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A NEW PERSPECTIVE ON CONTROLLABILITY
PROPERTIES FOR DYNAMICAL SYSTEMS

PaurLa ROCHA*, JEFFREY WOOD**

In this paper, we study the properties of weak and strong controllability as newly
defined in (Rocha, 1995) for delay-differential systems in a behavioural setting,
now for the multidimensional case. Further, we give an overview of the rela-
tionships between these properties and the original behavioural controllability
concept introduced in (Willems, 1988).

1. Introduction

Whereas the classical notion of controllability is a property of state space representa-
tions, within the behavioural approach to dynamical systems controllability is defined
at the level of the external (joint input-output) variables. According to the definition
given in (Willems, 1988) for the 1D case, a system is controllable if it is possible to
concatenate any of its past and of its future trajectories so as to still obtain an ad-
missible (global) trajectory. The generalization of this property to multidimensional
systems has been studied in (Rocha and Willems, 1991) for the 2D case, and, more
recently, in (Wood et al., 1997; Zerz, 1996) for the general ND case. The case of
delay-differential systems is treated in (Gliissing-Liierssen, 1995; Rocha and Willems,
1997), where behavioural controllability is characterized and compared with the other
existing controllability notions, namely within the frameworks of the functional an-
alytical approach—spectral and approximate controllability—(Manitius, 1981), and
of the algebraic approach—weak and strong (or strict) controllability—(Lévy, 1981;
Morse, 1976). The properties of weak and strong controllability have been intro-
duced in (Lévy, 1981; Morse, 1976) for delay-differential systems with pseudo-state
representation (A(A), B(A),C(A),D(A)), where A is the unit delay operator and
A(z), B(z),C(z),D(z) are polynomial matrices in z, as rank conditions on the matrix
[B(z) | A(z)B(2) | ... | A(2)" 1 B(z)]. This goes against the spirit of the behavioural
approach, according to which the structural properties of a system should be defined
as attributes of its behaviour (i.e. of the set of its admissible trajectories). The need
for a behavioural, system theoretic interpretation of the aforementioned rank condi-
tions has led, in (Rocha, 1995), to the redefinition of weak and strong controllability
for general delay-differential systems. Since the new definitions are given in terms of
the characteristics of the behaviour and are not based on the delay-differential nature
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of its description, the corresponding controllability properties are also meaningful for
1D systems other than delay-differential ones, as well as for multidimensional systems.

Our paper has two main goals: the first one is to complete the existing results on
weak and strong controllability by making a detailed study for the multidimensional
case; the other one is to present an overview of all the controllability-type properties
defined up till now within the behavioural framework and of the way they relate to
one another.

The definitions of the different controllability properties are given in Section 2. In
Section 3 we consider the delay-differential case and develop the preliminary results
obtained in (Rocha, 1995). The discrete ND case is studied in Section 4. Finally,
Section 5 contains our concluding remarks.

2. Controllability Properties

In this paper, we consider dynamical systems over a (one- or multidimensional) do-
main T, whose laws can be described by means of an equation of the form:

R(Quw =0 (1)

where the system trajectories w are elements of (K?)7, (K = R,C), for some ¢ € N,
R(z) is a polynomial matrix in z := (z1,...,2),L > 1, and = ({y,... ,0r)
consists of commuting linear operators ;. In particular, we will be concerned
with the cases 7 = R and Q = d/dt or @ = (d/dt,A), (where A is the
unit delay Aw(t) = w(t — 1)), which respectively correspond to the cases of dif-
ferential systems and of delay-differential systems, and the case T = Z~ and
Q= (g,a7!) = (o1,...,0n,07, ... ,U;,l), (N > 1), with oyw(t) = w(t + &)
(where e; is the i-th canonical element of Z%), which corresponds to ND-systems
over the discrete domain Z%.

Since the set B of admissible trajectories (the system behaviour) is given as the
kernel of the operator R(§2), we will say that (1)—or, equivalently, B = ker R(Q)—is
a kernel representation of B.

The original (behavioural) controllability notion introduced in (Willems, 1988)
for the one-dimensional case can be extended to (possibly) higher dimensions in the
following way (cf. Rocha and Willems, 1991; Wood et al., 1997).

Definition 1. A behaviour B defined over the domain 7' is said to be controllable if
there exists d > 0 such that for all 77,7 C T satisfying the condition d(Ty,T) > d:

Blrur, = Blr, x Bl

In other words, B is controllable if any two partial trajectories w; € Bl and
wy € B|r, can be concatenated so as to obtain a global trajectory w € B, provided
that the distance between Ty and T, is sufficiently large.

The definition of weak controllability is based on the concept of hermetic sub-
behaviour (which has been introduced in (Rocha, 1995) for the 1D case under the
name of “absorbing sub-behaviour”).
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If B is a behaviour with kernel representation, we will say that B’ is a sub-
behaviour of B if B' C B and B’ has also a kernel representation. Further, if
B = ker R and B' = ker R', we will say that B’ is a regular sub-behaviour if there
exists a polynomial matrix F(z) such that R(z) = F(z)R'(z). It should be noticed
that, while in all the other considered cases every sub-behaviour is regular, the same
does not hold true in the delay-differential case; for instance, ker(d/dt) is a non-
regular sub-behaviour of ker(A —1).

Given an N-dimensional domain T, a subset T" C T is called ¢-complementary
if T\T' is a shift of an ND quadrant.

Definition 2. Let B be a behaviour with kernel representation defined over a domain
T. A sub-behaviour B’ of B is said to be hermetic if for every g-complementary
subset 7' of T

{w' e B,w'|p € B'|1n} = {w' € B'}

This means that, when B’ is hermetic, if w’ € B is a partial trajectory of B’ on
certain sufficiently large subsets T' of T', then it can only be extended as a trajectory
of B', ie. it cannot leave B'. For example in the 1D case, if a trajectory w' € B
“starts off” in B', then it must remain in B’, and if it “ends” in B’, then it must have
always been there. Hence the term “hermetic”.

Definition 3. A behaviour B with kernel representation is said to be weakly con-
trollable if it does not contain any proper hermetic sub-behaviour.

Example 1. Let B be the behaviour of a delay-differential system with kernel
representation B := ker R(d/d¢, A), where R(z1,22) = [22 — 22 21 — 22, and define
B' C B as B’ :=ker R'(d/dt,A), with R'(z1,22) = [21 +22 1]. Suppose that w' € B
is such that w'|7» € B'|7v, for an arbitrary q-complementary subset 7' of T' = R,
(i.e. for an arbitrary unbounded interval of R). The fact that w' € B implies that
v:=[d/dt+ A 1]Jw' is an element of ker(d/d¢ — A); moreover, since w'|p € B'|z,
v|7r = 0. But the only trajectory in ker(d/dt — A) which is null in T’ is the zero
trajectory, and therefore we conclude that v = 0, which is equivalent to saying that
w' € B'. This shows that B’ is a (proper) hermetic sub-behaviour and hence B is
not weakly controllable. ¢

In order to define strong controllability, we first introduce the notion of rectifia-
bility. A behaviour B C (K?)T is said to be rectified if B = {w = col(wo,wys) : T —
K¢ | wo(t) = 0 V¢t € T}. This means that the first components wq of the trajectories
of B must be zero and that the remaining ones, wy, are free. We will say that a
behaviour with kernel representation B = ker R(Q2) is rectifiable if there exists an
invertible polynomial operator U(f2) such that U(Q)(B) is rectified.

Definition 4. A behaviour B with kernel representation is said to be strongly con-
trollable if it is rectifiable.

The next result is a consequence of Definitions 1, 3 and 4.
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Proposition 1. Let B C (K?)7 be a behaviour with kernel representation. Then the
following implications hold:

B is strongly controllable = B is controllable = B is weakly controllable

Proof. The first implication is obvious. In order to prove the second one, suppose
that B is not weakly controllable. Let B’ be a proper hermetic sub-behaviour of
B, and consider a trajectory w; € B\B'. Then there exists a subset 7} contained
in an ND quadrant of T' such that wi|r, € B'|r,. Given d > 0, take T, C T as
a g-complementary subset such that d(71,T%) > d. Let further wy € B'. Since B’
is hermetic, every trajectory w € B which coincides with ws in T, must be an
element of B', and hence differs from w; in Tj. Consequently, w;|r, and ws|z, are
not concatenable so as to obtain a (global) system trajectory, showing that B is not
controllable. |

Note that all the controllability properties we have defined correspond to a smaller
or greater extent to a lack of “determinism”, in the sense that the knowledge about
the restrictions of a system trajectory to certain subsets of the domain does not bring
any further information about the whole trajectory. An extreme opposite of this
situation is when the coincidence of two partial trajectories implies the coincidence
of the corresponding global trajectories—in this case we say that the behaviour is
autonomous. For systems with kernel representation, due to linearity, we can take
the following definition of autonomy.

Definition 5. A behaviour B with kernel representation defined over a domain T
is said to be autonomous if for any g-complementary subset 7" of T {w e B,w|p =
0} = {w =0}.

The next theorem gives a characterization of autonomy.

Theorem 1. Let B =ker R(Q) be a behaviour with kernel representation. Then the
following statements are equivalent:

1. B is autonomous.
2. R(2) is a full column rank polynomial matriz.

3. B has no free variables.

Remark 1. We say that a component w; of w € B is a free variable if for all v € KT
there is a trajectory w € B such that the corresponding component w; is equal to v.

Proof. The equivalence between 2 and 3 has been proven in (Fornasini et al., 1993;
Glissing-Liierssen, 1995; Willems, 1988; Wood et al., 1997; Zerz, 1996), and the
implication 1 = 3 can be easily derived. In order to complete the proof we will see
that 2 = 1. Suppose that R(z) has full column rank. Then there exists a polynomial
matrix S(z) such that SR = d(z)I. This implies that B is a sub-behaviour of
kerd(Q2)I =: D. Since every component w; of the trajectories w in D must satisfy
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the restriction d(Q)w; = 0, it turns out that ws|p» = 0 = w; = 0 for any q-
complementary subset T’ of 7. This means that D is autonomous, and hence the
same happens with B. |

3. The Delay-Differential Case

We begin our study of the controllability properties of Section 2 by considering the
case of general delay-differential systems over T = R with kernel representation
B = ker R(d/dt,A), where R(z1,z3) is a 2D polynomial matrix of rank » and
R(d/dt,A) is regarded as an operator acting on C* trajectories. This includes
the pure differential case—where R(d/dt,A) = R(d/dt)—as well as the pure delay
case—where R(d/dt,A) = R(A).

As regards the property of (behavioural) controllability (cf. Definition 1), the
following result has been obtained in (Rocha and Willems, 1997).

Theorem 2. With the previous notation, the following statements are equivalent:
1. B =ker R(d/dt,A) is controllable.
2. B=1im M(d/dt,A) for some 2D polynomial matriz M (21, z;).
8. rankR(A\,e=*) =r, YA € C.

Whenever Condition 2 is satisfied, we will say that B has an image represen-
tation. In particular, if R(d/dt,A) = R(d/dt), this result reduces to the charac-
terization of controllability given in (Willems, 1988) for the pure differential case.
Moreover, it follows from this theorem that, for systems with a pseudo-state space
description:

dz/dt = A(A)z + Bu
y=Cz+ Du

the behaviour B = kercol([d/dt — A(A) | —=B) | 0], [C | D | —I]) of the joint
(z,u,y)-variable is controllable if and only if rank[A\] — A(e=*) | B] is full for all
A € C. This corresponds to the condition of spectral controllability introduced in
(Manitius, 1981).

As for weak and strong controllability (cf. Definitions 3 and 4, respectively), the
conclusions of the investigation carried out in (Rocha, 1995) can be reformulated .as
follows. A 2D polynomial matrix R(z1,23) of rank s can be factored as R = FR;,
where F' and R; are 2D polynomial matrices with full column rank and full row
rank s, respectively; we will call such a decomposition an FCR/FRR factorization.
R(z1,22) is said to be DD factor left-prime (DDFLP) if every FCR/FRR factoriza-
tion R = FR; is such that rank F(\,e™*) = s for all A € C. (This means that
ker F'(d/dt,A) = {0} and hence ker R(d/dt, A) = ker R;(d/dt, A).) For instance,

a1 [ +3 1}
z
22—1 !

R(z1,22) = [
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is DDFLP, since its FRR/FCR factorizations are unique up to constants and [A —1
e~ —1]7 has rank 1 for all A € C. For matrices with full row rank, DD factor left-
primeness reduces to factor left-primeness (FLP), i.e. to the absence of nonunimodular
left factors.

Theorem 3. A delay-differential system with behaviour B = ker R(d/dt, A) is weakly
controllable if and only if R(z1,z) is DDFLP.

Proof. Since R(z1,22) is a 2D polynomial matrix, if it is not DDFLP, there exist 2D
polynomial matrices F(zy,22) with full column rank and Ri(z1,25) with full row
rank such that:

R(21,22) = F(z1,22) Ry (21, 22)

but F(X\,e™*) has a rank drop for some A € C. This implies that ker R (zy, z3)
is a proper sub-behaviour of B. Now, since F(z1,23) has full column rank,
ker F'(d/dt, A) is autonomous, and hence:

(v € ker F(d/dt, A),v|p = O) = (v=0)

for every q-complementary subset 7" of 7' = R. Therefore, if w is a trajectory in B
and (R;(d/dt, A)w)|r =0, then R;(d/d¢,A)w = 0. In other words, if w € B and
w|pr € ker Ry|pv, then w € ker Ry . So, ker Ry is a proper hermetic sub-behaviour
of B, meaning that B is not weakly controllable. Thus, the fact that R(z;,z2) is
DDLFP is a necessary condition for the weak controllability of B.

In order to show the converse implication, suppose that B is not weakly
controllable, admitting therefore a proper hermetic sub-behaviour. It is possible
to show that in this setting B also has a regular proper hermetic sub-behaviour
B' = ker R'(d/d¢, A) such that R'(z1,22) has full row rank. Let F(z1,22) be such
that R = FR'. Taking into account that B’ is hermetic, it follows that F(zy,z2)
must have full column rank. This implies that rank R’ = rank R. However, since B’
is a proper sub-behaviour, ker F'(d/dt,A) # {0}. Consequently, R is not DDFLP,
proving that the DD factor left-primeness of R(zy,z2) is also sufficient condition for
the weak controllability of B. [ ]

Theorem 4. A delay-differential system with behaviour B = ker R(d/d¢, A),
with rank R(z1,22) = r, is strongly controllable if and only if rank R(A1,\2) = r
V(A1 A2) € Cx C.

If the condition of the theorem is satisfied we will say that R(zi,z) is zero
prime in the generalized sense (GZP). For matrices with full row (resp. column) rank,
generalized zero primeness corresponds to zero left-primeness (ZLP) (resp., zero right-
primeness (ZRP)), i.e. to the fact that the row (resp. column) rank is full for all
(/\1,)\2) eCxC.

Proof. If R(21,22) is GZP, there exist unimodular matrices U(z1,22) and W (z1, 22)

such that
WRU = Lo
0 0
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Therefore
Rw=0<«[I 0)Vw=0

where V(z1,22) is the inverse of U(z1,22). This implies that V (D, A)(B) = ker[I 0],
and so B is rectifiable, i.e. it is strongly controllable.

Suppose now that B is strongly controllable. Then there exists an invertible operator
V(d/dt,A) such that V(d/d¢t,A)(ker R) = ker[I 0] and, consequently, ker R =
ker[I 0]V. Since V(d/dt,A) is invertible, V(z1,22) is unimodular, and therefore
[I 0]V (z1,22) is zero left-prime. This implies that R(z1,22) is GZP. |

The preceding results imply that, for systems with a pseudo-state space descrip-
tion,
dz/dt = A(A)z + B(A)u
y=C(A)z + D(A)u
the behaviour B = kercol([d/dt — A(A) | —B(A) | 0],[C(A) | D(A) | =I]) of the
joint (z,u,y)-variable is weakly controllable if and only if [21] — A(z2) | B(22)] is
factor left-prime and strongly controllable if and only if [z1] — A(z2) | B(22)] is zero

left-prime. These characterizations coincide with the definitions given in (Lévy, 1981),
showing that our redefinitions of weak and strong controllability are adequate.

As we have seen in Proposition 1, strong controllability implies controllability,
which in turn implies weak controllability. The examples below show that the recip-
rocal implications are not true.

Example 2. The delay-differential system
[A—-1d/dtlw=0

has an associated 2D polynomial matrix R(z1,22) = [22 — 1 21], which is (DD)FLP,
and hence weakly controllable. However, R(\,e™*) =[e™* —1 )] drops in rank for
A = 0, and therefore the system is not controllable. ¢

Example 3. The system R(d/d¢,A)w =0 with R(z1,22) = [22 + 1 23] is control-
lable since rankle™ +1 A] = 1 VA € C. But, because R(\;,\2) drops in rank for
(A1, A2) = (1,—1), the system is not strongly controllable. ¢

4. The Discrete ND Case

Let us now consider systems over 7' = Z~ (N > 1) with kernel representation
B = kerR(g,07!), where (g,07!) = (0y,... ,aN,ofl,... ,0;,1), o; denotes the
i-th ND shift (cf. Section 2), and R(z,z7!) := R(z1,...,2n, 21, ... ,z;,l) is an
ND Laurent polynomial matrix. For this class of systems, (behavioural) controllability
has been studied in (Rocha and Willems, 1991; Willems, 1988), respectively for the
1D and the 2D cases, and, more recently, in (Wood et al., 1997; Zerz, 1996) for the
general ND case.
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In the characterization of this property, the following notion of primeness plays
an important role. An ND (Laurent) polynomial matrix R is said to be factor left-
prime in the generalized sense (GFLP) if the existence of a factorization R = FR;
with rank R; = rank R implies the existence of an (ND (Laurent) polynomial) matrix
E such that Ry = ER (Zerz, 1996). As shown in (Zerz, 1996), for matrices with
full row rank generalized factor left primeness implies factor left primeness, but the
converse is not true. However, it is not difficult to show that these two properties are
equivalent for N < 2.

Theorem 5. (Rocha and Willems, 1991; Willems, 1988; Wood et al, 1997;
Zerz, 1996) Let B be a behaviour over T = ZV with kernel representation B =
ker R(g,0~1). Then the following statements are equivalent:

1. B is controllable.
2. B=1imM(g,o™t) for some ND Laurent polynomial matriz M (z,z™1).

8. R(z,z7') is GFLP.

If N <2, controllability is still equivalent to the existence of a kernel representa-
tion associated with a full row rank FLP Laurent polynomial matrix R (Rocha and
Willems, 1991; Willems, 1988). In the 1D case, this means that rank R(\, A™1) is full
for all A € C\ {0}, or, equivalently, that all the kernel representations of B are as-
sociated with Laurent polynomial matrices which have constant rank when evaluated
for A € C\ {0} (Willems, 1988).

Similarly to the delay-differential case, strong controllability can be characterized
by means of the following rank constancy condition.

Theorem 6. The ND behaviour B = ker R(g,c™ ') is strongly controllable if and
only if rank RA,A7Y) = s YA € (C\ {0})", where s denotes the rank of the ND
Laurent polynomial matriz R(z,z™ ).

The proof of this result is analogous to that of Theorem 4. As before, if the condition
of the theorem is satisfied, we will say that R(z,z~!) is zero prime in the generalized
sense.

In order to study weak controllability, we will first investigate the properties
of hermetic sub-behaviours. Let B be a behaviour over the domain 7' with tra-
jectories w = col(wi, ...,w,) taking values in K?. We will say that a choice
w' = col(ws,,...,w;, ) of components of w is a set of free variables if for all
v € (K™)T there exists a trajectory w € B such that the corresponding choice
of variables w’ is equal to v. The number of free variables of a behaviour B is

defined as the length of its largest set(s) of free variables.

Theorem 7. Let B be an ND behaviour (over T = Z™) with kernel representation,
and B' a sub-behaviour of B. The following statements are equivalent:

1. B' is a hermetic sub-behaviour of B.
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2. B' and B have the same number of free variables.
3. B/B' is autonomous.

4. B' has a sub-behaviour of the form r(g,a~1)(B), for some nonzero ND Laurent
polynomial r(z,27"%).

Proof. 1 = 2: Suppose that B and B’ do not have the same number of free variables.
Fix a maximal set w’ of free variables in B’. Then w' is also a set of free variables
in B, so there must be an additional free variable w; in B. Let T' be an arbitrary
g-complementary set in T. It is possible to construct w € B such that wir € B'|
but with the component w; chosen to ensure that w ¢ B’, otherwise w; would be
free in B’. Hence B’ is not a hermetic sub- behaviour of B.

2 = 3: Suppose that B’ and B have the same number of free variables. Then it
follows from the results in (Wood et al., 1997) that B/B' is a behaviour with kernel
representation which has no free variables, and is therefore autonomous.

3 = 4: If B/B' is autonomous, then there exists a nonzero ND Laurent polynomial
r(z,27 1) such that r(g,e ) (w + B') = B' for all w € B. Equivalently, rw € B’
for all w € B, so r(B) is contained in B'. Since r(B) is the image of B under
a polynomial ND shift operator, it has a kernel representation and is therefore a
sub-behaviour of B'.

4 = 1: Suppose that r(g,c71)(B) is a sub-behaviour of B’, for some nonzero ND
Laurent polynomial r. Let B’ = ker R’ be a kernel representation of B’. Then
B C kerrR' =: B®™t. We will show that B’ is a hermetic sub-behaviour of Bext.
Let 7' be an arbitrary g-complementary subset of T', and suppose that w € Bt
is such that w|y» € B'|7v. Then there exists w' € B’ such that (w — w')|p = 0,
and so (R'(w — w'))|p» = 0 for some g-complementary subset 7" C T'. Since
(w—w') € B**, R'(w—w') € kerr, and, taking into account that kerr is autonomous,
the fact that (R'(w—w"))|7» = 0 implies that R'(w—w') =0. So, w—w' € B’, and
w € B', showing that B’ is a hermetic sub-behaviour of B®**. Finally, since B € B,
this implies that B’ is also a hermetic sub-behaviour of B. u

We call B a divisible behaviour if r(o,c1)(B) = B for every nonzero ND Lau-
rent polynomial r. Our next result follows immediately from Theorem 7 (namely
from the equivalence between 1 and 4) and provides a characterization for weak con-
trollability.

Corollary 1. Let B be a behaviour with kernel representation over T = ZN. Then
B is weakly controllable if and only if it is divisible.

It is shown in (Wood et al., 1997) that, for the ND case, controllability is equiv-
alent to divisibility. The following result is a straightforward consequence of this
fact.

Corollary 2. Let B be a behaviour with kernel representation over T = Z~. Then
B is weakly controllable if and only if it is controllable.
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Taking Theorem 5 into account, this yelds further characterizations of weak control-
lability in terms of the existence of an image representation or, equivalently, of the
GFL primeness of the kernel representations.

5. Concluding Remarks

Based on the results of the previous sections we conclude that, for all the considered
cases, controllabilty is equivalent to the existence of an image representation, whereas
strong controllability is equivalent to a rank constancy condition (GZP) on the ND
(Laurent) polynomial matrices associated with the corresponding kernel representa-
tions. These two properties coincide (only) in the 1D case. Weak controllability is
equivalent to controllability in the general ND case, but not in the delay-differential
case.

The characterization of the different controllability properties of a behaviour
B = ker R(2) in terms of the (Laurent) polynomial matrix R can be summarized
as follows. In the delay-differential case, weak controllability is equivalent to the
DDFL primeness of R(z,22), controllability is equivalent to the constancy of the
rank of R()\,e™*), and strong controllability amounts to the constancy of the rank
of R(A1,)2). As we previously mentioned, these characterizations show that strong
controllability implies controllability, which in turn implies weak controllability, but
the reciprocal implications are not true.

In the 1D case, the three controllability properties coincide and are equivalent to
the constancy of the rank of R(\,A71).

Weak controllability and controllability coincide in the 2D case, and are equiva-
lent to the GFL primeness of R, as well as to the existence of a kernel representation
such that the associated Laurent polynomial matrix is FLP. Strong controllability
is strictly stronger than these properties and is equivalent to the rank constancy of
RO, da, A1 A5,

The situation is almost analogous for the ND case (N > 3), with the difference
that now (weakly) controllable behaviours do not necessarily admit FLP representa-
tions.
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