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EVALUATION OF DISCRETE-TIME VSC
ON AN INVERTED PENDULUM APPARATUS
WITH ADDITIONAL DYNAMICS

Masaakli HARA*, KaTsuHisa FURUTA*
YaoponNGg PAN*, Tasuku HOSHINO*

Discrete-time Variable Structure Control (VSC) with sliding sector is experimen-
tally evaluated on a new rotational-type inverted pendulum apparatus including
an additional dynamics which is used to investigate the robustness of the con-
troller. It is experimentally shown that the discrete-time VS controller makes
the system robust stable with respect to parameter uncertainties and gives a
quick response against external disturbances, which yields a good control per-
formance without chattering.

1. Introduction

Continuous-time Variable Structure Control (VSC) with sliding mode is known to be
robust with respect to parameter uncertainties and external disturbances. The sliding
motion designed for a continuous-time system may not be satisfactorily achieved by
VSC implemented in a discrete-time system. The robustness of the continuous-time
VSC with sliding mode is not assured in the discrete-time system. A stable slid-
ing mode designed in the continuous-time system may even become unstable under
sampled-data control (Furuta and Pan, 1994).

To design VSC for discrete-time systems, a sliding sector was proposed in (Furuta,
1990; Furata and Pan, 1993; Iordanou and Surgenor, 1997) instead of the sliding mode.
The control law of the discrete-time VSC transfers the system state from the outside
to the inside of the sliding sector where the closed-loop system is designed to be stable.

The sliding sector inside which a norm of the system state decreases with zero
input was first proposed in (Furuta and Pan, 1995), where sectors for both continuous-
time and discrete-time systems were defined. Such a sliding sector exists for any
controllable system. The sliding sector can be designed for a controllable canonical
form or using a Riccati equation. The discrete-time VSC with sliding sector was
designed to transfer the system state from the outside to the inside of the sliding
sector while the norm is kept decreasing. The control system has been evaluated
through the usual inverted pendulum. But the inverted pendulum could not include
the uncertain dynamics model in the neighborhood of the equilibrium state.
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In this paper, a new rotational inverted pendulum is designed to have a mass,
dumper and spring system between the rotational arm and hinge for the pendulum
as an additional dynamics shown in Fig. 2. Assuming the additional dynamics to be
an uncertainty, the robustness of the control system could be evaluated by using this
experimental apparatus. The sliding sector is designed using the Riccati equation
proposed in (Furuta and Pan, 1996) for the stabilizing controller of the proposed
pendulum system.

The organization of the paper is as follows: Section 2 describes the sliding sector
for a discrete-time system, designed via Riccati equation, and proposes a VS con-
troller. Section 3 shows the experimental apparatus. Section 4 presents the results of
experiments.

2. VSC with PR-Sliding Sector
Consider a single-input discrete-time plant:

Try1 = Pxy + Tuy, (1)
where z; € R* and ug € R! are the state and input vectors; respectively, ® and T
are constant matrices of appropriate dimensions, and the pair (A, B) is controllable.
2.1. PR-Sliding Sector
Definition 1. The P-norm || ||, of the system state is defined as

okl = (zf Pzi)'/?, 2 € R (2)
where P € R**™ is a positive-definite symmetric matrix.

If the autonomous system (1) is stable, then

Liy1 — Ly, = 25 (@TP® — P)zy, <0, Ve R? (3)
for some positive-definite symmetric matrix P € R"*", where L; is defined as

Ly = flzel?

But for an unstable system, inequality (3) does not hold. It is still possible that
Lgy1 — Ly > 0 for some z € R*, and Lgy; — Ly < 0 for the other z; € R™®. The
latter ones form a subset in which the P-norm ||zx||, decreases. Accordingly, we
define the subset called the PR-sliding sector as follows.

Definition 2. The PR-sliding sector is the subset of R® defined as
§={w| 2L (@TP® - P)zx < —of Ry } (4)

where P € R™*™ is a positive-definite symmetric matrix and R € R™*" is a positive
semi-definite symmetric matrix.
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Inside the PR-sliding sector, the P-norm ||z, of the plant (1) with zero control
action does not increase because

L1 — Ly < —IEZRIIJ]C <0, V, €S (5)

The existence of such a sliding sector for the discrete-time plant (1) is guaranteed
by the following theorem.

Theorem 1. For the plant (1), the PR-sliding sector defined by (4) ewists for any
positive-definite symmetric matriz P and any positive semi-definite symmetric matriz
R. It can be rewritten as

§={w & <t} (6)
where

si = :c;‘chlmk >0 (7

62 =zl Py > 0 (®)

P, and P are nxn positive semi-definite symmetric matrices.

Proof. Set

A=9"P®-P+R (9)
Then the PR-sliding sector defined by (4) is determined by the condition

zi Az <0
For the matrix A, there exists a real orthonormal matrix U € R®*™ such that

UTAU = diag(r,72,...,™n)

where 7; (: = 1,2,...,n) are the characteristic roots of A, which are all real because
A is symmetric.
Assume
5 .l +r1 2|+ 12 Irn| + 70
P, = dia ey
1 1ag ( 9 3 2 3 9

PZ:diag(lrllz_rlaIT2|2—Tz,..-7lrn|2—rn)

i.e. P, and P, are composed of the positive and negative eigenvalues of A, respec-
tively. Then we have

UTAU = P, - P,

P20, (=12
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Introducing P, = UB,UT (n=1,2) gives
A = Pl - Pz

The PR-sliding sector defined by (4) can thus be rewritten as

S = {ﬂ:kl S% S 5,%}

where
si = m{Pla:k >0
5,% = x{Pga:k >0
which implies the existence of the PR-sliding sector. [ |

Corollary 1. Let n; =rank(P;) (i =1,2) and n3 =n—n; —ny. Then n1 and no
are the numbers of the positive and negative eigenvalues of A, respectively, and ns
is the number of the eigenvalues of A at the origin.

Remark 1. There are some special PR-sliding sectors:
e The PR-sliding sector S is equal to K™ if n; =0.

e The PR-sliding sector S is reduced to the PR-sliding hyperplane determined
by 2TPiz =0 if no =0 and n—ny > 0.

e The PR-sliding sector S is reduced to the equilibrium point z =0 if n; = n.

If rank(P;) = 1, the PR-sliding sector defined by (6) has a simplified form

8= {a] |sel < lowl} (10)

where

Sk = CiEk
(11)
51«: - \/:L‘kTPQCL'k
i.e. sy is a linear function of z; and C satisfies CTC = P;. Moreover, if rank(P;) =
rank(P;) = 1, &y is a linear function of z; too, i.e.

5k = D:Ek

and D satisfies DTD = P,.

The following theorem shows that this simplified form of the PR-sliding sector
does exist for controllable plants.
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Theorem 2. For any controllable plant described by eqn. (1), there exist two linear
functions s and 0 of xy

sy = Cxy,, CZ[Cl Co ... Cn]ERlxn

0 = Daxy, D:[d1 dy ... dn]ERlx”

such that the PR-sliding sector defined by (4) or (6) can be rewritten as a simplified
form.

Proof. For a controllable system, there exists an invertible transformation T'
T = Tzk
which transforms (1) to the controllable canonical form

Zot1 = Py + Tuy

where
0 1 0
d=T"19T = : : ) ’
0 0 .- 1
—ap —a1 r —Gp-1
_ T
P:T”lr:[o e 0 1]

Let P be the nxn identity matrix and R be the n xn zero matrix. Then the
P R-sliding sector is determined by

i (@TP® — P+ R)ay,

2F(@TP® — P + R)z,

= {(G,(] -z +a1z9+---+ an_lzn}

x {(ao + Dz +arze+---+ an_.lzn}
= 2] CTCzs — 2F DT Dz,
=57 —6; <0
where
P =T1"Tpr!
R = T7TRT!
sp = Cz = [ Go Q1 ... Gp-i ]zk

6k=sz=[1 0 ... o]zk
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It follows that if P = (TTT)™! and R = O,, then the PR-sliding sector can be
defined as

§= {mk| |sk| < !5k|}

where
sp = Czy, c=C1"
o = Dy, D=DT7!
This completes the proof. [ ]

2.2. Design of PR-Sliding Sectors Using the Riccati Equation

In the proof of Theorem 2, a PR-sliding sector has been designed for the controllable
canonical form. Now we shall design a PR-sliding sector using a Riccati equation.

For the plant (1), the performance index is chosen as
J= Z(szrkT +u?) (12)
k=0

where ) € R**™ is a positive-definite symmetric matrix.

Since (®,T') is controllable, the optimal control minimizing (12) exists and has
the form

up = — Kz, (13)
where the gain matrix K is defined as
K=0+TITP0)'rTpe (14)

and P € R™" is a positive-definite symmetric matrix which satisfies the following
discrete-time Riccati equation:

P=Q+3TP®-3TPr(1+17Pr)'1" PP (15)
By substituting (13) into (1), the closed-loop system yields
Zpy1 = (@ — TK)zy, (16)
If a solution P of (15) is chosen so as to define the P-norm in Definition 1, then

Lis1 — Ly = 2T (8T P® — P)zy,

tI KT(1 + TP Kxy, — ¥ Quy, (17)

with zero control input.

The following theorem concludes how to design a PR-sliding sector using the
Riccati equation.
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Theorem 3. If the solution P of the discrete-time Riccati equation is used to define
the P-norm and R =0, then the PR-sliding sector (4) can be rewritten as

S ={m| lswl < lol} (18)
where

sy = Cuxp, C=vV1+ITPTK (19)
0k = \/z1 Qi (20)

@) is the matriz in the performance index (12), K is the optimal feedback-gain matriz
determined by (14).

Proof. According to (17), the following equation holds when u; = 0:
Lk+1 e Lk = IZ(@TPQ — P)zk

1

e KT(1+TTPT) Ky, — z¥ Quy,
— -

Therefore, (18) defines a simplified P R-sliding sector. [ |

2.3. VS Controller

For the sliding sector (10), a VS control law should be designed to move the system
state from the outside to the inside of the PR-sliding sector. Inside the PR-sliding
sector, the P-norm keeps decreasing. For discrete-time systems, the system state, in
general, may not stay inside the P R-sliding sector forever when there is no control
action. Thus the VS control law will be used again to move the system state from
the outside to the inside of the PR-sliding sector. While the system state is moving
in such a way, the P-norm may increase for some plants. To design a discrete-time
VS controller with the PR-sliding sector, this sector was redesigned in (Furuta and
Pan, 1996) to ensure that the P-norm decreases after a finite number of initial steps.

In this paper, a new VS control law is proposed for sampled-data systems. The
discrete-time system (1) is considered as a sampled-data system of the continuous-
time one

z(t) = Az(t) + Bu(t) (21)
with sampling interval 7. Then

T
P = AT, I'= / eMBdt
0

Theorem 4. For the discrete-time plant (1) with the PR-sliding sector (18) designed
by using the Riccati equation, the discrete-time VS control law

0 if zp€8
Up = (22)
—(CT)_I(CQHZ]C - ﬁsk) if zR€S
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stabilizes the system if
1. the coefficient B satisfies |B] < 1,

2. the discrete-time plant (1) is a sampled-data system of (21) with sampling in-
terval T, and

3. there exist a sufﬁciently' small T, a coefficient (B, and positive constants A;
(:=1,2,3 and Ay + Az + A3 = 1) such that

CT > 0 (23)
M2VI+h(1-8) > CT (24)
X(1-67°Q > T*HT(T)H(T) (25)
2V1+his > h(CT)™ (1 = B)(1 + Xp)? (26)

where @Q is the positive-definite symmetric matriz used to design the PR-sliding
sector,

HT)=C)_ %T"“l, h=TTPT
n=1

Proof. 1t will be shown that the P-norm decreases in the whole state space.

First, consider the inside of the PR-sliding sector. In this case, we have s < §2
and the P-norm decreases with the VS control law (22) because

T T
Lk+1 -—Lk = il:k+1P.’1:k+1 —l‘kP.’IIk
— 2 2
=5, -0, <0

Now consider the outside of the PR-sliding sector, i.e. the case s? > d2. With the
VS control law (22), we obtain

Sk+1 = Cxgqq = CPxp + CTuy = Bsi
i.e.
2 2.2 2
k1 = B7sg < sk

Thus the system state will move toward the inside of the PR-sliding sector. At the
same time, from (14) and (19), we see that

T T
Lk+1 - Lk = .’L‘k+1P.’rk+1 — Ty sz

]

zf (8T P® — P)zy, + 2v/1 + hspuy + huj
s% —5,%+2\/1+hskuk +hu%
= sk(sk +2V1 + hug) + hul — 82
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If there exist A; (A\; > 0, 1 =1,2,3 and A + Ay + A3 = 1), a coefficient 3, and a
sufficiently small sampling interval T' such that (23)—(26) hold, then

lug| = (CT)7'|(1 - B)si + TH(T)xx|
or) (1 - Plsel + \/Tz THT(T)H(T)a }
nHa-p skl + /(1 - B)22T Qu }

= (crrl{(l—ﬂnski+A2<1—ﬂ>|6k|}

< (CT)Hsil(L = B)(1 + A2)

IN

-1

IN

and
Lit1 — Ly < si(sk +2V1+ hug) + h(CT) 253 (1 — B)* (1 + Xa)? —
= (CT)"'s4{(CT — 2VT+h(1 - B))sx - 2VT+ hTH(T)z1 }
+R(CT) 253 (1 - B)* (L + Xo)* — 6}
< 12x/17“{ (1—B)1 - \)s2 + skTH(T):uk}

+h(CT) st (1~ B)* (1 + A2)* —
< —(CT)™'2v1+ h(1 — B)Assg + h(CT) 25 (1 — B)*(1 + A2)? — 62
< -6 <0

Therefore the discrete-time VS control law (22) ensures that the state moves
toward the inside of the PR-sliding sector and the P-norm decreases in the whole
state space, which implies that the proposed VS controller stabilizes the system (1)
or (21). |

Remark 2. The conditions (23)—(26) are satisfied for a small sampling interval T

3. Experimental Apparatus

The overview of the rotational inverted pendulum is shown in Fig. 1. The pendulum
has an additional dynamics between the link and the housing which holds the axis
of the hinge. The sole actuator is a Direct-Drive motor which can torque the arm
with a possible range of —9.8 to 9.8 [Nm]. We can measure angles of the motor and
pendulum using encoders whose possible range is from 0° to 360° with the resolution
of 102400 [pulse/rev] and 4096 [pulse/rev], respectively.

The additional dynamics consists of a mass, springs and dumpers. It is introduced
as the uncertainty of the pendulum system.
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Fig. 1. Rotational inverted pendulum.

Housing of hinge for pendulum.

Fig. 2. Additional dynamics.
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Figure 3 shows the configuration of the system with the additional dynamics. All
the parameters of the configuration are given according to the DH-notation (Denavit
and Hartenberg, 1955). All the controllers are designed based on the nominal model
which does not include the additional dynamics. The configuration of the nominal
model is shown in Fig. 4.

Table 1. DH parameters of Fig. 3.

[Link | a | o [d ] 8 |
1 ap | -7/2 | 0 0,
2 0 w/2 | 8 | w/2
3 as 0 0 93

Table 2. DH parameters of Fig. 4.

[Link | o | & [ d [ 6|
1 0 7T/2 0 0,
2 as 0 dy | 62

T3
?\ 23
. 0s
Y3
[as
Y2
21 2
20 93i (o) J2 -
Yo
al Ol
\ 91 o
Oo To Y1

Fig. 3. Configuration of the system with additional dynamics.
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T
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0, 7
Y2

a2

Y

Yo Z1

01

Oo Zo
O1

Fig. 4. Configuration of the system without additional dynamics.

‘ The dynamic equations for the system with the additional dynamics are as fol-
lows:

Vi1 + 2(as + s3)ms sin(gs)d2d1
+ 2(ms + m3)625241 + 2mg(Jsy — J35) cos(gs) sin(gs)d1ds
+ 2m3(as + s32)” cos(gs) sin(gs)d1ds + 2ms (a3 + ssq) cos(qs)02G1ds
— (a3 + asz)a1ms sin(gs)d5 + (ma + ms3)a1do
+ 1y + Joz + Jaz + i (ma+m3) +my(a1+512)%)d1 + (Jay — Jaz) sin®(g3) 1
+ms(as + s35)° sin®(gs)dy + 2ma(as + s32) sin(gs)d2d1 + (ma + m3)d3G:

+ m3(as + s3z)a1 cos(qs)is = T

K0y + Vaby — (a3 + $35)ms sin(gs)g? — (mg + m3)8s¢? — ma(as + s3z) sin(gs )2
+ (mgy + m3)52 + a1 (ma + m3)dims(as + s3z) cos(gs)ds =0

(as+ s35)gmssings + (Jaz — Jay) cos(gs) sin(gs)d?
— (a3 + s35)*mg cos(gs) sin(gs) g} — (as + s3z)ms cos(gs)d2d; + Vads
+ (a3 + s32)m3 cos(gs)d2 + (as + $35)a1ms cos(gs)d
+ Ja243 + (a3 + s35)°mads =0
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The corresponding parameters are listed in Table 3.

Table 3. Parameters of dynamic equations for the system with additional

dynamics
g 9.81[m/s?] acceleration of gravity
ay 0.195[m| length of link
a3 0.205[m] length of pendulum
m 2.63[kg] mass of link and rotor
mo 0.45 [kg] mass of additional dynamics
ms 0.15[kg] mass of pendulum
Jiy 0.0266 [kg m?] moment of inertia around center of gravity of link
J2z 0[kg m?] moment of inertia around center of gravity of additional

dynamical system
J3z 0.0000025 [kg m?] moment of inertia around z3 axis of pendulum
Jsy 0.000527 [kg m?] moment of inertia around ys; axis of pendulum

Js. 0.000527 [kg m?] moment of inertia around z3 axis of pendulum

Sig -0.156 [m| length from point to center of gravity of link

83 -0.1025 [m] length from point to center of gravity of pendulum
W 0.0308 [kg/s] coefficient of viscosity around rotation axis

Va 144.0[kg/s] coeflicient of viscosity in additional dynamics

Vs 0.0033235[kg/s] coefficient of viscosity around hinge for pendulum

K, 1372 [kg/s?] coefficient of the additional dynamics in springs

The dynamic equations for the system without the additional dynamics are as follows:
Vigi+ (Jaz + Jay) sin(2¢2)g1 g2 — ma(az + s2.)* sin(2g2)q1 62
— ma(as + s2;)d2 cos(gz)ga + (le + Joy + ma(as + S92)2 + mod: + mls%z)(jl
+ (Joz + Joy + ma(az + 525)%) sin®(g2)di1

+ mg(az + Szm)dz SinZ(QQ)(iz =T

ma(az + s22)g cos(g2) + (Joy — Jay) cos(ga) sin(ga)d}
+ ma(az + 32%)2 cos(qz) sin(qz)t_}f + Vagy — ma(aa + s25)da sin(g2)G1
+ (J2z + ma(as + 525)%) 2 = 0

and the corresponding parameters are given in Table 4.
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Table 4. Parameters of dynamic equations of the system without additional

dynamics
g 9.81[m/s?] acceleration of gravity
ay 0.205[m] length of pendulum
da 0.195[m] length of link
my 3.08[kg] mass of link and motor
my 0.15[kg] mass of pendulum
Jiy 0.0266 [kg m?] moment of inertia around center of gravity about link

Jaz  0.0000025 [kg m?]
Jay 0.000527 [kg m?] moment of inertia around y; axis of pendulum
Jaz  0.000527 [kg m?]

moment of inertia around z, axis of pendulum

moment of inertia around z3 axis of pendulum

S1z 0.039404 [m] length from point to center of gravity of link
So9g -0.1025 [m] length from point to center of gravity of pendulum
Vi 0.0308 [kg/s] coeflicient of viscosity around rotation axis

Vs 0.0033235 [kg/s] coefficient of viscosity around hinge for pendulum

By linearizing the above equations around the unstable equilibrium state, the state
equations of each model are obtained as follows. For the system with additional
dynamics we have

i=Az+bu
where
0 0 0 1 0 0
0 0 0 0 1 0
Ao 0 0 0 0 0 1
T | 0 8742.36 0 —-1.00645 917.565 0
0 -—4518.6 2.26161 0.196257 —474.255 —0.0498344
0 —20572.5 88.258 0 —2159.22  —1.94476

T
b:(o 0 0 32.6768 —6.37198 07

i T
33:(‘11 d2 g3 G & (is)

¢ is the angle of the link, d» stands for the displacement of the hinge, g3 denotes
the angle of the pendulum.
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The system without additional dynamics has the parameters

0 0 1 0
0 0 0 1
0 6.5531 —0.938621 ~0.144397
0 81.0655 —1.33818 ~1.78627

A=

b= ( 0 0 304747 434473 )T

. . T
5’3:((11 2 Q1 Q:z)

where ¢; is the angle of the link and ¢ denotes the angle of the pendulum.

Discretizing the above nominal continuous system with the sampling time T =
0.005 s gives the following discrete-time system:

Tp41 = Pz + Tuy,
where

$ = AT

T
r'= / et dt
1]

1 8.15565x107°  4.98829x107% —1.66101x107°
0 1.00101 —1.66543 1075 4.97942 x 1072
0 3.25541x107%  9.95320x10™' —6.35770 x10~*
0

b =
4.03550 x10~!  —6.64773x10"3  9.92118 x 10!
3.80216 x 10~*
re 5.40723 x 10™%

1.51944 x 10~
2.15835 x 101

The Bode diagrams of both systems are compared in Figs. 5 and 6.

4. Results of Experiment

An experiment has been carried out to stabilize the pendulum with discrete-time
VSC and LQ-optimal controller. For comparison, both the controllers were designed
based on the nominal model with the same positive definite solution P of the Riccati
equation (15) with two different state weight matrices J. The observers were designed
based on Gopinath’s method. The poles which were used for designing the observer
are 0.9 for the L.Q optimal controllers and 0.58 for the discrete-time VS controllers.
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0 H H : H
= witheut additional dynamics | —-

=20 wi dditional.dvna
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'
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-80

[gain]

-100 X

-120 *

-140 *

\

-160 :
0.01 0.1 1 10 100 1000 10000
w

Fig. 5. Gain of the frequency characteristic from the input to the angle of the pendulum.

-80
] without additional dynamics i—
-100 with additional dynamics - -
-120 A
-140 N
-160 R
oy TR
Sl
2 180 =
) X
-200 X
-220
-240 2
-260 Do
-280
0.01 0.1 1 10 100 1000 10000
w

Fig. 6. Phase of the frequency characteristic from the input to the angle of the pendulum.



Evaluation of discrete-time VSC on an inverted pendulum apparatus ... 175

The fast observer does not work satisfactorily for the LQ optimal controllers. Figures
7-11 show the response of the pendulum system. The spike-like responses are due to
disturbances which were added to test the robustness of the system to disturbances.

First, we choose the matrix @ of the performance index (12) as

100000 0 0 0
0 100000 0 0 |a

_ A 27

@ 0 0 2000 0 @ (27)

0 0 0 1000
Equation (15) gives the positive-definite solution P as

8.50444 x 10 —1.06489 x 107  1.58666 x 106 —1.12023 x 108
—1.06489 x 107  2.26194 x 107 —3.14612x10%  2.23578 x 10°
1.58666 x 105 —3.14612x10%  4.59980 x 10° —3.25012 x 10°
—1.12023 x 105  2.23578 x 10® —3.25012x10°  2.31689 x 10°

which yields the LQ optimal control law
U = -—K.’L‘k

where

T
K= (—3.09884 x 101 1.27218 x10? —1.32081 x 10' 1.40149 x 101)

Accordingly, the parameters C and @ of (18) are determined as
T
C= (——3.16153 x 102 1.29792 x10° —1.34753 x10% 1.42984 x 102)

Q=

and the coefficient 8 of the VS control law (22) is chosen to be 0.8 in the experiment.

Figures 7 and 8 show the responses of the angle g —7/2 of the pendulum for the
discrete-time VSC and the LQ-optimal control, respectively. The discrete-time VSC
reveals a quicker response against the disturbance than the LQ-optimal controller.
Figures 9 and 10 show the input torque around zp for the discrete-time VSC and the
LQ-optimal control, respectively. As can be seen, the input of the discrete-time VSC
requires a larger torque than that of the LQ-optimal control. Figure 11 is zooming
up Fig. 9 with the time range from 6 to 10 seconds. One can observe that the VS
controller produces a zero input while the state of the system stays within the sliding
sector. ’

It is experimentally observed that the system with the LQ optimal controller
may lose stability when the feedback coefficient K is large due to a large value of Q
and starts slugging motion in the presence of the uncertain model dynamics. Next,
we conduct experiments with a large value of the matrix Q.
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Fig. 7. Response with discrete-time VS controller based on Q1.
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Fig. 11. Zooming up of input with discrete-time VS controller.

The matrix @ of the performance index (12) is chosen this time as

1000000 0 0 0
0 10000 0 0 A
Q= 0 0 2000 O = Qs

0 0 0 1000

Equation (15) gives the positive-definite solution P as

6.51056 x 107 —6.63872 x 107 1.00840 x 107
—6.63872 x 107  8.43934 x 107 —1.25280 x 107
1.00840 x 107  —1.25280 x 107 1.88516 x 10°
—7.09730 x 108 8.84589 x 106 —1.32908 x 10°

which yields the LQ optimal control law
up = — Kz,

where

(28)

—7.09730 x 10%
8.84589 x 108
—1.32908 x 108
9.39088 x 10°

T
K = (—9.77095 x 101 2.45969 x 10> —3.09902 x 10* 2.66170 x 101)
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Accordingly, the parameters C' and @ of the PR-sliding sector (18) are deter-
mined as

T
C= (——1.02632 x10% 2.58361 x 10®° —3.25515 x10? 2.79579 x 102)

Q=0
the coefficient 8 of the VS control law (22) is chosen to be 0.8 in the experiment.

Figures 12 and 13 show the responses of the angle g2 — 7/2 of the pendulum
for the discrete-time VSC and the LQ-optimal control, respectively. In contrast to
the slugging response with the LQ optimal control, there does not exist the slugging
motion in the response with the discrete-time VSC and the discrete-time VSC gives
a quicker response against the disturbances. Figures 14 and 15 show the control
inputs for the discrete-time VSC and the LQ-optimal control, respectively. From
these figures, we can observe that the discrete-time VSC gives a better input to the
system than the LQ optimal controller.

5. Conclusion

In this paper, the discrete-time VSC based on the sliding sector is evaluated by the
newly proposed pendulum system with additional dynamics. From the results of the
experiment, we can conclude that the discrete-time VSC with the sliding sector de-
signed by using the same criterion for the Riccati equation gives a faster response
against disturbances than the LQ optimal control. The discrete-time VSC can in-
corporate a high gain with which the LQ optimal controller may start the slugging
motion.
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