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A ROBUST TRACKING CONTROL SCHEME FOR
A CLASS OF NONLINEAR SYSTEMS
WITH FUZZY NOMINAL MODEL

FEI MEI*, MAN ZHIHONG*
XINGHUO YU, THONG NGUYEN*

A novel robust tracking control scheme is proposed for a class of nonlinear sys-
tems. It is shown that a nonlinear system is first approximated by a fuzzy
nominal model by aggregating a set of linearized local subsystems and then a
conventional linear feedback controller is designed to stabilise the nominal sys-
tem. In order to obtain good tracking performance for the controlled nonlinear
system, a variable structure compensator is introduced to eliminate the effects
of the approximation error and uncertainties between the fuzzy nominal model
and the nonlinear system. A simulation example using a one-link rigid robotic
manipulator is given in support of the proposed control scheme.

1. Introduction

In the design of modern and classical control systems, the first step is to establish a
suitable mathematical model to describe the behaviour of the controlled plant. How-
ever, in practical situations, such a requirement is not feasible because the controlled
systems have high nonlinearities and uncertain dynamics, and simple linear or non-
linear differential equations cannot sufficiently represent the corresponding practical
systems, and therefore, the designed controller based on such a model cannot guaran-
tee the good performance such as stability and robustness. During the last few years,
fuzzy logic control has been suggested as an alternative way to conventional control
techniques for complex nonlinear systems due to the fact that fuzzy logic combines
human heuristic reasoning and expert experience to approximate a certain desired
behaviour function (see e.g. Takagi and Sugeno, 1985; Cao et al., 1996; Wang et al.,
1996). However, the asymptotic error convergence and stability of the closed loop
system may not be obtained due to the approximation error and uncertainties of the
fuzzy model. '

This paper presents a novel robust tracking control methodology for a class of
nonlinear systems by combining the merits of fuzzy logic and variable structure con-
trol. Here, fuzzy logic is used to formulate a nominal system model by aggregating a
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set of linearized local subsystems which identify the nonlinear system approximately,
and a fuzzy nominal feedback controller is designed to guarantee that the output
tracking error of the nominal system with respect to a desired trajectory converges
to zero. Then, a variable structure compensator is designed to eliminate the effects
of the approximation error and uncertainties between the nonlinear system and fuzzy
nominal model.

The organisation of the rest of the paper is as follows. In Section 2, the fuzzy
nominal model for a class of nonlinear systems is introduced. In Section 3, a robust
tracking control scheme is presented, and the stability and robustness of the closed
loop system are discussed in detail. In Section 4, a simulation example using a one-
link rigid robotic manipulator is given in support of the proposed control scheme.
Section 5 gives concluding remarks.

2. Fuzzy Nominal Model

2.1. Linearization of the System
Consider the following single-input and single-output dynamic system:
cM (1) = f(x) + b(z)u (1)

where the scalar z is the system output, the scalar u stands for the control input,
z=[z,%,...,2" V)T = [z;,2s,...,7,]7 denotes the state vector, f(z) is a linear
or nonlinear function, and b(z) is the (possibly state dependent) control gain. The
control objective is to force the plant state vector = = [z, 4, ..., m("_l)]T to follow a
specified desired trajectory, x4 = [z4,Zq4,- - - ,x&”_l)]. Assuming that f(x) and b(x)
are differentiable with respect to x, we can linearize (1) at some point (xz;,u;) by
Taylor’s method such that

=™ =g ¢ (i?i + ui—‘zb— ) Z + bzt
oz lz; oz Iz; (2)
1:5") = f(z;) + b(z;)u;
where
T =x-x;, U=1Uu—1u;

and u; can be obtained from the following equilibrium condition (Palm and Rehfusess,
1997)

i!i =0
From (2), we have the following local linearized error dynamic equation:

& = A;% + Bya (3)
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where
0 1 0
0
0 0 1 0 '
A= 1 ot o 1|, Bi=| (4)
0
o 0 o0 ... 1
b(x;)
ap ai ... e Qp—1
_of db _of ab
ao—amzi+u'—53§zi’ al—gwi_l_ulﬁmi,‘“

Remark 1. Equation (3) is in a controllable form, and hence the feedback control
law

it =—-K;T (5)

can be designed by using conventional linear system theory (Ogata, 1990) so that the
eigenvalues of (A; — B;K;) are the specified ones. The feedback gain K; can be
obtained by using Ackerman’s formula (Ogata, 1990)

K;=1[0,...,0,1]Q; 'a(A;) (6)
where

als) =s"+ans" M+ tars+t o
is a desired stable polynomial, and

Q;=[B; A;B; AIB; --- A}"'Bj]

2.2. Fuzzy Nominal Model

Many physical systems are very complex so that it is very difficult to obtain their
rigorous mathematical models. In recent years, fuzzy logic has been applied to the
field of system modelling and control engineering (Takagi and Sugeno, 1985; Wang and
Mendel, 1992; Feng et al., 1997) by means of combining human heuristic reasoning
and expert experience. In this paper, a fuzzy nominal model is established by the
following fuzzy inference rules which include local linearized subsystems and feedback
controllers:

Ri: IF gz, is F! AND ... AND =z, is F}
THEN =A%+ B;u, o=-K& i=12,...,1 (7)
where R! denotes the i-th fuzzy inference rule, ! stands for the number of inference

rules, Fi(j = 1,2,...,n) are fuzzy sets, & = & — x4 is the tracking error of the
system with the desired trajectory x4 and @ = u — uq.
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Let p;(z) be the normalized membership function of the inferred fuzzy set F*
where

Fi=(\F} (8)
j=1
and
!
> pi@) =1 ©)
=1

By using a standard fuzzy inference method, i.e. a singleton fuzzifier, product fuzzy
inference and centre-average defuzzifier, the following global tracking error fuzzy nom-
inal model for the controlled nonlinear system can be obtained:

Z = AoZ + Byl (10)
i=-K# (11)
where
! ! !
Ap = ZMiAi, By = Z ui By, K = ZNiKi (12)
i=1 =1 =1

Remark 2. In this paper, we assume that the fuzzy nominal model is globally
controllable, i.e. (Ag, By) is a controllable pair.

The nonlinear system (1) can then be expressed as the following error dynamic
equation:

= (Ao+AA)Z + (Bo+AB)i+ Af (13)

where AA, AB represent the approximation error and system uncertainties, and
AF denotes all the residual errors which cannot be covered by AA and A B, including
the higher order terms in Taylor’s expansions and possibly other disturbances.

For a further analysis, the following assumption is used in what follows (Man
and Palaniswami, 1995).

Assumption 1. There exist a matrix H € R'*® and a scalar E such that
AA = BgH
AB = ByE
0 < ||H|| < Hp (14)
0 <[lE]l < Eo

0<[IAf]l < fo
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Remark 3. The above assumption is known as uncertain matching conditions
and have been used by several researchers (Man and Palaniswami, 1995; Shoureshi
et al., 1990; Tarn et al., 1984). The upper bounds of the system uncertainties, namely
Hy,Ep and fy, may be obtained by means of adaptive techniques in the Lyapunov
sense (Man and Palaniswami, 1995).

The objective of this paper is to develop a robust tracking control scheme which
ensures that the output tracking error & converges asymptotically to zero.

3. Robust Tracking Control Scheme

The controller design of the nonlinear system is divided into two parts. First, a nom-
inal feedback controller, as shown in (11), is designed based on the fuzzy nominal
system model, which guarantees that the tracking error & of the nominal system
converges asymptotically to zero. Second, a variable structure compensator is de-
signed based on an uncertain bound to eliminate the effects of the approximation
error and uncertain dynamics so that the tracking error & of the closed loop system
with uncertain dynamics converges asymptotically to zero.

The nominal feedback controller for the fuzzy nominal model is derived directly
from (11), i.e.

up = —Ki +ugq (15)
where
l .
Ug = Zuiui (16)
=1

Next, we consider the variable structure compensator design for the uncertain sys-
tem (13). Let the control input in (1) have the following form:

U =1ug + Uy (17)

where ug is the nominal feedback control given by (15), and u; is a compensator to
deal with the effects of system uncertainties.

Using (14) and (17) in (13), we can write down the error dynamics of the closed
loop system with uncertainties as

% = (Ag — BoK)Z + Bo(H — EK)& + Bo(1 + E)u; + Af (18)

In order to use variable structure theory to design the compensator u;, we define the
following switching hyperplane variable:

S=C# (19)

where C = [e1,c¢a,...,¢p] is chosen such that the zeros of the polynomial C# = 0
are in the left half-plane and the matrix C' By is non-singular (Man and Palaniswami,
1995).
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For the design of the compensator u; and the stability analysis of the tracking
error dynamics (18), we give the following theorem.

Theorem 1. If the nominal feedback control ug is given by (15) and the compensator
uy is designed such that

(8CBy) 1 _ ~ . ,
u =4 ISCBol? [ SC(Ao — BoK)& +p] if S#0 )
0 if $=0
where
P=7 _lEO [_ [|SC (Ao — BoK)&||
+ —ISCBol(fHollz| + BollK3) - 1] ICI o] 1)

then the tracking error & converges asymptotically to zero as time tends to infinity.
Proof. Defining the Lyapunov function
1
v= 552 (22)
Differentiating v with respect to time, we get
v = SS
= SC|[(Ao — BoK)Z + Bo(H — EK)& + Bo(1 + E)uy + Af]

— ESC(Ao — BoK)Z + SCBo(H — EK)% + SCAf + (1 — E)p

< 1B |SC(Ao - BoK)&| + ISCBoll (I1HI| 13 + | Bl | K )
+ISHICHIAS + +—5 [ - [SC(40 - BaKOa]
~ ISCBo| (Holl] + EollK2l) - S]] [CIlfo

< - (1- |BI)[SC(40 - BaK)E| - ISIHIC (fo - IAF1)

~ 1SCBoll[(Ho — | HI) ||l + (Bo — | EI)I K[| <0 for S#£0 (23)

Expression (23) constitutes the sufficient condition for the switching hyperplane vari-
able S to reach the sliding mode

S=Ci=0 (24)

On the sliding mode, the tracking error £ converges asymptotically to zero.
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Remark 4. The robustness property of the proposed control scheme is obvious.
First, the effects of the approximation error and uncertain dynamics can be elimi-
nated by using the variable structure compensator. Second, the closed loop system
is completely insensitive to uncertainties after the system error dynamics reaches the
sliding mode.

Remark 5. To eliminate the chattering in the control input, the following boundary
layer compensator (Man and Palaniswami, 1995) can be used in lieu of (20):

SCB
“(S—C;Jﬂ)f [ - S5C(Aq — BoK)Z + p] if ||SCBo| > 6
0

u; = (25)
(Egsf—o)[—sc(Ao —BDK):E+p] if ||SCBo| <6
2 ‘
where 6; > 0.

The above boundary layer compensator can force the switching plane variable to
move towards the sliding mode surface and then the control signal can be smoothed
inside a boundary layer. This will achieve an optimal trade-off between the control
bandwidth and tracking precision. Therefore the chattering and sensitivity of the
controller to system uncertainties can be eliminated (Man and Palaniswami, 1995).

4. Simulation Example

In order to illustrate the proposed robust tracking control scheme, a simulation ex-
ample is carried out for a one-link robotic manipulator. The dynamic equation of the
manipulator is given by

ml?0 + dO + mgl cos(®) = u (26)

where m = 1kg is the payload, [ = 1m is the length of the link, g = 9.81m/s?
denotes the gravitational constant, d = 1kgm?/s stands for the damping factor, u
is the control variable (kgm?/s?).

Assuming that we are interested in the dynamics of the system in the range
[-90°,90°], the fuzzy nominal model can be obtained by linearizing the nonlinear
equation (26) at the points 0°, +45° +90°. The following fuzzy nominal model has
been obtained:

R': IF x7 is about 0°
THEN % = A% + B1@

R?: IF Ty, is about — 45°
THEN % = A,% + B,

R IF z1 is about + 45°
THEN & = A3 + Bsi
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R*: IF  z; is about — 90°
THEN & = A4& + Byt
RS IF xy is about + 90°

THEN % = As& + Bsil
where

=0, z3=0, % = [#1, %], u; = mglcos(©;)

[0 1 [0 ]
A= B ==
1 0 _1i|7 1 1
4, = 0 1 ’ B, = 0
| —6.94 -1 1]
- , L
A3: 0 ) B3: 0
6.94 -1 L1
[0 1 [0 ]
A: B =
! —9.81 —1}’ 4 1
4= 0 1 ’ By = 0
981 -1 |1

The fuzzy sets for x; are chosen as shown in Fig. 1.
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Fig. 1. Fuzzy sets of state z;.
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The desired closed loop poles for each local model are chosen as [—4, —3]. Thus
the following feedback control gains are found by using the pole placement method:

K,=[126], Ky=[516], K3;=[1896], Ks=[22 6], K;5=][218 6]

The control objective in this simulation is to force the manipulator to follow the
desired trajectory which is generated by the following reference model:

HEEEAIE

where u; is chosen as in Fig. 2. The initial values of & and x4 are selected as

+ Us (27)

1

[£1(0),21(0)] = [17.2°,0], [4(0),24(0)] = [0,0]
and the sliding mode is prescribed as
S =10,1] [ . ]
Iy

Moreover, the uncertain bounds are selected as

E() = 01, H() = 2, fg =1

100 T T T T T T T T T

©
o
T
1

[ee]
o)
T
L

~J
(=]
T
1

[=2]
o
T
1

The input signal of the reference model
[\~ w > ot
2 <
L Il ] L

—
[
T
1

(o]

(o)
—
(]
w
I
~
oo
[Y=]

5 6 10
Time(s)

Fig. 2. Input signal us of the reference model.
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Figure 3 shows the output tracking using only a fuzzy nominal feedback con-
troller. It can be seen that due to large system uncertainties, the output cannot track
the desired trajectory closely. Figure 4 shows the output tracking and control in-
put using a fuzzy nominal feedback controller with a variable structure compensator.
Clearly, the effects of the system uncertainties are eliminated and a good tracking
performance is achieved. But there exists chattering in the control input. Figure 5
reveals a good performance of the closed loop system in which a fuzzy nominal feed-
back controller with a boundary layer compensator is used to eliminate the control
chattering.

5. Conclusions

A robust tracking control scheme has been proposed for a class of nonlinear systems.
The main contribution of this scheme is that a nominal system model for a nonlin-
ear system is established by fuzzy synthesis of a set of linearized local subsystems,
where the conventional linear feedback control technique is used to design a feedback
controller for the fuzzy nominal system. A variable structure compensator is then
designed to eliminate the effects of the approximation error and system uncertainties.
Strong robustness with respect to large system uncertainties and asymptotic conver-
gence of the output tracking error are obtained. A simulation example has also been
given to illustrate the effectiveness of the proposed control scheme.

References

Cao S.G., Rees N.W. and Feng G. (1996): Stability analysis and design for a class of
continuous-time fuzzy control systems. — Int. J. Control, Vol.64, No.6, pp.1069-1087.

Feng G., Cao S.G., Rees N.W. and Chak C.K. (1997): Design of fuzzy control systems with
guaranteed stability. — Fuzzy Sets and Syst., Vol.85, No.1, pp.1-10.

Man Z.H. and Palaniswami M. (1995): A robust tracking control scheme for sigid robotic
manipulators with uncertainty dynamics. — Computers Elect. Eng., Vol.21, No.3,
pp-211-220.

" Ogata K. (1990): Modern Control Engineering. — Englewood Cliffs, New Jersey: Prentice-
Hall.

Palm R. and Rehfuess U. (1997): Fuzzy controllers as gain scheduling approzimators. —
Fuzzy Sets and Syst., Vol.85, No.2, pp.233-246.

Shoureshi R., Momot M.E. and Roesler M.D. (1990): Robust control for manipulators with
uncertainties. — Automatica, Vol.26, No.2, pp.353-359.

Takagi T. and Sugeno M. (1985): Puzzy identification of systems and its application to
modelling and control. — IEEE Trans. Syst. Man Cybern., Vol.15, No.1, pp.116-132.



A robust tracking control scheme for a class of nonlinear systems . .. 155

Reference vs actual
T

position of the link

'y
(=4}

geg. )p
o (=)

w
o

osition in

(po:
(%)

]
)] =

The output trackin
S

25 T T T T T T T T T

= = ]
(=) o ot o]

Nominal control input

o

-10 ) . . . .

(b)

Fig. 3. Output tracking of the link using a fuzzy nominal feedback controller (a),
where the solid line represents the desired trajectory, and nominal feedback
control input (b).



156 F. Mei, M. Zhihong, X. Yu and T. Nguyen
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