Appl. Math. and Comp. Sci., 1997, Vol.7, No.4, 881-905

ON 2-D POLYNOMIALS AND DISCRETE-CONTINUOUS
SYSTEMS

Zpzistaw W. TRZASKA*

The paper deals with 2-D polynomials Q(z,y) and R(z,y) having real coef-
ficients, which are generated by modified first and second numerical triangles
(FMNT) and (SMNT), respectively. It has been proven that n-th-degree poly-
nomials @Q.(z,y) and R.(z,y) can be easily determined as solutions of third
order recurrences with coefficients depending on z and y with appropriate
initial conditions. Suitable expressions are involved and simple formulae are
established to check links between Q(z,y) and R(z,y). Problems connected
to the efficiency of the 2-D polynomials in solutions to practical problems are
also considered. Examples illustrating possible applications of the presented
approach are also demonstrated.

1. Introduction

Some recent applications of dynamic models in atmospheric sciences, biology, ecology,
geology, economics and business sciences can be found in (Cronin, 1976; Jean, 1986;
Liu and Sutinen, 1985; Majda, 1996; Reithofer, 1996; Tichonov and Samarskii, 1974).
This general research field relates many topics in a beautiful, sometimes surprising,
vet natural way. Suitable mathematical descriptions and effective solutions for many
real world phenomena are related to one another. As is well-known, the instantaneous
state of many physical plants usually depends on several independent variables and
is described by one or several state functions with these variables as their arguments.
The state functions, if sufficiently smooth, can be represented by polynomials, in some
range and within some accuracy. Thus the state of any plant, no matter how it is
complicated, involves the study of polynomials.

On the other hand, power polynomials play a fundamental role in pure math-
ematics because of their fascinating properties and numerous applications in many
fields of applied mathematics (Ferri et al., 1991; Klamka, 1997; Lahr, 1986; Skorobo-
gat’ko, 1983; Trzaska, 1993b; 1996a). Moreover, they are quite often used in control
theory to study such important properties of dynamical systems as stability, controlla-
bility, singularity, detectability, etc. (Barnet, 1983; Willems, 1989). The classical 1-D
dynamical systems and polynomials have a rich and well-developed theory (Acosta-
de-Orozc and Gomez-Calderon, 1996; Gill, 1977; Marden, 1966; Schinzel, 1982), so
that many of classical, e.g. Chebyshev, Legendre and Hermite, polynomials are valu-
able tools in approximating complicated functions, as well as solutions to differential,
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integral and difference equations. However, many other domains of the human activ-
ity explore multivariable power polynomials to reveal phenomena in our environment
and to design systems with desired properties as, for instance, the synthesis of 2-D fil-
ters with appropriate frequency bands (Huang, 1972; Kaczorek, 1985; Kuchminskaya,
1995; Lewis, 1992; Morf et al., 1977; Skorobogat’ko, 1983).

A new area of the theory of dynamic systems was opened in the 1970s through
a series of papers (Attasi, 1973; Fornasini and Marchesini, 1976; 1978); Huang, 1972;
Morf et al., 1977; Roesser, 1976) and a monograph (Kaczorek, 1985) where the so-
called 2-D systems have been involved, developed and well-justified as a new and
suitable approach to a wide class of discrete and/or discrete-continuous systems. The
study of these mathematical objects has found an established place in modern treat-
ments of various disciplines, but the world of 2-D systems always provides many
opportunities for new and exciting discoveries that are revealed by looking at them
closely (Beauzamy et al., 1995; Idczak, 1996; Kaczorek, 1988; Marszatek and Kekkeris,
1989; Rocha and Willems, 1991). The up-to-date research indicates that 2-D systems
share many similar properties with 1-D ones, yet some differences arise due to the
discrete nature of the independent variables, adding an intriguing flavor to the studies.

This paper aims at providing a comprehensive explanation of some new results
concerning 2-D polynomials introduced via first and second modified triangles FMNT
and SMNT, respectively, that have been involved by suitable combinatoric investi-
gations (Edwards, 1987; Jean, 1986; Kuchminskaya, 1995; Trzaska, 1993a; 1995).
As is well-known, 2-D polynomials are basic objects not only in pure mathematics
(Beauzamy et al., 1995; Gatkowski, 1997), but in many other neighbouring domains,
especially in applied and industrial mathematics, as well as in control systems the-
ory (Gatkowski et al., 1997; Huang, 1972; Kaczorek, 1985; Lewis, 1992; Trzaska,
1996b; 1996¢; 1996d; 1997). Here the 2-D polynomials are considered in the context
of modified numerical triangles and their links with solutions of third and second
order difference equations. One hope is that it will serve as an introduction for non-
specialists in the field, and in that spirit, proofs are provided for all of the results. On
the other hand, new results of varying degrees of importance do appear throughout,
as well as some new extensions of known results in 1-D domain to two dimensions, so
the hope is that researches in the concerned field will also find something interesting
in the paper. Illustrative examples are given along the presentation and examples
sometimes will serve instead of formal proofs.

The aim of this paper is to present some fundamental properties and character-
istics of the n-th-degree polynomials Q,(z,y) and R,(z,y) introduced via FMNT
and SMNT and links between them, as well as with solutions of some third and second
order difference equations under appropriate initial conditions.

The paper is organized as follows. In the next section, we shall present a short
review of relations and properties concerning modified numerical triangles FMNT and
SMNT from the point of view of generation of 2-D polynomials Q,(z,y) and R, (z,y).
In Section 3, we shall study links between these polynomials. Third-order difference
equations and the relationships between their solutions and polynomials Qy(z,v)
and Rp(z,y) are presented in Section 4. An illustration of possible applications of
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the presented relationships is included in Section 5. Section 6 is devoted to a final
discussion of the results and it also contains concluding remarks.

2. Two-Variable Polynomials and Modified Numerical Triangles

A rapidly growing interest in the studies of various forms of 2-D polynomials, also
called two-variable polynomials, has been observed recently because of their numerous
applications not only in the field of pure mathematics, but also in applied and/or
industrial sciences, especially in the modelling and numerical analysis of physical
plants like electric distributed-parameter systems, as well as in real-domain image
processing and other discrete-continuous processes (Marszalek and Kekkeris, 1989;
Roesser, 1976; Trzaska, 1996b). As the mathematical basis to solve various problems
appearing in the studies of these systems we have the theory of recurrence equations,
two-dimensional transformations and their generalizations, as well as various classes
of 2-D mathematical models (Kaczorek, 1988; 1994; Pandolfi, 1984; Trzaska, 1996b;
1996¢; 1996d).

In this section, we shall be concerned with power polynomials Q,(z,y) and
R,(z,y) in two independent variables z and y and coefficients defined via modified
numerical triangles FMNT and SMNT. Here we restrict ourselves to independent
variables £ and y on the real plane R?. Moreover, in the sequel we shall limit our
attention to a non-negative subscript n >0 only. The case of a negative subscript
n < 0 can be treated similarly.

Definition 1. Monic non-zero 2-D polynomials Q,(z,y) in R? which generate the
first modified numerical triangle, FMNT, are defined here by the following recurrence:

Qnra(®,9)= (2 +9) [2Qni1(@,9) — (2 +1)Qn(s,1)]

+2?yQn_1(z,y), n=1,2,3,... (1)
with Qo(z,y) =1, Qi(z,y) = z+y and Qa(z,y) = 2% +3zy +y? as initial elements.
By direct inspection of the above recurrence we have
Qo(z,y) =1
Qi(z,y)=z+y
Q2(z,y) = a® + 3zy + ¢
Qs3(z,y) = z3 + 62%y + 5xy? + ¢° (2)
Qa(z,y) = z* + 1023y + 152292 + Tzy® + ¢4
Qs(z,y) = z° + 15z*y + 3523y? + 2822y3 + 9zy* + ¢°

Thus, taking into account the specific form of Q,(z,y), we can write

n
Qn(za y) = Z an,kxn_kyk, n=20,12,... (3)
k=0
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where the coefficients an 5, 1 =0,1,2,..., 0<k < n, fulfil the relation
an.k = 2an—1,k +0n_1,k-1—0n-2,k, N = 07 17 27 RS 0 < k <n (4)

with ago =1 and a1 =1 as initial values, and an =0 for £ >n and n <0.
Based on (4) we can construct the FMNT which is shown in Table 1.

Table 1. First modified numerical triangle.

[r\m | 0 1 2 3 4 5 6
0 1
1 1
2 1 3
3 1 1
4 1 10 15 7
5 1 15 35 28 9 1
6 1 21 70 8 45 11 1

Following the above line of reasoning, we can define a set of the second monic
2-D polynomials R,(z,y) with n=0,1,2,....

Definition 2. Non-monic non-zero 2-D polynomials R,(z,y) in R?> which gener-
ate the second modified numerical triangle SMNT are defined here by the following
recurrence:

Roya(2,9)= (o + 1) 2Rt (3,9) = (0 + 9) Ra(2,)
+22yR_1(z,y), n=1,23,... (5)
with Ro(z,y) =0, Ri(z,y) =1 and Ry(z,y) = 2z +y as the initial elements.

By direct inspection of the above recurrence we obtain

Ro(z,y) =

Ri(z,y) =

Ra(z,y) =2z +y

Rs(z,y) = 322 + 4zy + y? (6)
Ry(z,y) = 422 + 1022y + 6zy® + ¢°

Rs(z,y) = 5z* + 2023y + 212%y? + 8z + y*
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Now it is evident that we can express the polynomial R,(z,y) as

R, (z,y) = "il b,z Ty, n=0,1,2,... (7
=0
where the coefficients b, ,, n=0,1,2,..., 0 <7 <n, are defined by the recurrence
bpr=2bp_1,+bp_17-1—bn_2r, n=012,..., 0<r<n (8)
with bopo = 0 and b1p = 1 as the initial values, by, = 0, n = 0,1,2,..., and

bpyr =0 for r >n and n < 0.

Thus, on the basis of the above expressions, we can construct the second modified
numerical triangle SMNT which is presented in Table 2.

Table 2. Second modified numerical triangle.

NI 1 2 3 4 5 6
0 0

1 1

2 2 1

3 3 4 1

4 4 10 6 1

5 5 20 21 8 1

6 6 35 56 36 10 1

Observe that formally both FMNT and SMNT are apparently similar to the clas-
sical Pascal triangle (Edwards, 1987; Ferri et al, 1991; Lahr, 1986; Trzaska, 1993a;
1993b), but their elements cannot be evaluated directly by applying the rule corre-
sponding to the classical Pascal triangle. They must be computed in accordance with
recurrences (4) and (8), respectively. It is also interesting to emphasize that the sum
of all numbers in a row of FMNT or SMNT equals fs, or fan_1, respectively, with
n =0,1,2,..., i.e. they are equal to successive elements, with even or odd indices,
respectively, of the Fibonacci sequence (Ferri et al., 1991; Lahr, 1986; Trzaska, 1995;
1996a)

fot2 = for1+ fn, n=0,1,2,... (9)

with fo =1 and f; =1 as the initial values.

Thus it is easy to prove that the sum of all elements in FMNT gives the sum of
Fibonacci numbers with even indices while in the case of SMNT we have the sum of
all Fibonacci numbers with odd indices, so in consequence, if we add simultaneously
all elements in these two triangles, we can evaluate the sum of all Fibonacci numbers,
i.e. with even and odd indices from 0 to n, at the same time.
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Let us now present some of the most useful characteristics of polynomials
Qn(z,y) and Rp(z,y). First, we consider specific forms of these polynomials with
respect to both independent variables z and y. Observe that all the terms of a given
polynomial Q(z,y) have, with respect to both the variables, the same degrees k,
and in the case of a polynomial Ri(z,y) all its terms also possess the same degree
with respect to both the variables, but it is equal to & — 1.

Second, it is evident from expressions (3), (4), (7) and (8) that for =,y € (0, co)
polynomials Qx(z,y) and Ri(z,y), k = 0,1,2,..., are nonnegative-definite, i.e.
Qn(z,y) >0 and Ry(z,y) >0 for z,y > 0. For negative z and y the polynomials
Qn(z,y) of even degrees and the polynomials Ry (z,y) of odd degrees are positive-
definite, but those others (of odd and even degrees, respectively) are negative-definite.
These facts are illustrated in Fig. 1 in the case of Q4(z,y) and Qs(z,y). If z and y
have opposite signs, then the definiteness of the polynomials Qn(z,y) and R, (z,y)
is much more complicated and it is left for future studies.

Further, introducing normalized values of the polynomials Q(z,y) and Ri(z,y)
with respect to z*, we get the so-called normalized polynomials Q',c(q) and R’k(q)
in a normalized independent variable ¢ = y/z. They take the following forms:

Qolg) =1
Qi@ =1+g¢
Q2(q) = 1+3q+ ¢
Q3(g) =1+6¢ +5¢° + ¢° (10)
Qu(g) =1+ 10g + 15¢> + 7¢% + ¢*
Q5(g) = 1+ 15¢ + 35¢> + 28¢% + 9¢* + ¢°
and
Ry(g) =0
Ri(g) =1
Ry(g)=2+¢
Ry(q) =3 +4q+¢° (11)
Ry(q) = 4+ 10q + 6¢> + ¢3
Ri(q) =5+ 20g + 21¢2 + 8¢% + ¢*

It must be underlined that polynomials (10) and (11) depend seemingly only on
one independent variable g, but in fact ¢ depends on both z and y. The above
polynomials are characterized by a set of very interesting properties. Many details
in this direction can be found in (Trzaska, 1993a; 1993b). For the sake of reasonable
space limit, we present here only one of them. It employs specific zeros of these
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(a) polynomial Q4(z,y), (b) polynomial Qs(z,y).
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polynomials. For Q/n(q) =0 we have

kw
Gn,k = —4 cos? (2n+1>, k=1,2,...,n (12)
as its zeros. But for R, (q) =0 we get
. jm .
qn,j:—4=51n2 (2—7;), 1=12,...,n—1 (13)

as the corresponding zeros.

It is now evident that all the zeros of the above-mentioned polynomials lie in the
segment (—4,0) and the zeros of Q,,(q) are different from those of R, (q). Thus these
polynomials are relatively prime (Barnet, 1983; Beauzamy et al., 1995; Kaczorek,
1994). Also observe that if n — oo and k + j = n, then the roots g, and Gn,j
fulfil the equation

Gnk + qn,j = —4 l (14)

Further, leaving instantaneously the particular properties of the numerical triangle
elements and returning to the general problem of this section, we are able to express
the sets of polynomials @, (z,y) and R,(z,y) for n = 0,1,2,... in suitable matrix
forms. To perform this task, we introduce the following matrices:

(22 0 0 ... 0 O
0 z¢7! 0 ... 0 O
0 O =2 .. 0 0
z, = diag [zr](::p = ! (15)
0 0 0 ... z 0
0 0 0 ... 0 1]

T = block [ [mp];;O O] c RO (+2)/2x(n+1)

If, for instance, we set n = 0,1 and 2, then we have

200

z 0 T 3EO 0

) = m
01 ?

xo = (1], w1:{
0 01

and from the above matrices we form the following 6 x 3 matrix:

- -

x = block [ [a:p]izo 0} =

o o 8 o8 ~
o8 O = o
_ o o o oo
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Next we construct the following vectors:

y=[1y ... y”}t

Qz,y) = [Qo(z,y) Qu(z,y) ... Qulz,)] = {Qulz,9)}, (16)
R(z,y) = [Ri(z,9) Ra(z,y) ... Buta(2,9)]" = {Bi(z, )} 05

where the superscript ¢ denotes transposition.

Further we define the lower triangular constant matrices

1 1
1 1 2 1
1 3 1 o 3 4 1 O
M=|1 6 5 1 , N=1] 4 10 6 1 (17)
1 10 15 7 1 5 2021 8 1
I . n+1 ... ... ... .. . 1]
together with the so-called row-shifted matrices
- -
011 o
000 3 1
M s =[rowshift M]={0 0 0 0 0 0 1 6 5 1 (18)
0000O0O0OO0O0OO0O0T110157 1
106 000O0O0CO0OO0OO0CO0O0OO0O0...1]

and
-1 -
0 2 1 (0
000 3 1
Nysnh=[rowshift N][={0 0 0 0 0 0 4 10 6 1 (19)
0 00O0OOOOO0OOSDb52021 8 1
10 00 00O0O0O0O0O0O0O0CO0O0...1]

Then the sets of polynomials Qn(z,y) and Rn(z,y) can be expressed as follows:

Q(z,y) = Msnzy, R(z) = Nnzy (20)
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Next, denoting by

1 1
11 -11
1 -11 o
s=|1! 0 , S'= 0 (21)
11 1 0 0-11
|1 1 ... ... 11 0 0 ... 0 —11}

the nxn lower triangular matrix with 1 as its elements on the diagonal and all
subdiagonals, and the nxn lower triangular matrix with only the main diagonal
composed of 1 and the first subdiagonal composed of —1, respectively, we can easily
demonstrate that the matrices M s, and N, fulfil the relations

Nyn = (SM) M. = (S7'N) (22)

rsh ? rsh

The following example is given as an illustration.

Example 1. Using expresion (20) let us determine simultaneously explicit forms of
all 2-D polynomials Qn(z,y) and R,(x,y) with successive degrees n = 0, 1, 2,
and 3. To perform this task we construct, based on (18) and (19), the corrésponding
row-shifted matrices Mg, and Niqg. They take the forms

1 . 1

M. = 011 O Ny = 021 o
000131 000341
00000016 51 00000041061

Next we form the corresponding (10 x 4) matrix z:

1 000

z 0 00

0 100

z2 0 00

3 0 z 00

a::block[ [mp]p:o 0] = 00 10
22 000

0 z200

0 0 z0O

0 0 01_

and the vector

y=[1y
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From (20) we obtain

t

Q(z,y)=|Qo(z,y) Qi(z,y) Q2(z,y) Q3(z,y)| = Mhzy

1
1

1 000
0 z 00
0 010
1 z2 0 00| [1
1011 0] 0 z 00| |y
1000131 0 0 10| |y?
00000016 51|z 0 00| |y®
02200
0 0z0
[0 0 0 1]
1
_ Tty
B 22 + 3zy + o2

23 + 1022y + 5zy? + 12

Similarly, we form the vector of polynomials R,(z,y), n=1,2,3, and 4, namely

R(z,)=[Ri(z,5) Rol@v) Rsla,y) Ralz,y)] = Nemay

1 0 0 0]
z 0 00
0 100
1 2 0 00| [1]
_loz21 o 0 z 00| |y
000341 0 0 10| |y
0000004106 1] [2° 0 00| |4
0 z200
0 0 =20
0 0 0 1]
1
2z +vy

322 + dzy + y?
4z3 + 102%y + 6zy? + 43
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Observe that the above relations can be considered as an alternative approach to
the foregoing recurrence formulae used to determine the 2-D polynomials Qn(z,y)
and R,(z,y). The advantages of each of these approaches in particular applications
depend on additional information supplied to a researcher.

Also note that the above relations involve some important simplifications when
applied to dynamical ladder networks and other discrete-continuous 2-D systems. We
shall present such problems in the next sections. In particular, we shall discuss new
relations leading to other recurrence definitions. Furthermore, we shall consider the
stability of the studied polynomials and we shall try to locate the polynomial zeros
on the complex plane.

3. Fundamental Properties of 2-D Polynomials

Although 2-D polynomials have been extensively studied for a dozen years, they
remain a fascinating area for exploration and still new aspects seem to exists, which
can be revealed by looking at them closely. Many standard techniques from 1-D
polynomials have been adopted to the study of 2-D polynomials, but due to the
differences some new approaches have also been developed (Gatkowski, 1997; Trzaska,
1996a).

The number of applications of 2-D polynomials is very large, but it must be
underlined that the two-variable polynomial is a notion which plays an important
role not only in mathematics, but also in many neighbouring disciplines and in other
research domains such as criptology, signal processing, ecology, etc. (Huang, 1972;
Jean, 1986; Lions, 1996; Majda, 1996; Marszalek and Kekkeris, 1989; Trzaska, 1996d).
From now on, some significant expressions start appearing. One of them concerns
fundamental links between polynomials Qn(z,y) and R,(z,y). Next questions are
focused on the zeros of these polynomials, as well as on alternative recurrence relations
with respect to those presented in the preceding section.

3.1. Links between Polynomials Q,(z,y) and R,(z,y)

To establish some links between polynomials Q,(z,y) and R,(z,y), we proceed as
follows. First, for the clarity of presentation, we begin with an example.

Example 2. Applying the defined expressions for particular polynomials on the
right-hand side, let us calculate the explicit form of the left-hand side for the following
expression:

D3 a(z,y) = Qs(z,y)Ra(z,y) — R3(z,9)Q2(z,y)

To solve the problem, we use appropriate expressions which determine particular
forms of the corresponding polynomials on the LHS and after some manipulations we
obtain

RHS=(z* + 622y + 5zy% + v*) (22 + y)

— (32% + dzy + v (2® + 32y +9°) = —z*
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Because the LHS must be the same, we have

-D3,2l(z’ y) = _IA
, ¢

Generalizing this particular result, we formulate the following theorem.
Theorem 1. Polynomials Qn(z,v) and R,(z, y),n=1,2,... fulfil the equation
Qn(@,9)Bni1(2,y) = Bn(2,9)Qn-1(,y) = 22"~ (23)

Proof. It employs the mathematical induction and is straightforward. [ ]

Theorem 2. Polynomials Qn(z,y) and Rn(i,y), n=1,2,... fulfil the following
system of difference equations:

Qn—i—l(x:y) = (z+y)Qn(z,y) + wan(z,y)
Rn+1 (I,’l ) = (-73 + y)Rn(I; y) + an—l(w7y)

Proof. We apply first of all expressions (3) and (7) with (4) and (8), respectively.
Then we write

(24)

n+1
On+1(z,y) Zan+1z$"+1 ~yt Rpy1(z,y) = an—H ™ty (25)

Next, making use of the results given in (Trzaska, 1993a; 1993b), we can deduce the
following identities:

{ Ont1,0 = 26n1 + Qni—1 — Gp_1, (26)

b1, =2bn1 +bngo1 —bn1y, bpi = anit1 — Gno141
For instance, let n =3 and [ = 2. Then from FMNT and SMNT we have
G423 =2a32+az1 —az1 =2-64+6—3=15
by =2b3s+b31 —by1 =2-44+3-1=10
bz =a33—ax3=1-0=1
The result can be easily checked by using Tables 1 and 2, respectively.

The rest of the proof will be limited to the first of equations (25). For the other,
we proceed analogously.

Substituting (26) into (25) gives

n+1

Qn+l T y) Z 2anl+anl Qp—1 l)$n+1 lyl
=0

n—1

—mzanzz" : ’+yzanzx” Yoy Y (angir — anoggn)e" "
1=0
n n
:mZan,lw"“lyl—%yZan,lx" ! l+xyanlw" 1=ty (27)
=0 1=0 =0
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Now, taking into account (3) and (7) we obtain

n+l n—1
Qnt1(z,y)=(z +y) Z ant1," Y + oy Z b 2™yt
=0 =0
=(z +y)Qn(z,y) + zyRn(z,y) (28)

The same line of reasoning can be employed for R,1(z,y), and the proof is thus
complete. |

Finally, let us write the links between @Q,(z,y) and R,(z,y) in a matrix form.
Theorem 3. A wector Qp(z,y) of polynomials Qn(z,y) with n = 0,1,2,...,N

and a vector R(z,y)n of polynomials Rp(z,y) with n = 1,2,...,N +1 fulfi the
following matriz identities: :

Qn(z,y) = Cn(z)RN(z,y), Rn(z,y) = Dn(z)QpN(z,y) (29)
where
1 0 O 0 0
-z 1 0 0 0
Cn(z)=]0 -z 1 0 0| e RM+Ux(n+lrg (30)
0 0 0 -z 1
and
1 0 00
T 0 0 0
D, (z)=C;'(z)= |2 z 1 0 0| e RHDx(+[g] (31)
" gl gn—2 z 1
with N =0,1,2,....

Proof. The proof follows immediately from (25) and (26). Indeed, we have
Rk(fb’,y) :Qk—l(m>y) +sz—1(myy); k= 1a27"' (32)

and
Qk(muy) :Rk-l-l —ka(z7y)7 k:0:1)2a"' (33)

Now substituting successively the above identities into (29) for £k =0,1,...,n yields
the desired equalities. For brevity, all details are omitted here. Note that (29) leads to
efficient computations in practical applications of the established polynomials. [ ]

Finally, it is worth underlining that the introduced set of links between Q,(z,y)

and R,(z,y) is not closed because there is a number of other suitable relations
between them, but for brevity they are left for a separate publication.
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3.2. Factorizations and Zeros of Polynomials Q,(z,y) and R,(z,y)

One of the most important properties of the introduced polynomials Qn(z,y) and
R, (z,y),n =0,1,2,... is the factorization into appropriate monomials and the loca-
tions of the zeros in the complex plane. It is well-known that finding the locations
of the zeros is one of the major problems and, in general, if even a two-variable
polynomial is separable into a product of polynomials with respect to each variable,
no exact algebraic solution can be given when at least one factor’s degree is greater
than five (Acosta-de-Orozc and Gomez-Calderon, 1996; Barnet, 1983; Schinzel, 1982).
Here we shall briefly present the advantages offered by the polynomials Qrn(z,y) and
Rn(z,y).

Theorem 4. Polynomials Qn(z,y) with n=0,1,2,... can be factored as follows:

Qnle,1) = [[ (0 + M) (34)
k=1

k

where A, = 4 cos? 5 _7::1, k=1,2,...,n. Polynomials R,(z,y) with n=1,2,...
o .

can be factored as

n—1
Rn(xay) = H (y + :u'n,jx) (35)
3=1 '
where pin, j = 4sin? ;—W—, i=12,...,n—1.
n

Proof. We consider the real positive coefficients of the polynomials which are deter-
mined by the FMNT and SMNT. Using the results of (Trzaska, 1993a; 1993b) and the
polynomials Q,,(z,y) and R, (z,y) in normalized forms (10) and (11), we have (12)
and (13). Since ¢ = y/x, the zeros of Q,(z,y) are located in the complex plane on
the following lines:

y = —4z cos? Az, k=1,2,...,n (36)

2n+1 =
and the zeros of R,(z,y) are located on the lines

y:—4zsin2;—2=—pn,jx, i=4L2,...,n-1 (37)

Taking into account (33) and (34), we obtain the assertion of the theorem. u

It is worth noticing that the zeros of Q,(z,y) and R,(z,y) have a simple geo-
metrical interpretation as a set of n straight lines passing by the second and fourth
quadrants of the plane (z,y) and, as n — oo, the corresponding zeros cluster on the
lines y = —4z and y = 0, respectively, in the rectangular coordinate system.

Example 3. Now we consider the factorization and zeros of the polynomials

Qs(z,y) = 2° + 62%y + 5zy® + 4,  Ra(z,y) = 32% + 4oy + 42
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Applying Theorem 4, we can write

Qs(z,y)=y + A3,12)(y + A3,22)(y + A3 ,37)
(y + 3.2470z)(y + 1.5560z) (y + 0.1981z)

=% + 5292 + 6%y + 2°

Rs(z,y)=(y + ps,17)(y + p3,22)
=(y + 1z)(y + 3z) = y* + day + 32°

where, from (31), we have

2
g1 = 4 cos? g =3.2470, A3, = 4 cos? 7“ = 1.5560

As,3 = 4cos’ f’-;—r = 0.1981

2
3,1 :4Sin2% =1, 13,2 :4sin27:— =3

The geometrical interpretation of the location of the zeros on the plane (z,y) is shown
in Fig. 2 for polynomials Qs(z,y) and R3(z,y). ¢

4. Applications of 2-D Polynomials

"The polynomials Qn(z,y) and R,(z,y) can be effectively applied for studies of var-
ious discrete-continuous systems. Here we shall limit our attention to three examples
of such possibilities.

4.1. Ladder Networks

Let us consider now a uniform ladder network composed of N sections in which
longitudinal branch elements have impedance Y and the transversal branch elements
have impedance X . We take into account a general case in which both ¥ and X vary
continuously in the interval (—oo,+00). From the Kirchhoff laws and the voltage-
current descriptions of each branch in the network we get the following system of
difference equations:

XUnt1(X,Y) = X +Y)Up — XUy, a5
38
XLy (X,Y) = XI,, + U,

with n=0,1,..., N and the initial conditions

XU(X,Y)= (X +Y)Uy, XL =Uy, Ip=0 (39)
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lambda(3,k)*x,y3=mu(3,k)*x
b

y3=
L
o

Fig. 2. Location of zeros for polynomials Qs(z,y) (continuous
lines) and R3(z,y) (dashed lines).

Applying the standard procedure for solution of the difference equations, we obtain

X"Un(X,Y) = Qu(X,Y)Us, n=0,1,...,N

(40)
X", (X,Y) = Ry (X,Y)Us, n=20,1,...,N R
where Uy denotes the voltage at the output of the ladder network.
At the ladder input, we have the voltage-current relation
Un(X,Y) = Zin(X,Y)IN(X,Y) . (41)

where Zi;(X,Y) denotes the so-called input impedance of the ladder network.

Taking into account (39), it is easy to check that the input impedance is given
by :

QN(Xa Y)
Zin(X,)Y) = =————= 42
Now it is evident that the polynomials @,(X,Y) and R,(X,Y) describe uniquely
the distribution of both the voltage and current along the ladder network and that
they can be effectively used to design a network function for various changes of its
parameters.
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Example 4. It is necessary to design a one-port network described by the following
driving point impedance as a function of two independent variables X and Y:

_ @3(X)Y)

Zin(X’ Y) - m

To design the corresponding network, we develop the given function into a 2-D con-
tinuous fraction (Beauzamy et al., 1995; Gill, 1977; Kuchminskaya, 1995). Using
appropriate links between @3(X,Y) and R3(X,Y), we can write

_YRg(X,Y)+XQ2(X,Y) _ 1
Zin(X,Y)= (XY =Y + R (X.7)
XQZ(-X)Y)
1
X YRy (X,Y)+ X1 (X,Y
Ry(X,Y)
1
=Y+ " T
X 1
Y + i N 1
X 1
Y+—X

Thus the given driving point impedance is realized by a chain connection of three iden-
tical two-ports composed of a longitudinal branch with impedance Y and a transver-
sal branch with impedance X. ¢

4.2. Solution of a Heat-Transfer Problem

As the next application of the 2-D polynomials A, (z,y) and B,(z,y), we consider a
transient heat diffussion along a homogeneous thin metalic rod with non-zero initial
conditions. It is assumed that one end of the rod is supplied from an ideal heat source
and the other is connected with a massive thermal load characterized by a concen-
trated capacitance Cj. The system is described by the following partial differential
equation:

O°T(z,t) _ COT(z,1)
522 G ot

(43)

where G and C denote respectively the per-unit length conductance and capacitance
of the rod, z € (0,1) is the normalized space coordinate, and ¢ € (0,00) denotes the
time variable.

We shall determine the distribution of the temperature T'(G,C, z,t) along the
rod. For that purpose, we take into account the discretization of the space coordinate
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with step h = 1/N. Applying the Laplace transform with respect to t gives
Trht+1(G,C) = 2T, (G, C) + Th,—1(G, 0O)

hz
= % (G, 0) — —Gng(O), n=12,... (44)

with p = sh?, where s is the Laplace operator, T (G,C) = Ty and Ty, (0) = T}, are
given.

Employing the procedure presented in the previous subsection, we can write

G"T,(G,C) = Qn(G,C)To — Y Rni(G,C)CRT; (45)

=1
where at the load end we have
and Ty is to be determined.

From the boundary condition at the source end of the rod we obtain

N—-1
GNsM Ty = Qn(G,C)To — Y Rv—i(G,C)CR2T, (47)
=1

Thus the Laplace transform of the temperature at the load end of the rod is expressed
as follows:

_GNsI Ty + YN Ry_i(G, C)CR2T,

T
O(S) QN(G, O)
_GNTy + 07  sRy (G, C)CR2T, )
(CHN TIily s(s = si)
where
_ G 2 km _
sk——4mcos (2N+1)’ k=1,2,...,N (49)

Now it is easily seen that, since all sj’s are negative, the load end temperature at
the time limit ¢ — oo takes the value T. This analytical result agrees well with
the nature of the investigated process. The Laplace transform of the rod temperature
at the other points of the space coordinate discretization n =1,2,...,N — 1 can be
determined in a similar way. Then by the inverse Laplace transform we evaluate the
distribution of the instantaneous temperature values along the rod.

Applying the above procedure, we can also determine the thermal flux distribu-
tion at all other points along the rod. Moreover, using this approach we are able to
design a set of appropriate rod parameters for given conditions concerning the thermal
sources and the heat transfer from the excitation end to the load end of the rod. The
determination of the precise characteristics in this direction needs some additional
studies.



900 Z.W. Trzaska

4.3. Design of 2-D Digital Filters

To generate structures of 2-D digital filters, we consider a ratio of two-variable poly-
nomials Qn(z,y) and Rn(z,y):

Qn(z,y)
Knlz,y) = ——=, n=12,... 50
Introducing the following transformation of independent variables:
1
r=—-:, =q(s1,s 51
q(311 32) Yy Q( 1 2) ( )

where (s1,s2) € Cx C, we obtain

Ko(s1, 52) = L=t (51,52) + M) (52)

TR als1,82) (42 (51,82) + )

Now, using the double bilinear transformation (Bose, 1985)

1— 2t 1—25"t
s1 = Zl_l) S0 = 22—1 (53)
1+ 2 1+ 25
we conclude that the digital counterpart of K,(s1,52) becomes
_ Nzt 2%
Kn(z7t,z; ) =B—2 22 < (54)
i D(Zl 1122 1)

where N(27',2;") and D(z7",2;") represent polynomialsin 2! and 2y, and the
constant scalar parameter B is given by

B = K(s1, 82)

(55)

$1=82=1

The digitalized reactance function (54) placed in the series arm of an augmented
two-port structure (Bose, 1985) results in the following scattering matrix:

1 1- 1+ Hy(z7t 25t
S(21,22) = i —ﬁl -1 Al al 1—1 2—3) (56)
L+ BHy(z; 7,2y ) |1+ Ha(z) ", 257) (B—1)Ha(27",257")
where 8 = Ry /R, denotes the ratio of augmenting network resistances, and
-1 _—1y —1
Hd(zfl,zgl) — D(zl ) %9 ) N(lezz ) (57)

D(z;,257") + N(z1,257)
represents a 2-D delay element.

The block-diagram representing this two-port realization is shown in Fig. 3(a).
It is easy to demonstrate that by carefully choosing the parameters of the 2-D delay
element it is possible to obtain the resulting realizations as generally stable.

If the function K, (27", 2;") is placed in the shunt arm of the two-port, a similar
scattering matrix and realization result. This differs from the simulation shown in
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Fig. 3(a) by reversed positions of functional blocks at the midst of the structure. The
corresponding digitalized 2-D structure of a filter with a scalar input function
Qz(z,y) _ 2’ +3zy+y°

Kg(l',y) = Rg(:c,y) = 2$+y (58)

of the ladder network is shown in Fig. 3(b). It has been obtained by applying the
transformations

1 1+ 5159
y=s, ==
S

, s=— 172 59
b 81 + S92 ( )

to the resulting transfer function
1
T(s) =
(s) s 4283 + 482+ 25+ 2
of the corresponding augmented two-port network.
Thus using the double bilinear transformation (53) to the reactance function of the
ladder structure

(60)

s*+3s2+1
K = 61
2(5) 5(32 + 2) ( )
we get the corresponding delay unit
Ha(xh 25 = —2/327 25t — 6/527 %252 + 2/321 2y % — 22742t (62)

2—2/327 2 +6/527 %25 % 4+ 2/327 32573

The transfer function of the resulting digital realization is obtained by multiplying the
chain matrices describing the series and shunt arms of the ladder structures. Then
we obtain

—4_—4

—1,—1 —2,,-2 -3
-4z 2 + 6202252 — 427%257° + 272,

63
9 — 4zt + 1027225 % 4 272t (63)

T(zl 17 zy 1) =
The above examples show how the established polynomials Qn(z,y) and R,(z,y)
can be useful in solving various problems arising in practice.

5. Final Remarks and Conclusions

The paper presents a new formulation in the field of 2-D polynomials @y (z,y) and
R, (z,y). In particular, we have shown some links between the considered bivariate
polynomials and the so-called modified numerical triangles FMNT and SMNT. It has
been proved that these triangles are advantageous in practical computations because
their elements are determined by positive integers that can be easily calculated in a
recurrent manner. We have demonstrated that FMNT and SMNT can be effectively
used to determine a number of simple relations between the studied polynomials
themselves. Both the 2-D power polynomials Q,(z,y) and R,(z,y), n=20,1,2,...
and modified numerical triangles FMNT and SMNT can be determined by appropriate
powers of independent variables or parameters  and y constituting elements of real
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Fig. 3. Structure of a 2-D digital filter: (a) digitalized structure of
a two-port, (b) structure of the 2-D digital filter realizing a
second-order transfer function K(z,y).

or complex sets. We have also demonstrated that FMNT and SMNT can be effectively
used to determine with ease the n-th-order convergence of the corresponding 2-D
continued fraction.

This is a good place to say what the links between Q,(z,y) and R,(z,y) and
modified numerical triangles entail. First, they result in integer elements. Second,
the recurrences lead to straightforward procedures of computing these polynomials.
Further, all polynomials of successive degrees can be expressed in terms of suitable
matrix expressions which are relatively simple. Finally, it must be underlined that
there exists a possibility of extending the established results to the structures with
parameters determined with some tolerances. However, those problems are left for
future research.

It must be emphasized that the introduced polynomials are efficient in solving
many discrete-continuous problems appearing in practice. Illustrations of possible
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applications are also presented. Three suitable examples of systems taken from dif-
ferent fields of electrical engineering have been solved by applying the 2-D polynomi-
als Qn(z,y) and R,(z,y). It is worth noticing that the polynomials Q,(z,y) and
R,(z,y) have no common roots (except for Qo(z,y) and R;(z,y)). Thus, following
the well-known factorization approach for 2-D polynomials, we have demonstrated
the zero locations of the studied polynomials on the straight lines y = —\, xz and
Y = —lin,;T, respectively, on the plane (z,y).

Another area where interesting results may be obtained is that of the index of
concentration at a low degree of both polynomials Q,(z,y) and R,(z,y) in a general
case. Note that polynomials R,(z,y) have large coefficients at low degrees and are
characterized by high concentrations at low degrees. But all polynomials Q,(z,y)
have the leading coefficient equal to unity and it is quite likely (but not proven yet)
that their indices of concentration at low degrees are not as large as in the case of
Rn(z,y). The determination of the precise values of the estimates does not only
involve computational accuracy, but a better understanding of the problem itself.
However, this question is still open and needs additional studies.

In conclusion, the world of 2-D polynomials Q,(z,y) and R,(z,y) provides
many opportunities for new and exciting activities which may not be known.
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