey 2™,
k-1

d(Xf,) = max 2> V2k—2i—1 % [izj zn: q;?fnzm]l/2 (43)
TTj=1 m=1

S ()< i=0
i=1

where qf}n are elements of the matrix (A*—~1C)Q(A*~*-1C)T.
The Kuhn-Tucker conditions lead to

tk i n
Z V2k - 2i — 1 — Z™(gk + ¢ft)
P — =1 m=1 (44)
n - t n 9y 1/2
(B Sy & o]
j=1 i=1 m=1

for p=1,2,...,n
The matrix (A¥~~1C)Q(A*~*"1C)T is symmetric, which implies

k— n

S VIR Y
Z:

k-1 k—i

i=1

k—1i

2P =

(45)
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In contrast to the previous section, solution to (45) in a general case is cumbersome. In
particular cases, however, for a small n, the presented method of computing d(X,)
may give explicit results.

Example 2. We consider, as previously, the system (1) with

eloz] el

xl(t):{gil7 t€[0,T]; x2(k)=[f}, k€ [0,N]
0 0.01 0
We:{w:wTwSO.Ol}, m:[o], Q:[ 0 0.01:!

For t =1 and k = 2, according to (30), the support function of the reachability set
" X has the form

1/2
h@hqg:zT[g}+gg( [; g}) ke )

Then
1/2
105y - ﬂﬂ{g(zlgg}) +%@%Wﬂ an
Here 27 = [21,2%] and _
d(Xs,) = max 0.1 {\/g[(z1)2 +4(z2)2]1/2 +2[(z1)2 + (zz)z]l/z} (48)
N )

In order to find this maximum, we use the Kuhn-Tucker conditions with the
Lagrangian

B8 = R[] - 2y o]
[+ (232 -1 (49)
Consequently, we obtain the following equations:
(. V3 2 _
Lo\/(z 2 4(22)2 10\/(;«1)2 + (22)2 ZA} =0
, [2V3 1 L1 o = (50)
5 \/(7—+4—— 5 /)2 + (22)2 B
‘ A[(z1)2 +(22) - 1] =0

From (50) it follows that a maximum in (48) is attained for z! = 0 and 2?2 = +1.
Finally, d(X$,) = 0.2(v/3 4 1) ~ 0.5464. ¢
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4. Reachability Set for 2-D Continuous-Discrete Linear Control
System with Disturbances

Consider a 2-D continuous-discrete control system described by the equation
&(t,k+1) = Az(t, k) + Bu(t, k) + Cw(t, k), te€[0,T], ke€l0,N] (51)

where u(t, k) € RP is a control vector, w(t,k) € R? denotes a disturbance, and
AeR™™ BeR*™P, C € R arereal matrices. The boundary conditions for (51)
have the form (2). Moreover, assume that u(¢,k) € U.

Definition 4. The reachablity set X[, (u) (X5, (u)) is the set of all possible states of
the system (51) at the moment (¢,k) with boundary conditions (2) for all possible
disturbances from the set W, (W.) when w € U.

Theorem 6. The support functions of the reachaebility sets of (51) with the corre-
sponding boundary conditions are given by

¢ _ F)k-1 :
h(z | Xi (u)) = zTAk/ %wl (r)dr

0

[t r T pk—i-1 (t—T)k-l—

tkz

( Bl ( TAR= 10w, 4 = le”|]Za’”Aw" } (52)

ki

where a,; are elements of the matriz Ak—i=1C and

t oy k-1
h(z | X5 (u) = zTA’“/ —(—t—@——:-)ﬂ!—ml('r) dr

0

Ic i—1
v _ T pk—i—1 -

—I-Z{ 2T Alzy(k —i) +2TA B/ —z—l w(7,4) dr

k—i
+ (kt ) [zTAk—i—lcm +V2k—-2i-1

—)!

, » ) 1/2

X (zT(A’“‘Z_lC’)Q(A’“_Z_IC’)Tz) ] } z € R (53)

Proof. The reachability sets X[, (u) and X§ (u) may be expressed as the following
sums (Krason, 1984; Kurzhanski, 1977):

Xip(u) =p(t k) + Xii, X (uw) =p(t, k) + X5 (54)
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where p(t, k) is a solution to the system

p(t,k+ 1) = Ap(t, k) + Bu(t, k) (55)
with the boundary conditions

p(t,0) =0, p(0,k)=0 (56)
X[, and X, are the reachability sets for the system

Ty (6, k + 1) = Az, (K, k) + Cw(t, k) (57)

when w(t, k) € W, or w(t,k) € W, with boundary conditions (2).

Taking into account the properties of the support function and (54), we can write

{ h(z | X, () = 2Tp(t, k) + h(z | X7,) 58)

h(z | Xg(u)).= 27p(t, ) + h(z | X&)

for z € R*. According to (Kaczorek, 1994; Kaczorek and Stajniak, 1994), the solution
p(t, k) takes the form

k—1

plt,k) = > AR / t —-w(t”)k“iﬁlu( i) dr (59)
I’ = . T’
From Theorems 3 and 5, and the formulae (58), we obtain (52) and (53). |

Theorem 7. The diameter of the reachability set of the system (51) with bound-
ary conditions (2) for disturbances from W, or W, is equal to the diameter of the
reachability set of the system (1) with the same boundary conditions and for the same
disturbances.

Proof. From (15) and (58) we have

d(X},(u)) = max {[sz(t,k) +h(z ] Xtrk)]

llzll<1
# [ #Tate k) 4 1= 21 x5)] = dx) (60)
Similarly,
A(X5 ) = d(x) ay
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5. Concluding Remarks

Definitions 1 and 3 of the reachability sets X/, and Xj for the 2-D continuous-
discrete linear system (1) with disturbances limited to a rectangle or an ellipsoid
in R? for known boundary conditions (2) have been presented. The corresponding
support functions of the sets XJ, and X, have also been established (Theorems 4
and 5). From (25) and (42) it follows that the diameters of X[, and X, depend
neither on the boundary conditions nor on the position of the centre of the rectangle
W, or the ellipsoid W,.. On the other hand, d(X],) depends on the lengths of the
edges Aw’ of the rectangle, and d(Xf,) depends on the directions and the lengths
of the axes of the ellipsoid W,.

The analysis of both the presented examples shows that for the same system (1),
but with different disturbances, the diameters of reachability sets are different.

There is no direct dependence of the type: if disturbances belong to the set of a
smaller diameter, then the reachability set has a smaller diameter. From Theorem 7
it follows that the values of control u in the 2-D continuous-discrete linear control
system (51) have no influence on the diameters of the reachability sets X[, (u) and

X (u).
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