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UNIT SLIDING MODE CONTROL IN INFINITE
DIMENSIONAL SYSTEMS

Yurt ORLOV*, Vapim 1. UTKIN**

In contrast to the conventional component-wise design of sliding mode control,
a new approach is developed for infinite-dimensional systems. The conventional
approach is not applicable since, generally speaking, the infinite-dimensional
control may not be represented in the component form as well as a sliding man-
ifold. The concept of “unit control”, previously introduced for finite-dimensional
systems, does not depend on the dimension of control and is generalized for
the dynamic processes governed by differential equations in Banach and Hilbert
spaces. The design methods for heat and mechanical distributed processes are
given.

1. Introduction

The conventional approach to sliding mode control design implies that each compo-
nent of a control undergoes discontinuities on its own surface and as a result the sliding
mode is enforced in their intersection referred to as a sliding manifold. However, this
component-wise design idea may prove to be not applicable for infinite-dimensional
systems since, generally speaking, neither the control nor the sliding manifold may
be represented in the component form.

The so-called unit control previously introduced for finite-dimensional systems
(Gutman, 1979; Gutman and Leitmann, 1976) is a discontinuous function of the
system state too, but it undergoes discontinuities on the sliding manifold only while
it is a continuous state function beyond the manifold. It is important that the unit
control may be determined for any space with norm, which is common for infinite-
dimensional dynamic processes governed by partial differential equations or, more
general, equations in Banach and Hilbert spaces.

The objective of the paper is to develop sliding mode control design methods
for infinite-dimensional systems based on the concept of “unit control”. The methods
are illustrated by designing controls for heat and mechanical distributed processes
operating under uncertainty conditions.
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2. Unit Control for Finite-Dimensional Systems

The Lyapunov method approach implies the design of a control based on a Lyapunov
function selected for a nominal (feedback or open loop) system. The objective is to
find a control such that the time-derivative of the Lyapunov function is negative on
the trajectories of the system with perturbations caused by uncertainties of a plant
operator and environment conditions.

The roots of the above approach may be found in (Gutman, 1979; Gutman and
Leitmann, 1976). The design idea may be explained for an affine system

% = f(z,t) + Bz, t)u + h(z,t) (1)

with state and control vectors z € R*, u € R™, state-dependent vectors f(z,t)
and h(z,t), and matrix B(z,t) € R**™. The vector h(z,t) represents the system
uncertainties and its influence on the control process should be rejected.

The equation

& = f(z,1) (2)

represents an open loop nominal system which is assumed to be asymptotically stable
with some known Lyapunov function:
dv
V(z) >0, Wo= — = {grad(V)} f <0 . (3)
dt h=0,u=0

The perturbation vector h(z,t) is assumed to satisfy the matching conditions
(Drazenovic, 1969)

h(z,t) € span (B)
or there exists a vector A(z,t) € R™ such that
h(z,t) = B(z,t)\(z,t) (4)
Here A(z,t) may be an unknown vector with known upper scalar estimate Aq(z,t)
[A(z, )| < Ao(z,1) (5)

The time derivative of V(z) on the trajectories of the perturbed system (1), (4) is of
the form

dv
W:—d?—Wo—F{gra,d } B(u+ M) < (6)
For the control depending on the upper estimate of the unknown disturbance
BT grad(V)
u=—p(, 1) =t (7)
| BT grad(V)]|

with a scalar function

p(z,t) > Ao(z,t)
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and
|B7{grad(V)}||” = [{ grad(v)} " B] [BT grad(v)]
the time derivative of the Lyapunov function V (z)
W = Wo - p(z,t)||{ grad(V) }|| + grad(V')" BA(z, )
< Wo - | BT { grad(V)}[o(z,) - Mo(a, )] <0

is negative. This means that the perturbed system with control (7) is asymptotically
stable, too.

~Two important features should be underlined for the system with control (7):

1. The control is a discontinuous function of the system state and undergoes dis-
continuities in the (n — m)-th dimensional manifold

s(z) = BT grad(V) =0 (8)

2. The disturbance h(z,t) is rejected due to the enforcing sliding mode in the
manifold s(z) = 0. Indeed, if the disturbance (4) is rejected, then control u is
equal to —A(z,t), which is not, generally speaking, the case for the control (7)
beyond the discontinuity manifold, s(z) = BT grad(V) # 0. This means that
the sliding mode occurs in the manifold s = 0 and the equivalent value of
control is equal to —A(z, ). '

Note that the norm of control (7) with the gain p(z,t) =1

BT grad(V)
||BT grad(V)”

is equal to 1 for any value of the state vector. This explains the term “unit control”
for (7).

Later on, the unit control has been used directly without a Lyapunov function
as the second stage of the conventional two-stage design procedure for sliding mode
control: selection of a sliding manifold s(z) = 0 and enforcing a sliding mode in this
manifold (Dorling and Zinober, 1986). Once the manifold s(z) = 0 has been selected
in compliance with some performance criterion, the control is designed in the form

(7):

s()
—p(;c t ”DT .'L‘)” (9)

with D = {8s/0z}B, D is assumed to be nonsingular. The equation of a motion
projection of the system (1) on the subspace s is of the form

s:{g—j}(HhHDU (10)
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The conditions for the trajectories to converge to the manifold s(z) = 0 and the
sliding mode to exist in this manifold may be derived based on the Lyapunov function

1
V= isTs >0 (11)
with the time derivative

V= sT{gi—}(f +h) — p(a:,t)HDTs(m)H

< |D7s()| [“D‘l{—g—z}(f +1)|| - p(:v,t)} (12)
For
ey [0 {22

the value of V is negative and therefore the state will reach the manifold s(z) =0
in a finite time interval for any initial conditions and then the sliding mode with the
desired dynamics will occur. The boundedness of the interval preceding the sliding
motion follows from the inequality resulting from (11), (12):

V < —yV1/2, = const > 0
with the solution

V() < (— g-t+ Vo)2, Vo = V(0)

Since the solution vanishes after some t; < 2+/Vy /7, the vector s vanishes so that
the sliding mode starts after a finite time interval.

It is interesting to note the principal difference in the motions preceding the
sliding mode in s(z) = 0 for the conventional component-wise control and unit control
design methods. For the conventional method the control undergoes discontinuities
if any of the vector components changes sign, while the unit control is a continuous
state function until the manifold s(z) = 0 is reached. Due to this difference the unit
control has proved to be an appropriate tool to design sliding mode control in infinite-
dimensional systems with control and function s(z) as elements of functional spaces
which are not (or even cannot be) represented in a component-wise form (Utkin and
Orlov, 1990).

3. Unit Control of Parabolic Systems
We start with an example of the dynamical system

T = u, z(0)=2"¢c H (13)
in a Hilbert space H forced by the unit control

T

“7 el
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which undergoes discontinuities in the trivial manifold z = 0. The example, although
extremely simple, motivates the theoretical investigation and illustrates that discon-
tinuous infinite-dimensional systems can be driven along discontinuity manifolds for
a finite time interval. In the infinite-dimensional case, the motion along the disconti-

nuity manifold will also be referred to as a sliding mode. Since ||z|| = v/(z, z) in the
Hilbert space, where (-,-) stands for the inner product, we have
1djjz|* _

s—q - = (@0,2(0) = =)

and, therefore, ||z(t)|| = (J|z°|| —¢) for ¢ < ||2°||. Thus in the infinite-dimensional
system (13) starting from the time moment ¢ = ||z°||, there appears a sliding mode
on the discontinuity manifold = = 0.

In the subsequent sections we extend the unit control approach to the infinite-
dimensional systems described by the differential equation

&t =-Az + f(z,t) + bu(z,t) + h(z,t),  z(0) =2z° (15)

in a reflexive Banach space X. From now on, z(t) and u(z,t) are abstract functions
with values in reflexive Banach spaces X and U, respectively; operator functions
f(z,t) and h(z,t) take their values in X; b€ L(U, X), where L(U, X) is the space
of linear continuous operators mapping U into X; A is a linear sectorial operator.
Recall (Henry, 1981) that a linear sectorial operator is defined as follows.

Definition 1. A linear closed operator A with dense domain D(A) is a linear
sectorial operator iff for some ¢ € (0,7/2), M > 1, and a € R! the sector

Sa,¢={A:(p§|arg()\—a)|§7r, A;éa}

is in the resolvent set p(A) = {A € C: ||(AM — A)™*|| < 0o} of the operator A (I is
the identity operator) and
(AT - A <M
A —ql

forall A€ S,

For the sectorial operator A; = A + X\oI, Ag > a, whose spectrum lies in the
right half-plane, we introduce fractional degrees to be used subsequently.

Definition 2. (Henry, 1981) The operator A§ is the identity operator for ¢ = 0
1 )

: oo
A5 =05 [N (AT + 4))71dX for e € (=1,0)
T Jo
Af is the inverse operator A;' for & = —1; AS is the inverse operator (A75)7t of

AT® for € € (0,1).

It should be noted that the above definition ensures the group property AS1tez =
AT AT? for e1,e2,61 + €3 € [—1,1], which enables us to extend the definition for all
e €RL. ’
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The equation

§=—Ay+ f(y,1) (16)

represents an open-loop nominal system which is assumed to be asymptotically stable
with an a-priori-known Lyapunov functional:

VW) >0, Wolt) =S = {eadV()} [~ Ay+ 0] <0 (7)

for all y € X, t > 0. The function f(z,t) is assumed to locally satisfy the Hélder
condition in t and the Lipschitz condition in z € X® with some ¢ € [0,1), where
X¢ is the Banach space D(A§) with the graph norm ||z||. = [|4fz]], i.e.

|£(@.t) = £(25)]| < Loz, 2,5,8) (|2 = 2], + [t — s|")

for some continuous function Lg(z,z,%,s) > 0 and constant h > 0, and all s,¢ >
0, z,y € X°. We denote by Lip(Lo,¢,h) the class of such functions f(z,t).

The operator function h(z,t) represents the system uncertainties and their in-
fluence on the control process should be rejected. This function is assumed to be of
the same class Lip(Lo, ¢, h) and satisfy the matching condition

W, t) =bd(z,t),  (z,t) € Lip(Lo,€, h) (18)

where the uncertain function ¢(z,t) has an a-priori-known upper scalar estimate
N(z,t), i.e.

¢z, 1)|| < N(z, 1), z€eX, t>0 (19)

The above assumptions guarantee the unforced initial-value problem (15) with
u(z,t) = 0 to have a unique strong solution z(t) for all £° € X° which is locally
defined as follows (see e.g. Henry, 1981).

Definition 3. A continuous D(A)-valued function z(t) defined on some interval
t € [0,T) is said to be the strong solution to the unforced (u = 0) system (15) iff
z(0) = z°, =z(t) is differentiable in the state space for ¢ € (0,7) and satisfies the
differential equation (15) under w =0 for all ¢t € (0,T").

We remark that the development here is confined to the investigation of the strong
solution to the initial-value problem, although all the results can be generalized to
the case when the solution to the problem is defined in a mild sense as a solution
to the corresponding integral equation. Moreover, according to (Krasnoselskii et al.,
1976), such a relaxation of the solution concept allows us to extend the class of the
admissible functions f(z,t) and h(z,t) by adding functions integrable in ¢.

In order to apply the above-mentioned Lyapunov redesign method to infinite-
dimensional systems, let us calculate the time derivative of the Lyapunov functional
V(z) along the trajectories of the perturbed system (15), (18):

dv

Wia,t) = = = Wol,t) + <{grad V@), blu(z,t) + ¢(m,t)]>

Wo(z,t) + <b*{ grad V(z)}T, [u(z,t) + ¢(z, t)]> (20)
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where b* is the dual operator and (-, ) is the dual product. Now, in accordance with
the Hahn-Banach theorem (Dunford and Schwartz, 1958), let us fix a unit control
a(z,t) € U such that

la(z,t)|| =1 for all z € X : b*{ grad V(z) } £0

<b*{ gradV(m)}T,a(m,t)> = [|b*{ grad V(z)} " (21)

To design a robust control law stabilizing the perturbed system (15), it remains to
construct the control signal

u(z,t) = —N(z,t)a(z,t) (22)

which, due to (17) and (19), ensures the time derivative (20) of the Lyapunov func-
tional V(z) to be negative for all z # 0, ¢ > 0. Hence (Henry, 1981) the perturbed
system (15) forced by the control signal (22) is asymptotically stable.

Thus, the unit control signal (21) which undergoes discontinuities on the manifold
b*{grad V(z)}* = 0 allows us to synthesize the stabilizing control law (22) robust with
respect to the external disturbances. It should be noted, however, that the proposed
control algorithm cannot be used directly because it implies the unit control a(z, )
to be known explicitly. However, if X and U are Hilbert spaces, the above synthesis
procedure determines the feedback (22) in the explicit form. Indeed, if this is the
case, the unit control is designed as follows:

b* gradV(z )” (23)

@) = T rad Vi)

Summarizing, the following theorem has been proven.

Theorem 1. The uncertain infinite-dimensional system (15) is asymptotically stabi-
lizable by the discontinuous controller (21), (22) which imposes the robustness property
with respect to the matching external disturbances (18) on the closed loop system. If
X and U are Hilbert spaces, then the unit control (21) is designed in the explicit
form (23).

4. Unit Control of Heat Processes

To exemplify our theoretical results, let us consider a distributed parameter system
described by the parabolic partial differential equation

D5 =2 <z)%§] ~0@)Q tule, )+ f(z,Y), 0<a<l, ¢>0
9Q 5@

Q(z,0) = Qo(z), 0<z<1
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Equation (24) describes the heat propagation in a one-dimensional rod insu-
lated at both ends, where Q(z,t) is the value of the temperature field at = € [0,1]
for t > 0, f(z,t) denotes an external disturbance, p(z) > po > 0 is a heat
capacity coefficient, k(z) > ko > 0 stands for a heat conductivity coefficient,
g(z) > 0 is a heat exchange coefficient, Qo(z) is an initial state. All the functions
o(z), q(z), k(z), Qo(z), f(x,t) are assumed to be smooth.

For the sake of simplicity, the development here is confined to the processes with
one-dimensional spatial variable, but the extension to the case of several spatial vari-
ables is straightforward. We will focus our attention on the controller synthesis under
the assumption that the structure of the plant is known and only the plant parame-
ters and external disturbances are unknown. The range of the external disturbance
f(z,t) is assumed to be bounded:

1
GO 200y = /0 fe,t)dr < Ly, Ly = const

Distributed sensing and actuation are also assumed to be available.
It is required to synthesize a control signal w(z,t) to guarantee the quadratic
convergence
1
lim [ [Q(z,1)]°dz=0 (25)

t—o0 0

of the plant state.

The idea of the control synthesis is based on deliberate introduction of a sliding
motion along the manifold

Q=0 (26)
In order to synthesize this type of motion, we propose the following control algorithm:
w(@t) = M (27)

190 .01y

where M = My + Lg, My > 0. The norm of the control signal (27) with M =1 is
equal to 1 for each value of the state vector beyond the discontinuity manifold (26)
and, therefore, it is a unit control. The unit control law (27) turns out to solve the
stabilization problem (25) for a finite time moment.

Theorem 2. Consider the heat process (24) with the assumptions above. Then
the unit control law (27) solves the stabilization problem in a finite time T <

pOMfIHQOHLg(o,l), i.e.
”Q(‘vt)“Lz(o,n =0, t>T (28)
where

ax p(z)

po > m
0<z<1

is an upper estimate of the heat capacity coefficient.
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Proof. According to (Friedman, 1969), for all initial conditions which are beyond the
discontinuity manifold (26) there exists a unique local solution of the parabolic system

(24). Differentiating V(¢ (1/2) fo (z,t)]> dz with respect to t along the
trajectories of (24), ernploymg 1ntegrat10n by parts, and utilizing the control law (27)
yield the inequality

V() = /OIPQQd$~/IQ{(kQ) —qAQ+u+f}dz
/ dm—f k(Q dx+/ o{ - “Q“L2+f}

” 2d.’E< M1V2p0

which gives rise to (28). In order to reproduce this conclusion, one should note that the
solution V'(t) to the latter inequality is majored for all ¢ > 0 by the solution to the

l/\

differential equation Vp(t) = —Mi1/205 Vo(t) initialized with the same condition
Vo(0) = V(0). Since Vy(t) = 0 for all ¢t > T, V(t) vanishes after the finite time
moment T', which completes the proof. =

Thus, starting with a finite time instant, the discontinuous control law (27) en-
forces the desired system motion in the discontinuity manifold (26) regardless of ex-
ternal disturbances and parameter variations, and hence it imposes useful robustness
properties of the closed-loop system.

The next two sections illustrate a conventional way of sliding mode control design
developed for finite-dimensional systems and consisting of two stages: selection of
a discontinuity manifold with the desired dynamics of the sliding mode and then
selection of a discontinuous control enforcing the sliding motion in this manifold.

5. Unit Control of Coupled Thermal Fields

In this section, we continue to study stabilization of heat processes and consider the
control problem for thermal fields of the plants governed by the partial differential
equation

%? ?;?+DQ+Fu(xt) O<z<l, t>0
ZQ 0,8) = aQ( £) =0, £>0 (29)
Q(z,0) = Qo(x), 0<z<1

where Q(z,t) € R*, u(z,t) € R™ for all z € R',t > 0. The constant matrices D
and F' of appropriate dimensions are assumed to be controllable. From a physical
viewpoint, the problem consists in heating n similar plants by using m distributed
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sources. The matrix D characterizes the heat exchange with the environment and
between the plants.

Let the control signal drive the system (29) to the manifold
S(Q)=cQ =c1Q1+c2Q2=0 (30)
where
QL ER™™, Q2 eR™, detco #0, det(cF)#0
Then the state equation can be represented in terms of @)y and S as follows:

6Q) _ 0°Q,

8t = a a5 + D11Q1 +D125 + Flu(a: t) (31)
oS 028
% 9a2 4+ D21Q1 + DosS + cFu(a: t) (32)

Due to the equivalent control method, the system motion on the manifold (30) is
governed by the equation

Q1 _ Q1
ot~ 9z
which is obtained by substitution of the equivalent control value

Ueq = —(cF) " Dy1Q1

resulted from (31), (32) with S(z,t) identically equal to zero. The applicability of
the equivalent control method to parabolic systems is verified in (Orlov, 1997).

+ RQl, R =Dy - Fi(cF)™! (33)

Following the aforementioned design procedure, in the first step one needs to
choose a discontinuity manifold (30) to ensure the prescribed properties of the motion
in the sliding mode. It is well-known that for the finite-dimensional system

Q=DQ+ Fu

the equation of the sliding mode along the manifold § = ¢Q = 0 takes the form @, =
RQ, by virtue of the equivalent control technique. A matrix ¢ for the controllable
system may be chosen such that det(cF) # 0 and the eigenvalues of the matrix R
take up the desired values with negative real parts Re \{R} < 0 (see (Utkin, 1992)
for details). Based on this fact, the required rates of Lj-convergence

tll,nolo ”Ql('=t)||L2(o,1) =0 (34)
of the state of the distributed parameter system (31) may also be imposed. In order

to demonstrate the desired rates of convergence (34), let us introduce the Lyapunov
functional

= / 1 QT (z, )W Q1 (z,t) dz (35)
0
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where W is the positive definite solution of the Lyapunov equation RTW+WR = —1I,
I being the identity matrix of an appropriate dimension, and find the time derivative
of the functional along the trajectories of (31):

1 1

Jo = 9Qu\T . (9Q1 / o

V(t) _—2/0 (’5?) W( = )dm [ QlQid (36)
Denoting by Amax the maximal eigenvalue of the matrix W and bearing in mind
that QTWQ1 < Amax@QT Q1, we obtain

V() < =2naV (®) (37)

Since W = [;° exp{RTt} exp{Rt} dt in accordance with (Kwakernaak and Sivan,
1972), by choosing the eigenvalues of R with negative real parts sufficiently large in
magnitude the value of Ay,x may be made as small as desired. Thus an appropriate
choice of ¢ ensures that V(t) — 0 as t — oo, as well as (34) at desired rates.

In the second step, a discontinuous control is designed to drive the system state
to the manifold S = 0. We demonstrate that the unit control

(Q)Sl(Q)
u(Q) = 38
@ ”Sl ||L201) (59)
where
51(Q) = (F)7I8(Q),  M(Q) = Mo[|Q( 1) 1,01y
Mo = ||(cF)'eD|| + My, M1 >0 (39)

guarantees that in the closed-loop system (29), (38) starting from a finite time mo-
ment there appears a sliding motion on the manifold S;(Q) = S(Q) = 0. Indeed,
differentiating the Lyapunov functional

1
no = [ ST )5 (Q(. ) do

along the trajectories (29), employing integration by parts, applying boundary con-
ditions and utilizing the control law (38), (39) yield

8251 —1
51 Sy de = S1 ) +(cF) " eDQ +u| dz
_/1 Qfl 851 dz
o \ Oz Oz

(@)51(Q) . B
/ g {Ilsl ZIon)] P cDQ} de < -MiVWA(H)  (40)

The solution to the latter inequality has been shown to vanish after the finite time
T < V1(0)/M,. Therefore, starting from T, the unit control signal (38) enforces the

1.
§V1 (t)
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system motion in the sliding mode along the manifold (30) and T'— 0 as M — oo.
Thus the unit control approach leads to a decoupling system design and ensures the
desired rate of transient decay.

Summarizing , the following result has been shown.

Theorem 3. Consider the coupled thermal fields (29) with the assumptions above.
Then the unit control law (38) drives the system (29) to the discontinuity mani-
fold (30) in the finite time T < V1(0)/M1 and, starting from T, the sliding motion
of the controlled system is governed by the sliding mode equation (88) with the desired
rate of transient decay.

6. Unit Control of Distributed Oscillators

In this section, we consider the distributed parameter system described by the follow-
ing hyperbolic partial differential equation:

( 2 o
@22 = 2@ 3] - hiz)e - a(z) %)
+o(z,t) + g9(z,1), O<z<l, t>0
(41)
0(0,) = ©(1,) = 0, >0
(0,0 =00e),  D@0)=0:(@),  0<z<1

Equation (41) describes the oscillations of a string with fixed ends where the state
vector consists of the location ©(z,t) and the velocity ©(z,t) of the string at
z € [0,1] and t > 0, p(z) > po > 0 is a density coefficient, s(z) > Ko > 0
stands for an elasticity coefficient, h(z) > 0 denotes a restoring stiffness coeflicient,
a(z) > 0 is a dissipation coefficient, Oo(x) and O, (x) are respectively an initial
state and an initial velocity, g(z,t) is an external disturbance. All the functions
p(z), h(z), alz), K(z), Oo(z), O1(z), g(z,t) are assumed to be smooth.

For simplicity, we restrict our investigation to the processes with one-dimensional
spatial variable, but the extension to the case of several spatial variables is straightfor-
ward. Tt is assumed that the structure of the plant is known and only plant parameters
and external disturbances are unknown. The range of the external disturbance g(z,t)
is assumed to be bounded:

1
Ilg("t)lng(o,l) - /0 g*(z,t)dz < Ly, Ly = const

Distributed sensing and actuation are also assumed to be available.

It is required to synthesize the control signal v(z,t) to guarantee the quadratic
convergence

t—00 oz

lim 01 {[@(m,t)]z N {3@5&)}2 N [Ge(w,t)]z} o =0 42)
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of the system state and its time and spatial derivatives.

Letting the discontinuity manifold
5(0,0) = s0(z,t) + O(z, t) (43)
where

$>0, L{t)=L +Ly(0,0), L >0

L5(0,0) = L, + N,|0] + N,|0| (44)
N > OI-_é_l:na%(l lh(x)|, Ny > Orélf%cl Isp(x) - a(:c)|
we shall demonstrate that the unit control algorithm

P
151 2.0,1)

solves the stabilization problem (42).

v(0,0,t) = —L(t (45)

Theorem 4. Consider the distributed mechanical oscillator (41} with the assumptions
above. Then the relation (42) holds with the unit control law (43)-(45).

Proof. According to (Friedman, 1969), for all initial conditions which are beyond
the discontinuity manifold (43), there exists a unique local solution of the hyperbolic
system (41). Using the Lyapunov functional

V() = % /0 1 {p(z) [S(z,1)]? + k(=) [&é‘;ﬁ]?} dz (46)

one can prove that the solution to (41) is well-posed for all 7' > 0 and asymptoti-
cally stable in the Lj-sense (42). Indeed, differentiating V' with respect to ¢ along
the trajectories of (41), employing integration by parts and utilizing the control law
(43)—(45) yield

V() = —/01 {sn[%%r + sh[O]? + (d—ps)[agt@r} do
-/ s Bl ) o

< —/Ols;s[%—(j—]zdm—Ln//olSzdx<0 i VA0 (47)

which implies the uniform boundedness V' (t) < V(0) < oo of the Lyapunov functional
for all ¢ > 0, and consequently, the uniform Ly-boundedness of the solutions of (41)
and their time and spatial derivatives, as well as their asymptotic stability (42). This
completes the proof. ]
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It is easy to see that the proposed control law utilizes the unit control signal
L(#)S/||S 1,01 similar to that for heat processes, and guarantees the desired in-
equality (47) for the time derivative of the Lyapunov functional, regardless of external
disturbances and parameter variations. Therefore, the control algorithm (45) imposes
useful robustness properties on the closed-loop system.

It is of interest to note the principal difference in the system dynamics of heat
processes and distributed oscillators enforced by the unit control signals. For the
distributed oscillator (41) the discontinuous control signal (45) drives the system to
the discontinuity manifold (43) asymptotically and guarantees the asymptotic stabil-
ity (42) only, while for the heat process (24) the unit control signal (27) drives the
system to the discontinuity manifold (26) for a finite time moment and solves the
stabilization problem (25) for a finite time moment as well.
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